QCD EVOLUTION

Workshop

May 20-24, 2018 Santa Fe, NM,
Drury Plaza Hotel

Measurements of lightquark fragmentation in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

highlights from the past five years

Probing parton dist's through fragmentation

*) semi-inclusive DIS with unpolarized final state

Probing parton dist's through fragmentation

*) semi-inclusive DIS with unpolarized final state

Probing parton dist's through fragmentation

*) semi-inclusive DIS with unpolarized final state

Probing parton dist's through fragmentation

$\rightarrow \rightarrow$ FFs act as quark flavor-tagger and polarimeter
*) semi-inclusive DIS with unpolarized final state

fragmentation in $e^{+} e^{-}$annihilation

- single-inclusive hadron production, $e^{+} e^{-} \rightarrow h X$
- D_{1} fragmentation fctn.
- $D_{1 T}{ }^{\perp}$ spontaneous transv. pol.

fragmentation in $e^{+} e^{-}$annihilation

- single-inclusive hadron production, $e^{+} e^{-} \rightarrow h X$
- D_{1} fragmentation fctn.
- $D_{1 T}{ }^{\perp}$ spontaneous transv. pol.
- inclusive "back-to-back" hadron pairs, $e^{+} e^{-} \rightarrow h_{1} h_{2} X$

- product of FFs
- flavor, transverse-momentum, and/or polarization tagging

fragmentation in $e^{+} e^{-}$annihilation

- single-inclusive hadron production, $e^{+} e^{-} \rightarrow h X$
- D_{1} fragmentation fctn.
- $D_{1 T}{ }^{\perp}$ spontaneous transv. pol.
- inclusive "back-to-back" hadron pairs, $e^{+} e^{-} \rightarrow h_{1} h_{2} X$

- product of FFs
- flavor, transverse-momentum, and/or polarization tagging
- inclusive same-hemisphere hadron pairs, $e^{+} e^{-} \rightarrow h_{1} h_{2} X$
- dihadron fragmentation

$e^{+} e^{-}$annihilation at BaBar, Belle, and BESIII

- BaBar/Belle: asymmetric beam-energy e+e-collider near/at $\Upsilon(4 S)$ resonance (10.58 GeV)
- BESIII: symmetric collider with $E_{e}=1$...2.4 GeV

$e^{+} e^{-}$annihilation at BaBar, Belle, and BESIII

- BaBar/Belle: asymmetric beam-energy e+e-collider near/at $\Upsilon(4 S)$ resonance (10.58 GeV)
- BESIII: symmetric collider with $E_{e}=1$...2.4 GeV
- integrated luminosities:

	$\Upsilon(45)$ on resonance	$\Upsilon(45)$ off resonance	other
BaBar	$424.2 \mathrm{fb}^{-1}$	$43.9 \mathrm{fb}^{-1}$	
Belle	$(140+571) \mathrm{fb}^{-1}$	$(15.6+73.8) \mathrm{fb}^{-1}$	
BESIII			$\left.\sim 62 \mathrm{pb}^{-1} @ 3.65 \mathrm{GeV} *\right)$

*) used for the Collins analysis presented here

from hadron yields to cross sections

- hadron yields undergo series of corrections
- particle (mis)identification [e.g., not every identified pion was a pion]
- smearing unfolding [e.g., measured and true momentum might differ]
- non-q̄̄ processes [e.g., two-photon processes, $\Upsilon \rightarrow B B, \ldots]$
- " 4π " correction [selection criteria and limited geometric acceptance]
- QED radiation [initial-state radiation (ISR)]
- optional: weak-decay removal (e.g., "prompt fragmentation")

from hadron yields to cross sections

- hadron yields undergo series of corrections
- particle (mis)identification [e.g., not every identified pion was a pion]
- smearing unfolding [e.g., measured and true momentum might differ]
- non-qव̄ processes [e.g., two-photon processes, $\Upsilon \rightarrow B B, \ldots$]
- " 4π " correction [selection criteria and limited geometric acceptance]
- QED radiation [initial-state radiation (ISR)]
- optional: weak-decay removal (e.g., "prompt fragmentation")
- Collins asymmetries also corrected for false asymmetries and maybe for qq-axis (mis)reconstruction

