TMDs at small-x: an Operator Treatment

Yuri Kovchegov

The Ohio State University

work with Dan Pitonyak and Matt Sievert,

arXiv:1706.04236 [nucl-th] and 5 other papers

+ papers in preparation

Outline

- Goal: understanding the small-x asymptotics of TMDS
 - Helicity: helps evaluate the amount of proton spin coming from small x partons
 - Transversity: small-x contribution to the proton tensor charge
- Quark Helicity:
 - Quark helicity distribution at small x
 - Small-x evolution equations for quark helicity
 - Small-x asymptotics of quark helicity
- Gluon Helicity:
 - Gluon helicity distribution at small x
 - Small-x evolution equations for gluon helicity
 - Small-x asymptotics of quark helicity TMDs
- Quark Transversity:
 - Quark transversity TMD at small x
 - Small-x evolution equation for quark transversity
 - Small-x asymptotics of quark transversity TMDs

Main Physical Results

• At large N_c we get for helicity

$$\Delta q(x,Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h^q} \quad \text{with} \quad \alpha_h^q = \frac{4}{\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 2.31 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$
$$\Delta G(x,Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h^G} \quad \text{with} \quad \alpha_h^G = \frac{13}{4\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 1.88 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

• For transversity TMDs we have (also at large N_c)

$$h_{1T}^q(x,k_T^2) \sim h_{1T}^{\perp q}(x,k_T^2) \sim \left(\frac{1}{x}\right)^{\alpha_t^q} \quad \text{with} \quad \alpha_t^q = -1 + 2\sqrt{\frac{\alpha_s C_F}{\pi}}$$

(Preliminary!)

Our Goal: calculating all PDFs and TMDs at Small x

How much spin is at small x?

- E. Aschenaur et al, arXiv:1509.06489 [hep-ph]
- Uncertainties are very large at small x!

Spin at small x

- The goal of this project is to provide theoretical understanding of helicity PDF's at very small x.
- Our work would provide guidance for future hPDF's parametrizations of the existing and new data (e.g., the data to be collected at EIC).
- Alternatively the data can be analyzed using our small-x evolution formalism.

Transversity and tensor charge

Transversity at small x is also poorly known, resulting in poor knowledge of the tensor charge:

Quark Helicity at Small x (flavor-singlet case)

Yu.K., M. Sievert, arXiv:1505.01176 [hep-ph] Yu.K., D. Pitonyak, M. Sievert, arXiv:1511.06737 [hep-ph], arXiv:1610.06197 [hep-ph], arXiv:1610.06188 [hep-ph], arXiv:1703.05809 [hep-ph] + in preparation

Observables

• We want to calculate quark helicity PDF and TMD at small x.

Quark Helicity TMD

• We start with the definition of the quark helicity TMD with a futurepointing Wilson line staple.

$$g_{1L}^q(x,k_T^2) = \frac{1}{(2\pi)^3} \frac{1}{2} \sum_{S_L} S_L \int d^2r \, dr^- \, e^{ik \cdot r} \langle p, S_L | \bar{\psi}(0) \, \mathcal{U}[0,r] \, \frac{\gamma^+ \gamma^5}{2} \, \psi(r) | p, S_L \rangle_{r^+=0}$$

 At small-x, in anticipation of the shock-wave formalism, we rewrite the quark helicity TMD as (in A⁻=0 gauge for the + moving proton)

$$g_{1L}^q(x,k_T^2) = \frac{2p^+}{(2\pi)^3} \int d^2\zeta \, d\zeta^- \, d^2\xi \, d\xi^- \, e^{ik\cdot(\zeta-\xi)} \left(\frac{1}{2}\gamma^+\gamma^5\right)_{\alpha\beta} \left\langle \bar{\psi}_\alpha(\xi) \, V_{\underline{\xi}}[\xi^-,\infty] \, V_{\underline{\zeta}}[\infty,\zeta^-] \, \psi_\beta(\zeta) \right\rangle$$

where the fundamental light-cone Wilson line is

$$V_{\underline{x}}[b^-, a^-] = \operatorname{P} \exp\left\{ ig \int_{a^-}^{b^-} dx^- A^+(x^-, \underline{x}) \right\}$$

