

First extraction of Transversity Measurgmentanalyighte quark fragmentationing and hadonibilations

highlights from the past five years

Brussels, 23 January 2015

Unibertsitatea

Universidad del País Vasco

versidad Euskal Herriko

quark pol.

_	pol.	
	eon	
	nucl	

	U	L	T
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

in SIDIS*) couple PDFs to:

quark pol.

nucleon pol

	U	L	Τ
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

in SIDIS*) couple PDFs to:

Collins FF:
$$H_1^{\perp,q\to h}$$
 DiFF: $H_1^{\angle,q\to h_1h_2}$

FFs act as quark flavor-tagger and polarimeter

fragmentation in ete annihilation

- single-inclusive hadron production,
 e⁺e⁻ → hX
 - D₁ fragmentation fctn.
 - \bullet D₁T^{\(\text{\psi}\)} spontaneous transv. pol.

fragmentation in ete annihilation

- single-inclusive hadron production,
 e⁺e⁻ → hX
 - D₁ fragmentation fctn.
 - \bullet D_{1T}^{\perp} spontaneous transv. pol.
- inclusive "back-to-back" hadron pairs, $e^+e^- \rightarrow h_1h_2X$
 - product of FFs
 - flavor, transverse-momentum, and/or polarization tagging

fragmentation in ete annihilation

- single-inclusive hadron production,
 e⁺e⁻ → hX
 - D₁ fragmentation fctn.
 - \bullet $D_{1}T^{\perp}$ spontaneous transv. pol.
- inclusive "back-to-back" hadron pairs, $e^+e^- \rightarrow h_1h_2X$
 - product of FFs
 - flavor, transverse-momentum, and/or polarization tagging
- inclusive same-hemisphere hadron pairs, $e^+e^- \rightarrow h_1h_2X$
 - dihadron fragmentation

ete annihil

r, Belle, and BESIII

- BaBar/Belle: asymmetric beam-energy e+e- collider near/at ↑ (45) resonance
 (10.58 GeV)
- BESIII: symmetric collider with $E_e=1...2.4$ GeV

ete annihilation at BaBar, Belle, and BESIII

- BaBar/Belle: asymmetric beam-energy e+e- collider near/at ↑ (45) resonance
 (10.58 GeV)
- BESIII: symmetric
 collider with E_e=1...2.4 GeV
- integrated luminosities:

	Υ(45) on resonance	Υ(45) off resonance	other
BaBar	424.2 fb ⁻¹	43.9 fb ⁻¹	
Belle	(140+571) fb ⁻¹	(15.6+73.8) fb ⁻¹	
BESIII			~62 pb ⁻¹ @3.65 <i>G</i> eV *)

*) used for the Collins analysis presented here

- hadron yields undergo series of corrections
 - particle (mis)identification [e.g., not every identified pion was a pion]
 - smearing unfolding [e.g., measured and true momentum might differ]
 - non- $q\bar{q}$ processes [e.g., two-photon processes, $\Upsilon \rightarrow BB$, ...]
 - " 4π " correction [selection criteria and limited geometric acceptance]
 - QED radiation [initial-state radiation (ISR)]
 - optional: weak-decay removal (e.g., "prompt fragmentation")

- hadron yields undergo series of corrections
 - particle (mis)identification [e.g., not every identified pion was a pion]
 - smearing unfolding [e.g., measured and true momentum might differ]
 - non- $q\bar{q}$ processes [e.g., two-photon processes, $\Upsilon \rightarrow BB$, ...]
 - " 4π " correction [selection criteria and limited geometric acceptance]
 - QED radiation [initial-state radiation (ISR)]
 - optional: weak-decay removal (e.g., "prompt fragmentation")
- Collins asymmetries also corrected for false asymmetries and maybe for qq-axis (mis)reconstruction