from hadron yields to cross sections

- hadron yields undergo series of corrections
- particle (mis)identification [e.g., not every identified pion was a pion]
- smearing unfolding [e.g., measured and true momentum might differ]
- non- $q \bar{q}$ processes [e.g., two-photon processes, $\Upsilon \rightarrow B B, \ldots$]
- " 4π " correction [selection criteria and limited geometric acceptance]
- QED radiation [initial-state radiation (ISR)]
- optional: weak-decay removal (e.g., "prompt fragmentation")
- Collins asymmetries also corrected for false asymmetries and maybe for $q \bar{q}$-axis (mis)reconstruction
- partially different approaches in different experiments/analyses

from hadron yields to cross sections

- example: single-hadron inclusive cross sections
- cumulative effect of correction steps

- largest effect for mesons from acceptance and ISR correction
- larger PID correction for protons than for mesons

single-hadron production

- before 2013: lack of precision data at (moderately) high z and at low \sqrt{s}
- limits analysis of evolution and gluon fragmentation
- limited information in kinematic region often used in semi-inclusive DIS

single-hadron production

- before 2013: lack of precision data at (moderately) high z and at low \sqrt{s}
- limits analysis of evolution and gluon fragmentation
- limited information in kinematic region often used in semi-inclusive DIS
- now, results available from BaBar and Belle:

- BaBar Collaboration, Phys. Rev. D88 (2013) 032011: $\pi^{ \pm}, K^{ \pm}, ~ p+p$
- Belle Collaboration, Phys. Rev. Lett. 111 (2013) 062002: $\pi^{ \pm}$, K
- Belle Collaboration, Phys. Rev. $\operatorname{D92}$ (2015) 092007: $\pi^{ \pm}, K^{ \pm}, ~ p+p$

single-hadron production

- very precise data for charged pions and kaons
- Belle data available up to very large $z(z<0.98)$
- included in recent DEHSS fits
- slight tension at low-z for BaBar and high-z for Belle

- very precise data for charged pions and kaons
 - Belle data available up to very large $z(z<0.98)$
 - included in recent DEHSS fits [e.g. PRD 91, 014035 (2015)]

- Belle radiative corrections undone in FF fits
[EPJC 77 (2017) 516, NNFF1.0]
In the case of the BELLE experiment we multiply all data points by a factor $1 / c$, with $c=0.65$ for charged pions and kaons [69] and with c a function of z for protons/antiprotons [53]. This correction is required in order to treat the BELLE data consistently with all the other SIA measurements included in NNFF1.0. The reason is that a kinematic cut on radiative photon events was applied to the BELLE data sample in the original analysis instead of unfolding the radiative QED effects. Specifically, the energy scales

single-hadron production

- very precise data for charged pions and kaons
- Belle data available up to very large $z(z<0.98)$
- included in recent DEHSS fits [e.g. PRD 91, 014035 (2015)]
- Belle radiative corrections undone in FF fits
- new: data for protons and anti-protons
- not (yet) included in DEHSS, but in NNFF 1.0 [EPJC 77 (2017) 516]
- similar z dependence as pions
- about $\sim 1 / 5$ of pion cross sections

single-hadron production: data-MC comparison

- pion and(?) kaon data reasonably well described by Jetset

- protons difficult to reproduce, especially at large z
- MC overshoots data

inclusive hyperon production

- Λ production reasonably well described by Pythia
- less satisfactory for heavier hyperons
- fails to describe Ω^{-}production

hadron-pair production

- single-hadron production has low discriminating power for parton flavor
- can use $2^{\text {nd }}$ hadron in opposite hemisphere to "tag" flavor
- mainly sensitive to product of singlehadron FFs
- if hadrons in same hemisphere: dihadron fragmentation

- a la de Florian \& Vanni [Phys. Lett. B 578 (2004) 139]
- a la Collins, Heppelmann \& Ladinsky [Nucl. Phys. B 420 (1994) 565]; Boer, Jacobs \& Radici [Phys. Rev. D 67 (2003) 094003]

- opens the question of defining hemispheres
[Phys. Rev. D92 (2015) 092007$]$

no hemisphere selection

hadron-pair production

[Phys. Rev. D92 (2015) 0920Q

no hemisphere selection

hadron-pair production

no hemisphere selection

hadron-pair production

hadron-pairs: topology comparison

- any hemisphere vs. opposite- \& same-hemisphere pairs
- same-hemisphere pairs with kinematic limit at $z_{1}=z_{2}=0.5$