• At high energy/small-x the proton is a shock wave, and we have the following contributions to the SIDIS quark helicity TMD:

- Clearly diagrams C and D do not transfer spin information from the target, since Wilson lines do not know about polarization.
- Diagram F is energy-suppressed, since the gluon should have no time to be emitted and absorbed inside the shock wave.
- Diagrams of the types A and E++ can be shown to cancel each other.
- We are left with the diagram B.

• Dominance of diagram B can also be obtained by applying crossing symmetry to the SIDIS process (KS '15):

 Compare the last line to the diagram B: reflecting the cc amplitude into the amplitude reduces the above diagram to the one on the right.

• Evaluating diagram B we arrive at

$$g_{1L}^q(x,k_T^2) = \frac{4N_c}{(2\pi)^6} \int d^2\zeta \, d^2w \, d^2y \, e^{-i\underline{k}\cdot(\underline{\zeta}-\underline{y})} \int\limits_{\Lambda^2/s}^1 \frac{dz}{z} \, \frac{\underline{\zeta}-\underline{w}}{|\underline{\zeta}-\underline{w}|^2} \cdot \frac{\underline{y}-\underline{w}}{|\underline{y}-\underline{w}|^2} \, G_{\underline{w},\underline{\zeta}}(zs)$$

where $G_{w\zeta}$ is the polarized dipole amplitude (defined on the next slide).

- Here s is the cms energy squared, Λ is some IR cutoff, underlining denotes transverse vectors, z = smallest longitudinal momentum fraction of the dipole momentum out of those carried by the quark and the antiquark
- The same result was previously obtained starting with the SIDIS process (KPS '15) instead of the operator definition of quark helicity TMD: we have thus shown that the two approaches are consistent at small x.

Polarized Dipole

• All flavor singlet small-x helicity observables depend on one object, "polarized dipole amplitude":

• Double brackets denote an object with energy suppression scaled out:

$$\left\langle\!\left\langle \mathcal{O}\right\rangle\!\right\rangle(z) \equiv zs \left\langle \mathcal{O}\right\rangle(z)$$

Polarized fundamental "Wilson line"

 To complete the definition of the polarized dipole amplitude, we need to construct the definition of the polarized "Wilson line" V^{pol}, which is the leading helicity-dependent contribution for the quark scattering amplitude on a longitudinally-polarized target proton.

• At the leading order we can either exchange one non-eikonal t-channel gluon (with quark-gluon vertices denoted by blobs above) to transfer polarization between the projectile and the target, or two t-channel quarks, as shown above.

Polarized fundamental "Wilson line"

• In the end one arrives at

$$\begin{split} V_{\underline{x}}^{pol} &= \frac{igp_{1}^{+}}{s} \int_{-\infty}^{\infty} dx^{-} V_{\underline{x}}[+\infty, x^{-}] F^{12}(x^{-}, \underline{x}) V_{\underline{x}}[x^{-}, -\infty] \\ &- \frac{g^{2} p_{1}^{+}}{s} \int_{-\infty}^{\infty} dx_{1}^{-} \int_{x_{1}^{-}}^{\infty} dx_{2}^{-} V_{\underline{x}}[+\infty, x_{2}^{-}] t^{b} \psi_{\beta}(x_{2}^{-}, \underline{x}) U_{\underline{x}}^{ba}[x_{2}^{-}, x_{1}^{-}] \left[\frac{1}{2} \gamma^{+} \gamma^{5} \right]_{\alpha\beta} \bar{\psi}_{\alpha}(x_{1}^{-}, \underline{x}) t^{a} V_{\underline{x}}[x_{1}^{-}, -\infty]. \end{split}$$

- The first term on the right (the gluon exchange contribution) was known before (KPS '17), the second term (quark exchange) is new.
- We have employed an adjoint light-cone Wilson line $U_{\underline{x}}[b^-, a^-] = \mathcal{P} \exp \left[ig \int_{a^-}^{b^-} dx^- \mathcal{A}^+(x^+ = 0, x^-, \underline{x}) \right]$

Polarized adjoint "Wilson line"

• Quarks mix with gluons. Therefore, we need to construct the adjoint polarized Wilson line --- the leading helicity-dependent part of the gluon scattering amplitude on the longitudinally polarized target.