- hadron yields undergo series of corrections
 - particle (mis)identification [e.g., not every identified pion was a pion]
 - smearing unfolding [e.g., measured and true momentum might differ]
 - non- $q\bar{q}$ processes [e.g., two-photon processes, $\Upsilon \rightarrow BB$, ...]
 - \bullet " 4π " correction [selection criteria and limited geometric acceptance]
 - QED radiation [initial-state radiation (ISR)]
 - optional: weak-decay removal (e.g., "prompt fragmentation")
- Collins asymmetries also corrected for false asymmetries and maybe for $q\bar{q}$ -axis (mis)reconstruction
- partially different approaches in different experiments/analyses

- example: single-hadron inclusive cross sections
 - cumulative effect of correction steps

- largest effect for mesons from acceptance and ISR correction
- larger PID correction for protons than for mesons

- before 2013: lack of precision data
 at (moderately) high z and at low √s
 - limits analysis of evolution and gluon fragmentation
 - limited information in kinematic
 region often used in semi-inclusive DIS

- before 2013: lack of precision data
 at (moderately) high z and at low √s
 - limits analysis of evolution and gluon fragmentation
 - limited information in kinematic
 region often used in semi-inclusive DIS

- now, results available from BaBar and Belle:
 - BaBar Collaboration, Phys. Rev. D88 (2013) 032011: π^{\pm} , K^{\pm} , p+p
 - Belle Collaboration, Phys. Rev. Lett. 111 (2013) 062002: π^{\pm} , K^{\pm}
 - Belle Collaboration, Phys. Rev. D92 (2015) 092007: π^{\pm} , K^{\pm} , p+p

- very precise data for charged pions and kaons
- Belle data available up to very large z (z<0.98)
- included in recent DEHSS fits
 - slight tension at low-z for BaBar and high-z for Belle

- very precise data for charged pions and kaons
- Belle data available up to very large z (z<0.98)
- included in recent DEHSS fits
 [e.g. PRD 91, 014035 (2015)]

Belle radiative corrections undone in FF fits

[EPJC 77 (2017) 516, NNFF1.0]

In the case of the BELLE experiment we multiply all data points by a factor 1/c, with c=0.65 for charged pions and kaons [69] and with c a function of z for protons/antiprotons [53]. This correction is required in order to treat the BELLE data consistently with all the other SIA measurements included in NNFF1.0. The reason is that a kinematic cut on radiative photon events was applied to the BELLE data sample in the original analysis instead of unfolding the radiative QED effects. Specifically, the energy scales

- very precise data for charged pions and kaons
- Belle data available up to very large z (z<0.98)
- included in recent DEHSS fits [e.g. PRD 91, 014035 (2015)]
- Belle radiative corrections undone in FF fits
- new: data for protons and anti-protons
 - not (yet) included in DEHSS, but in NNFF 1.0 [EPJC 77 (2017) 516]
 - similar z dependence as pions
 - about $\sim \frac{1}{5}$ of pion cross sections

single-hadron production: data-MC comparison

- pion and(?) kaon data reasonably well described by Jetset
- protons difficult to reproduce, especially at large z
 - MC overshoots data

inclusive hyperon production

- lacktriangle Λ production reasonably well described by Pythia
- less satisfactory for heavier hyperons
- fails to describe Ω^- production

- single-hadron production has low discriminating power for parton flavor
- can use 2nd hadron in opposite hemisphere to "tag" flavor
 - mainly sensitive to product of singlehadron FFs
- if hadrons in same hemisphere: dihadron fragmentation
 - a la de Florian & Vanni [Phys. Lett. B 578 (2004) 139]
 - a la Collins, Heppelmann & Ladinsky
 [Nucl. Phys. B 420 (1994) 565];
 Boer, Jacobs & Radici [Phys. Rev. D 67 (2003) 094003]
- opens the question of defining hemispheres

hadron-pair production

no hemisphere selection

no hemisphere selection

no hemisphere selection

hadron-pairs: topology comparison

- any hemisphere vs. opposite- & same-hemisphere pairs
 - same-hemisphere pairs with kinematic limit at $z_1=z_2=0.5$

unlike-sign hadron pairs

like-sign hadron pairs

π⁺π⁻ Data

 $\pi^+\pi^+$ Data

unlike-sign hadron pairs

like-sign hadron pairs

 $\pi^+\pi^-$ Data

 $\pi^+\pi^+$ Data

unlike-sign hadron pairs

like-sign hadron pairs

- unlike-sign pairs with clear decay and resonance structure: K_s , ρ^0 ...
- like-sign pairs with much smoother and smaller cross sections