Phys. Rev. D92 (2015) 092007]

same-hemisphere data: $M_{h 1 h 2}$ dependence

like-sign hadron pairs

same-hemisphere data: $M_{h 1 h 2}$ dependence

like-sign hadron pairs

$\square \pi^{+} \pi^{+}$Data
$T>0.8$
$z_{1,2}>0.1$

same-hemisphere data: $M_{\text {h1h2 }}$ dependence

like-sign hadron pairs
楊 $\pi^{+} \pi^{\text { }}$ Data
$\square \pi^{+} \pi^{+}$Data
$T>0.8$ $z_{1,2}>0.1$

- unlike-sign pairs with clear decay and resonance structure: K_{s}, ρ^{0}...
- like-sign pairs with much smoother and smaller cross sections

same-hemisphere data: $M_{\text {h1h2 }}$ dependence

$$
\begin{aligned}
& \text { unlike-sign } \\
& \text { hadron pairs }
\end{aligned}
$$

like-sign hadron pairs

\%	$\pi^{+} \pi^{*}$ Data
\square	$\pi^{+} \pi^{+}$Data

$T>0.8$
$z_{1,2}>0.1$

- cross sections after (MC-based) removal of weak-decay contributions
- relies on good description of those channels in PYTHIA

same-hemisphere data: $M_{\text {h1h2 }}$ dependence

unlike-sign pion pairs

$$
\begin{aligned}
T & >0.8 \\
z_{1,2} & >0.1
\end{aligned}
$$

- decomposition based on PYTHIA simulation
- clear differences in invariant-mass dependence between MC and data

same-hemisphere data: $M_{\text {h1h2 }}$ dependence

like-sign hadron pairs
事 $\pi^{+} K^{-}$Data
$\pi^{+} K^{+}$Data
$T>0.8$
$Z_{1,2}>0.1$

- unlike-sign π K pairs with clear K^{*} and increased D-decay contributions

same-hemisphere data: $M_{\text {h1h2 }}$ dependence

unlike-sign hadron pairs

like-sign hadron pairs

$T>0.8$ $z_{1,2}>0.1$

- unlike-sign kaon pairs with (again) a decay structure (e.g. ϕ and D)
- like-sign kaon pairs strongly suppressed at larger z
some more details

same-hemisphere data: $M_{\text {h1h2 }}$ dependence

like-sign hadron pairs

same-hemisphere data: $M_{\text {h1h2 }}$ dependence

like-sign hadron pairs

口 $\pi^{+} \pi^{+}$Data
$T>0.8$
$z_{1,2}>0.1$

- thrust very useful experimentally to suppress BG and to define hemispheres
- potentially difficult to incorporate in phenomenology (unlike thrust axis?)

same-hemisphere data: $M_{\text {h1h2 }}$ dependence

- experimental constraints on individual z restricts phase space of hadron pairs, however, not easy to avoid (detection requirements!)
- among others leads to mixing of partial-wave contributions [GS, QCDE'17]

polarization

hadron pairs: angular correlations

- angular correlations between nearly back-to-back hadrons used to tag transverse quark polarization -> Collins fragmentation functions
- RFO: one hadron as reference axis $\rightarrow \cos (2 \phi)$ modulation
- RF12: thrust (or similar) axis $\quad-\cos \left(\phi_{1}+\phi_{2}\right)$ modulation

- RFO and RF12: different convolutions over transverse momenta
- debatable: MC used to "correct" thrust axis to $q \bar{q}$ axis

hadron pairs: angular correlations

- challenge: large modulations even without Collins effect (e.g., MC)

hadron pairs: angular correlations

- challenge: large modulations even without Collins effect (e.g., MC)
- construct double ratio of normalized-yield distributions R12, e.g. unlike-/like-sign:

$$
\frac{R_{12}^{U}}{R_{12}^{L}} \simeq \frac{1+\left\langle\frac{\sin ^{2} \theta_{\mathrm{th}}}{1+\cos ^{2} \theta_{\mathrm{th}}}\right\rangle G^{U} \cos \left(\phi_{1}+\phi_{2}\right)}{1+\left\langle\frac{\sin ^{2} \theta_{\mathrm{th}}}{1+\cos ^{2} \theta_{\mathrm{th}}}\right\rangle G^{L} \cos \left(\phi_{1}+\phi_{2}\right)}
$$

$$
\simeq 1+\left\langle\frac{\sin ^{2} \theta_{\mathrm{th}}}{1+\cos ^{2} \theta_{\mathrm{th}}}\right\rangle\left\{G^{U}-G^{L}\right\} \cos \left(\phi_{1}+\phi_{2}\right)
$$