• The calculation is similar to the quark scattering case. It yields

$$\begin{split} (U_{\underline{x}}^{pol})^{ab} &= \frac{2i\,g\,p_1^+}{s} \int\limits_{-\infty}^{+\infty} dx^- \, \left(U_{\underline{x}}[+\infty, x^-] \, \mathcal{F}^{12}(x^+=0, x^-, \underline{x}) \, U_{\underline{x}}[x^-, -\infty] \right)^{ab} \\ &+ \frac{g^2\,p_1^+}{s} \int\limits_{-\infty}^{\infty} dx_1^- \int\limits_{x_1^-}^{\infty} dx_2^- \, U_{\underline{x}}^{aa'}[+\infty, x_2^-] \, \bar{\psi}(x_2^-, \underline{x}) \, t^{a'} \, V_{\underline{x}}[x_2^-, x_1^-] \, \frac{1}{2} \, \gamma^+ \gamma_5 \, t^{b'} \, \psi(x_1^-, \underline{x}) \, U_{\underline{x}}^{b'b}[x_1^-, -\infty] + \text{c.c.} \end{split}$$

Small-x Evolution at large N_c

 At large N_c the evolution is gluon-driven. We will evolve a gluon dipole, remembering that at large N_c the relation between the adjoint and fundamental longitudinally-polarized gluon dipoles is

$$G_{10}^{adj}(z) = 4 \, G_{10}(z)$$

(Note that the factor is 4, not 2 like in the unpolarized dipole case.)

Small-x Evolution at large $\rm N_{c}$

 We need to sum the following diagrams (box denotes the polarized "Wilson lines"):

Large-N_c Evolution

• In the strict DLA limit (S=1) and at large N_c we get (here Γ is an auxiliary function we call the 'neighbour dipole amplitude') (KPS '15)

$$\begin{split} G(x_{10}^2,z) &= \ G^{(0)}(x_{10}^2,z) + \frac{\alpha_s \, N_c}{2\pi} \int\limits_{\frac{1}{x_{10}^2 s}}^z \frac{dz'}{z'} \int\limits_{\frac{1}{z's}}^{\frac{x_{10}^2}{x_{21}^2}} \left[\Gamma(x_{10}^2,x_{21}^2,z') + 3 \, G(x_{21}^2,z') \right] \\ \Gamma(x_{10}^2,x_{21}^2,z') &= \ \Gamma^{(0)}(x_{10}^2,x_{21}^2,z') + \frac{\alpha_s \, N_c}{2\pi} \int\limits_{\frac{1}{x_{10}^2 s}}^{z'} \frac{dz''}{z''} \int\limits_{\frac{1}{z''s}}^{\min\left\{x_{10}^2,x_{21}^2,\frac{z'}{z''}\right\}} \frac{dx_{32}^2}{x_{32}^2} \left[\Gamma(x_{10}^2,x_{32}^2,z'') + 3 \, G(x_{32}^2,z'') \right] \end{split}$$

• The initial conditions are given by the Born-level graphs

Resummation Parameter

• For helicity evolution the resummation parameter is different from BFKL, BK or JIMWLK, which resum powers of leading logarithms (LLA)

$$\alpha_s \, \ln(1/x)$$

• Helicity evolution resummation parameter is double-logarithmic (DLA):

$$\alpha_s \ln^2 \frac{1}{x}$$

- The second logarithm of x arises due to transverse momentum (or transverse coordinate) integration being logarithmic both in the UV and IR.
- This was known before: Kirschner and Lipatov '83; Kirschner '84; Bartels, Ermolaev, Ryskin '95, '96; Griffiths and Ross '99; Itakura et al '03; Bartels and Lublinsky '03.