unlike-sign hadron pairs

like-sign hadron pairs

- cross sections after (MC-based) removal of weak-decay contributions
 - relies on good description of those channels in PYTHIA

unlike-sign pion pairs

- decomposition based on PYTHIA simulation
- clear differences in invariant-mass dependence between MC and data

unlike-sign hadron pairs

like-sign hadron pairs

T > 0.8 $z_{1,2} > 0.1$

 \bullet unlike-sign πK pairs with clear K^* and increased D-decay contributions

unlike-sign hadron pairs

like-sign hadron pairs

- unlike-sign kaon pairs with (again) a decay structure (e.g. ϕ and D)
- like-sign kaon pairs strongly suppressed at larger z

some more details

unlike-sign hadron pairs

like-sign hadron pairs

same-hemisphere data: Mh1h2 dependence

unlike-sign hadron pairs

like-sign hadron pairs

T > 0.8 $z_{1,2} > 0.1$

gunar.schnell @ desy.de

thrust very useful experimentally to suppress Bo and to define hemispheres to potentially difficult to incorparate in phenomenology (unlike thrust axis?)
 potentially difficult to incorparate in phenomenology (unlike thrust axis?)

same-hemisphere data: Mh1h2 dependence

unlike-sign hadron pairs

like-sign hadron pairs

T > 0.8 $z_{1,2} > 0.1$

gunar.schnell @ desy.de

experimental to instraints on individual z restricts phase space of hadron pairs, however not easy to avoid (detection requirements!)
 among others leads to mixing of partial wave contributions [GS, QCDE'1]

polarization

hadron pairs: angular correlations

- angular correlations between nearly back-to-back hadrons used to tag transverse quark polarization -> Collins fragmentation functions
 - RFO: one hadron as reference axis \rightarrow cos(2 ϕ_0) modulation
 - RF12: thrust (or similar) axis $\rightarrow \cos(\phi_1 + \phi_2)$ modulation

fferent convolutions over transverse momenta sed to "correct" thrust axis to $q\bar{q}$ axis

hadron pairs: angular correlations

 challenge: large modulations even without Collins effect (e.g., MC)

hadron pairs: angular correlations

- challenge: large modulations even without Collins effect (e.g., MC)
- construct double ratio of normalized-yield distributions R₁₂, e.g. unlike-/like-sign:

$$\frac{R_{12}^{U}}{R_{12}^{L}} \simeq \frac{1 + \langle \frac{\sin^{2}\theta_{th}}{1 + \cos^{2}\theta_{th}} \rangle G^{U} \cos(\phi_{1} + \phi_{2})}{1 + \langle \frac{\sin^{2}\theta_{th}}{1 + \cos^{2}\theta_{th}} \rangle G^{L} \cos(\phi_{1} + \phi_{2})}$$

$$\simeq 1 + \langle \frac{\sin^{2}\theta_{th}}{1 + \cos^{2}\theta_{th}} \rangle \{G^{U} - G^{L}\} \cos(\phi_{1} + \phi_{2})$$

- suppresses flavor-independent sources of modulations
- $G^{U/L}$ specific combinations of FFs
- remaining MC asym.'s: systematics

Collins asymmetries (RFO)

- first measurement of Collins
 asymmetries by Belle [PRL 96 (2006)
 232002, PRD 78 (2008) 032011, PRD 86
 (2012) 039905(E)]
 - significant asymmetries rising with z
 - used for first transversity and Collins
 FF extractions

Collins asymmetries (RFO)

BaBar results [PRD 90 (2014) 052003]
 consistent with Belle

Collins asymmetries (RFO)

- BaBar results [PRD 90 (2014) 052003]
 consistent with Belle
- BESIII [PRL 116 (2016) 042001] (at smaller s) consistent with TMD evolution [Z.-B. Kang et al., PRD 93 (2016) 014009]