- suppresses flavor-independent sources of modulations
- $G^{U / L}$ specific combinations of FFs
- remaining MC asym.'s: systematics

(b)

Collins asymmetries (RFO)

- first measurement of Collins asymmetries by Belle [PRL 96 (2006) 232002, PRD 78 (2008) 032011, PRD 86 (2012) 039905(E)]
- significant asymmetries rising with z
- used for first transversity and Collins FF extractions

Collins asymmetries (RFO)

[Phys. Rev. D90 (2014) 052003]

- BaBar results [PRD 90 (2014) 052003] consistent with Belle

Collins asymmetries (RFO)

[Phys. Rev. D90 (2014) 052003]

- BaBar results [PRD 90 (2014) 052003] consistent with Belle
- BESIII [PRL 116 (2016) 042001] (a \dagger smaller s) consistent with TMD evolution [Z.-B. Kang et al., PRD 93 (2016) 014009]

Collins asymmetries - going further

- even larger effects seen for kaon pairs

Collins asymmetries - going further

- even larger effects seen for kaon pairs

- PT dependence for pions

- ... as well as in inclusive lepto-production
- caused by polarizing FFs?

polarizing fragmentation function

- polarization measured normal to production plane, i.e $\propto\left(" q " \times P_{\Lambda}\right)$ (note that sign got reversed in the drawing)

- reference axis to define transverse momentum:
- "thrust frame" - use thrust axis
- "hadron frame" - use momentum direction of "back-to-back" hadron

polarizing fragmentation function

- flavor tagging through hadrons in opposite hemisphere:

what to further expect (soon) from $e^{+} e^{-}$

- transverse polarization of inclusively produced Λ° hyperons (Belle)
- Collins asymmetries:
- neutral meson (pion and eta) incl. k_{T} dependence (Belle)
- kaon and pion-kaon pairs as well as k_{T} dependence of Collins asymmetries (BaBar, Belle, BESIII)
- Collins asymmetries without double ratios (BaBar)

- hadron-to-thrust
- nearly back-to-back hadrons
- helicity-dependent dihadron fragmentation function $G_{1}{ }^{\perp}$
("jet handedness") (Belle)

backup

hadron-pairs: weak-decay contributions

- not all hadrons originate from uds quarks but e.g., from D decay
- here only $z_{1}=z_{2}$ diagonal bins
[Phys. Rev. D92 (2015) 092007]

no hemisphere selection

hadron-pair production

[Phys. Rev. D92 (2015) 092007]

no hemisphere selection
hadron-pair production
[Phys. Rev. D92 (2015)

same-hemisphere hadron pairs

hadron-pairs: subprocess contributions

[Phys. Rev. D92 (2015) 092007]

hadron-pairs: comparison with PYTHIA

- generally good agreement at low z
- at large z only present Belle and PYTHIA default tunes satisfactory

same-hemisphere data: $M_{\text {h1h2 }}$ dependence

like-sign pioin pairs

$$
\begin{array}{r}
T>0.8 \\
z_{1,2}>0.1
\end{array}
$$

- decomposition based on PYTHIA simulation
- though no strong resonance structure still clear MC/data discrepancy

ISR corrections - PRD92 (2015) 092007

- relative fractions of hadrons as a function of z originating from ISR or non-ISR events (\equiv energy loss less than 0.5%)
- large non-ISR fraction at large z, as otherwise not kinematically reachable (remember $z=E_{h} / 0.5 \sqrt{ }$ snominal)

ISR corrections - PRD96 (2017) 032005

- non-ISR / ISR fractions based on PYTHIA switch MSTP(11)
- several PYTHIA tunes used for estimate of systematic uncertainty

polarizing fragmentation function

- polarization measured as function of z and p_{+}

- strong dependence on both kinematics
- unexpected/surprising behavior for $p_{+} \rightarrow 0$

quark－flavor contributions to Lambda prod．

－flavor tagging through opposite－hemisphere hadrons

［arXiv：1611．06648］