 These equations can be solved both numerically and analytically. (KPS '16-'17)

• The small-x asymptotics of quark helicity is (at large N_c)

$$\Delta q(x,Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h^q} \quad \text{with} \quad \alpha_h^q = \frac{4}{\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 2.31 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

Small-x Evolution at large $N_c \& N_f$

- At large N_c&N_f there is no simple relation between the adjoint and fundamental polarized dipole amplitudes. We need to construct coupled evolution equations mixing them with each other.
- Here's the adjoint dipole evolution:

Small-x Evolution at large $N_c \& N_f$

- At large N_c&N_f there is no simple relation between the adjoint and fundamental polarized dipole amplitudes. We need to construct coupled evolution equations mixing them with each other.
- Here's the fundamental dipole evolution:

Small-x Evolution at large N_c&N_f

• The resulting equations are

$$\begin{split} Q_{10}(zs) &= Q_{10}^{(0)}(zs) + \frac{\alpha_s N_c}{2\pi} \int_{\frac{N_s}{2}}^{z} \frac{dz'}{z'} \int_{1/(z's)}^{x_{10}^2} \frac{dx_{21}^2}{x_{21}^2} \left\{ \frac{1}{2} \Gamma_{02,21}^{adj}(z') + \frac{1}{2} G_{21}^{adj}(z') + Q_{12}(z') - \bar{\Gamma}_{01,21}(z') \right\} \\ &\quad + \frac{\alpha_s N_c}{4\pi} \int_{\lambda^2/s}^{z} \frac{dz'}{z'} \int_{1/(z's)}^{x_{10}^2 z'} \frac{dx_{21}^2}{x_{21}^2} Q_{21}(z'), \\ G_{10}^{adj}(z) &= G_{10}^{adj(0)}(z) + \frac{\alpha_s N_c}{2\pi} \int_{\lambda^2/s}^{z} \frac{dz'}{z'} \int_{1/(z's)}^{x_{10}^2 z'} \frac{dx_{21}^2}{x_{21}^2} \left[\Gamma_{10,21}^{adj}(z') + 3 G_{21}^{adj}(z') \right] \\ &\quad - \frac{\alpha_s N_f}{2\pi} \int_{\lambda^2/s}^{z} \frac{dz'}{z'} \int_{1/(z's)}^{x_{10}^2 z''} \frac{dx_{21}^2}{x_{21}^2} \bar{\Gamma}_{02,21}(z'), \end{split} \text{ These are yet to be solved.} \\ \Gamma_{10,21}^{adj}(z') &= \Gamma_{10,21}^{adj(0)}(z') + \frac{\alpha_s N_c}{2\pi} \int_{\lambda^2/s}^{z'} \frac{dz'}{x''} \int_{1/(z''s)}^{z''} \frac{dx_{21}^2}{x_{22}^2} \bar{\Gamma}_{03,32}(z'') \\ &\quad - \frac{\alpha_s N_f}{2\pi} \int_{\lambda^2/s}^{z'} \frac{dz''}{z''} \int_{1/(z''s)}^{z'''} \frac{dx_{21}^2}{x_{22}^2} \bar{\Gamma}_{03,32}(z'') + 3 G_{32}^{adj}(z'') \\ &\quad - \frac{\alpha_s N_f}{2\pi} \int_{\lambda^2/s}^{z'} \frac{dz''}{z''} \int_{1/(z''s)}^{z'''} \frac{dx_{22}^2}{x_{22}^2} \left[\Gamma_{10,32}^{adj}(z'') + 3 G_{32}^{adj}(z'') \right] \\ &\quad - \frac{\alpha_s N_f}{2\pi} \int_{\lambda^2/s}^{z'} \frac{dz''}{z''} \int_{1/(z''s)}^{z'''} \frac{dx_{22}^2}{x_{22}^2} \bar{\Gamma}_{03,32}(z'') + 3 G_{32}^{adj}(z'') \\ &\quad + \frac{\alpha_s N_c}{4\pi} \int_{\lambda^2/s}^{z'} \frac{dz''}{z''} \int_{1/(z''s)}^{z'''} \frac{dx_{22}^2}{x_{22}^2} \bar{\Gamma}_{03,32}(z'') + \frac{1}{2} G_{32}^{adj}(z'') + Q_{32}(z'') - \bar{\Gamma}_{01,32}(z'') \\ &\quad + \frac{\alpha_s N_c}{4\pi} \int_{\lambda^2/s}^{z'} \frac{dz''}{z''} \int_{1/(z''s)}^{z'''} \frac{dx_{22}^2}{x_{22}^2} Q_{22}(z''). \end{split}$$