Collins asymmetries - going further

even larger effects seen for kaon pairs

Collins asymmetries - going further

- even larger effects seen for kaon pairs
- p_T dependence for pions

polarizing fragmentation

 large hyperon polarization in unpolarized hadron collision observed

p, > 0.96 GeV/c

... as well as in inclusive lepto-production

-10

-20

-30

-40

 \Box ($\sqrt{s} = 3.6$)

POLARIZATION (%)

polarizing fragmentation function

• polarization measured normal to production plane, i.e ∞ ("q" \times P_{Λ}) (note that sign got reversed in the drawing)

- reference axis to define transverse momentum:
 - "thrust frame" use thrust axis
 - "hadron frame" use momentum direction of "back-to-back" hadron

polarizing fragmentation function

flavor tagging through hadrons in opposite hemisphere:

what to further expect (soon) from ete-

- transverse polarization of inclusively produced Λ^0 hyperons (Belle)
- Collins asymmetries:
 - neutral meson (pion and eta) incl. k_T dependence (Belle)
 - kaon and pion-kaon pairs as well as k_T dependence of Collins asymmetries (BaBar, Belle, BESIII)
 - Collins asymmetries without double ratios (BaBar)
- k_T-dependent D₁ FFs (Belle)
 - hadron-to-thrust
 - nearly back-to-back hadrons
- helicity-dependent dihadron fragmentation function G_1^{\perp} ("jet handedness") (Belle)

backup

hadron-pairs: weak-decay contributions

onot all hadrons originate from uds quarks but e.g., from D decay

• here only $z_1=z_2$ diagonal bins

no hemisphere selection

hadron-pair production

[Phys. Rev. D92 (2015) 092007]

hadron-pair production

same-hemisphere hadron pairs

hadron-pairs: subprocess contributions

[Phys. Rev. D92 (2015) 092007] data res data cont $\pi^+\pi^ \pi^+K^-$ K⁺K⁻ eecc eess 10⊨∭eeuuu **☆**tau charged mixed relative fraction ::::charm **w**uds 10^{-1} 10^{-2} $K^{\dagger}K^{\dagger}$ $\pi^+\pi^+$ π^+K^+ 10 relative fraction 10- 10^{-2} 0.6 0.7 0.8 0.9 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.6 0.7 0.5 0.4 0.5 z_1, z_2 Z_1, Z_2 Z_1, Z_2

43

QCD Evolution - May 21st, 2018

gunar.schnell @ desy.de

hadron-pairs: comparison with PYTHIA

- generally good agreement at low z
 - at large z only present Belle and PYTHIA default tunes satisfactory

[Phys. Rev. D92 (2015) 092007] $\pi^+ \mathbf{K}^ K^{\dagger}K^{\Box}$ $\pi^+\pi^-$ 107 any hemisphere 10⁶ $d^2\sigma/dz_1dz_2$ [fb] 10⁴ **ALEPH** 10 data LEP/Tevatron PYTHIA default **HERMES** 10² old Belle $\pi^+\pi^+$ π^+K^+ K⁺K⁺ 10⁷ $d^2 \sigma / dz_1 dz_2$ [fb] 10⁵ 10 10³ 10^{2} 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.3 0.4 0.5 z_1, z_2 z_1, z_2 Z_{1}, Z_{2}

same-hemisphere data: Mala dependence

like-sign pioin pairs

T > 0.8 $z_{1,2} > 0.1$

- decomposition based on PYTHIA simulation
- though no strong resonance structure still clear MC/data discrepancy

ISR corrections - PRD92 (2015) 092007

- relative fractions of hadrons as a function of z originating from ISR or non-ISR events (\equiv energy loss less than 0.5%)
- large non-ISR fraction at large z, as otherwise not kinematically reachable (remember $z = E_h / 0.5 I s_{nominal}$)

ISR corrections - PRD96 (2017) 032005

- non-ISR / ISR fractions based on PYTHIA switch MSTP(11)
 - several PYTHIA tunes used for estimate of systematic uncertainty

polarizing fragmentation function

polarization measured as function of z and pt

quark-flavor contributions to Lambda prod.

flavor tagging through opposite-hemisphere hadrons