Gluon Helicity at Small x

Yu.K., D. Pitonyak, M. Sievert, arXiv:1706.04236 [nucl-th]

Dipole Gluon Helicity TMD

- Now let us repeat the calculation for gluon helicity TMDs.
- We start with the definition of the gluon dipole helicity TMD:

 $g_1^G(x,k_T^2) = \frac{-2i\,S_L}{x\,P^+} \int \frac{d\xi^- \,d^2\xi}{(2\pi)^3} \,e^{ixP^+\,\xi^- - i\underline{k}\cdot\underline{\xi}} \,\left\langle P,S_L|\epsilon_T^{ij}\,\mathrm{tr}\left[F^{+i}(0)\,\mathcal{U}^{[+]\dagger}[0,\xi]\,F^{+j}(\xi)\,\mathcal{U}^{[-]}[\xi,0]\right]|P,S_L\right\rangle_{\xi^+=0}$ U^[+] Here U^[+] and U^[-] are future and past Wilson line staples (hence the name `dipole' TMD, F. Dominguez et al '11 – looks like a dipole scattering on a Ζ proton): U^[–]

Dipole Gluon Helicity TMD

• At small x, the definition of dipole gluon helicity TMD can be massaged into

$$g_1^{G\,dip}(x,k_T^2) = \frac{8i\,N_c\,S_L}{g^2(2\pi)^3}\,\int d^2x_{10}\,e^{i\underline{k}\cdot\underline{x}_{10}}\,k_\perp^i\epsilon_T^{ij}\,\left[\int d^2b_{10}\,G_{10}^j(zs=\frac{Q^2}{x})\right]$$

 Here we obtain a new operator, which is a transverse vector (written here in A⁻=0 gauge):

$$G_{10}^{i}(z) \equiv \frac{1}{4N_{c}} \int_{-\infty}^{\infty} dx^{-} \left\langle \operatorname{tr} \left[V_{\underline{0}}[\infty, -\infty] V_{\underline{1}}[-\infty, x^{-}] \left(-ig\right) \tilde{A}^{i}(x^{-}, \underline{x}) V_{\underline{1}}[x^{-}, \infty] \right] + \operatorname{c.c.} \right\rangle (z)$$

• Note that $k_{\perp}^{i} \epsilon_{T}^{ij}$ can be thought of as a transverse curl acting on $G_{10}^{i}(z)$ and not just on $\tilde{A}^{i}(x^{-}, \underline{x})$ -- different

from the polarized dipole amplitude!

Dipole TMD vs dipole amplitude

• Note that the operator for the <u>dipole</u> gluon helicity TMD

$$G_{10}^{i}(z) \equiv \frac{1}{4N_{c}} \int_{-\infty}^{\infty} dx^{-} \left\langle \operatorname{tr} \left[V_{\underline{0}}[\infty, -\infty] V_{\underline{1}}[-\infty, x^{-}] \left(-ig\right) \tilde{A}^{i}(x^{-}, \underline{x}) V_{\underline{1}}[x^{-}, \infty] \right] + \operatorname{c.c.} \right\rangle(z)$$

is different from the polarized <u>dipole</u> amplitude

$$G_{10}(z) \equiv \frac{1}{4N_c} \int_{-\infty}^{\infty} dx^- \left\langle \operatorname{tr} \left[V_{\underline{0}}[\infty, -\infty] V_{\underline{1}}[-\infty, x^-] \left(-ig\right) \underline{\nabla} \times \underline{\tilde{A}}(x^-, \underline{x}) V_{\underline{1}}[x^-, \infty] \right] + \operatorname{c.c.} \right\rangle(z)$$

- We conclude that the dipole gluon helicity TMD does not depend on the polarized dipole amplitude! (Hence the 'dipole' name may not even be valid for such TMDs.)
- This is different from the unpolarized gluon TMD case.

Evolution Equation

 To construct evolution equation for the operator Gⁱ governing the gluon helicity TMD we resum similar (to the quark case) diagrams:

Large-N_c Evolution: Equations

• This results in the following evolution equations:

$$\begin{split} G_{10}^{i}(zs) &= G_{10}^{i\,(0)}(zs) + \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int_{\frac{\Lambda^{2}}{s}}^{z} \frac{dz'}{z'} \int d^{2}x_{2} \ln \frac{1}{x_{21}\Lambda} \frac{\epsilon_{T}^{ij}\left(x_{21}\right)_{\perp}^{j}}{x_{21}^{2}} \left[\Gamma_{20,\,21}^{gen}(z's) + G_{21}(z's) \right] \\ &- \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int_{\frac{\Lambda^{2}}{s}}^{z} \frac{dz'}{z'} \int d^{2}x_{2} \ln \frac{1}{x_{21}\Lambda} \frac{\epsilon_{T}^{ij}\left(x_{20}\right)_{\perp}^{j}}{x_{20}^{2}} \left[\Gamma_{20,\,21}^{gen}(z's) + \Gamma_{21,\,20}^{gen}(z's) \right] \\ &+ \frac{\alpha_{s}N_{c}}{2\pi} \int_{\frac{1}{x_{10}^{2}}}^{z} \frac{dz'}{z'} \int_{\frac{1}{z's}}^{z_{10}^{2}} \frac{dx_{21}^{2}}{x_{21}^{2}} \left[G_{12}^{i}(z's) - \Gamma_{10,\,21}^{i}(z's) \right] \end{split}$$

$$\begin{split} \Gamma_{10\,21}^{i}(z's) &= G_{10}^{i\,(0)}(z's) + \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int_{\frac{\Lambda^{2}}{s}}^{z'} \frac{dz''}{z''} \int d^{2}x_{3} \ln \frac{1}{x_{31}\Lambda} \frac{\epsilon_{T}^{ij}\left(x_{31}\right)_{\perp}^{j}}{x_{31}^{2}} \left[\Gamma_{30\,,\,31}^{gen}(z''s) + G_{31}(z''s) \right] \\ &- \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int_{\frac{\Lambda^{2}}{s}}^{z'} \frac{dz''}{z''} \int d^{2}x_{3} \ln \frac{1}{x_{31}\Lambda} \frac{\epsilon_{T}^{ij}\left(x_{30}\right)_{\perp}^{j}}{x_{30}^{2}} \left[\Gamma_{30\,,\,31}^{gen}(z''s) + \Gamma_{31\,,\,30}^{gen}(z''s) \right] \\ &+ \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int_{\frac{1}{x_{10}^{2}}}^{z'} \frac{dz''}{z''} \int d^{2}x_{3} \ln \frac{1}{x_{21}} \frac{\epsilon_{T}^{ij}\left(x_{30}\right)_{\perp}^{j}}{x_{30}^{2}} \left[\Gamma_{30\,,\,31}^{gen}(z''s) + \Gamma_{31\,,\,30}^{gen}(z''s) \right] \\ &+ \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int_{\frac{1}{x_{10}^{2}}}^{z'} \frac{dz''}{z''} \int_{\frac{1}{z''s}}^{\min\left[x_{10}^{2},x_{21}^{2}\frac{z'}{z''}\right]} \frac{dx_{31}^{2}}{x_{31}^{2}} \left[G_{13}^{i}(z''s) - \Gamma_{10\,,\,31}^{i}(z''s) \right]. \end{split}$$

Large-N_c Evolution: Equations

• Here

$$\Gamma_{20,21}^{gen}(z's) = \theta(x_{20} - x_{21}) \,\Gamma_{20,21}(z's) + \theta(x_{21} - x_{20}) \,G_{20}(z's)$$

is an object which we know from the quark helicity evolution, as the latter gives us G and Γ .

Note that our evolution equations mix the gluon (Gⁱ) and quark (G) small-x helicity evolution operators:

$$\begin{split} G_{10}^{i}(zs) &= G_{10}^{i\,(0)}(zs) + \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int_{\frac{\Lambda^{2}}{s}}^{z} \frac{dz'}{z'} \int d^{2}x_{2} \ln \frac{1}{x_{21}\Lambda} \frac{\epsilon_{T}^{ij}\left(x_{21}\right)_{\perp}^{j}}{x_{21}^{2}} \left[\Gamma_{20\,,\,21}^{gen}(z's) + G_{21}(z's) \right] \\ &- \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int_{\frac{\Lambda^{2}}{s}}^{z} \frac{dz'}{z'} \int d^{2}x_{2} \ln \frac{1}{x_{21}\Lambda} \frac{\epsilon_{T}^{ij}\left(x_{20}\right)_{\perp}^{j}}{x_{20}^{2}} \left[\Gamma_{20\,,\,21}^{gen}(z's) + \Gamma_{21\,,\,20}^{gen}(z's) \right] \\ &+ \frac{\alpha_{s}N_{c}}{2\pi} \int_{\frac{x^{2}}{x_{10}^{s}}}^{z} \frac{dz'}{z'} \int_{\frac{1}{z's}}^{x_{10}^{2}} \frac{dx_{21}^{2}}{x_{21}^{2}} \left[G_{12}^{i}(z's) - \Gamma_{10\,,\,21}^{i}(z's) \right] \end{split}$$

Initial Conditions

 Initial conditions for this evolution are given by the lowest order t-channel gluon exchanges:

 Note that these initial conditions have no ln s, unlike the initial conditions for the quark evolution:

$$\int d^2 b_{10} G_{10}^{(0)}(zs) = \int d^2 b_{10} \Gamma_{10,21}^{(0)}(zs) = -\frac{\alpha_s^2 C_F}{N_c} \pi \ln(zs x_{10}^2)$$

Large-N_c Evolution Equations: Solution

• These equations can be solved in the asymptotic high-energy region yielding the small-x gluon helicity intercept

$$\alpha_h^G = \frac{13}{4\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 1.88 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

• We obtain the small-x asymptotics of the gluon helicity distributions:

$$\Delta G(x, Q^2) \sim g_{1L}^{G\,dip}(x, k_T^2) \sim \left(\frac{1}{x}\right)^{\frac{13}{4\sqrt{3}}\sqrt{\frac{\alpha_s\,N_c}{2\pi}}}$$

Quark Transversity at Small x

Yu.K., M. Sievert, in preparation (and hence preliminary)

Observables

• We want to calculate quark transversity TMD at small x:

Quark Transversity Operator

• Analysis of quark transversity is similar to quark helicity: we start with the operator definition (for proton spin in the x-direction)

 $h_{1T}^q(x,k_T^2) + \frac{k_x^2}{M^2} h_{1T}^{\perp q}(x,k_T^2) = \frac{1}{(2\pi)^3} \int d^2r \, dr^- \, e^{ik \cdot r} \langle p, S_x = +1 | \bar{\psi}(0) \, \mathcal{U}[0,r] \, \frac{\gamma^5 \, \gamma^+ \, \gamma^1}{2} \, \psi(r) | p, S_x = +1 \rangle_{r^+=0}$

• Diagram analysis again shows that the B-type diagrams dominate:

Quark Transversity Operator

• Calculating the B-graph contribution we get

$$h_{1T}^{q}(x,k_{T}^{2}) + \frac{k_{x}^{2}}{M^{2}}h_{1T}^{\perp q}(x,k_{T}^{2}) = -x\frac{8N_{c}}{(2\pi)^{4}}\int d^{2}x_{0} d^{2}x_{1} \int_{\Lambda^{2}/s}^{1} \frac{dz}{z} \int \frac{d^{2}k_{1}}{(2\pi)^{2}} e^{i(\underline{k}_{1}+\underline{k})\cdot\underline{x}_{10}} \frac{1}{\underline{k}_{1}^{2}} \frac{1}{\underline{k}_{1}^{2}} + \frac{1}{\underline{k}^{2}} \Big] \\ \times \left(-2k_{1}^{x}k^{x} + \underline{k}_{1}\cdot\underline{k} - m^{2}\right) iT_{10}(zs)$$

• We have defined a transversely polarized dipole operator

$$T_{10}(zs) \equiv \frac{(zs)^2}{2N_c i} \left\langle \operatorname{tr} \left[V_{\underline{0}} V_{\underline{1}}^{pol,T\dagger} \right] - \operatorname{tr} \left[V_{\underline{1}}^{pol,T} V_{\underline{0}}^{\dagger} \right] \right\rangle_{S_x = +1}$$

 Transverse-spin dependent interaction is suppressed by two (!) powers of energy, hence we rescaled T₁₀ by s².

 k_2

Transversely polarized "Wilson line"

- Next we need to calculate the fundamental transversely polarized "Wilson line" --- the leading transverse-spin dependent part of the quark scattering amplitude on a transversely polarized target.
- The diagrams are similar to the helicity case:

Transversely polarized "Wilson line"

 Note that the interaction with the transverse polarization carrying gluons enters with a factor of quark mass m, and hence does not give the double logarithmic contribution.

$$\begin{split} V_{\underline{x}}^{pol,T} &= \frac{4g \, m \, (p_1^+)^2}{s^2} \int\limits_{-\infty}^{+\infty} dx^- \, V_{\underline{x}}[+\infty, x^-] \, S^i \, \left[i \, \epsilon^{ij} \, F^{-j}(x^-, \underline{x}) \right] \, V_{\underline{x}}[x^-, -\infty] \\ &- \frac{g^2 \, (p_1^+)^2}{2 \, s^2} \int\limits_{-\infty}^{\infty} dx_1^- \int\limits_{x_1^-}^{\infty} dx_2^- \, V_{\underline{x}}[+\infty, x_2^-] \, t^b \, \psi_{\beta}(x_2^-, \underline{x}) \, U_{\underline{x}}^{ba}[x_2^-, x_1^-] \left[\left(i \, \gamma^5 \, \underline{S} \cdot \underline{D} - \underline{S} \times \underline{D} \right) \, \gamma^+ \, \gamma^- \right. \\ &+ \left(i \, \gamma^5 \, \underline{S} \cdot \underline{D} - \underline{S} \times \underline{D} \right) \, \gamma^- \, \gamma^+ \right]_{\alpha\beta} \bar{\psi}_{\alpha}(x_1^-, \underline{x}) \, t^a \, V_{\underline{x}}[x_1^-, -\infty] \end{split}$$

• Therefore, at DLA, quarks do not mix with gluons as they evolve to small x, and we do not need the gluon polarized "Wilson line".

Evolution equation for quark transversity

• Constructing the evolution equation for the transverse polarized fundamental dipole amplitude is straightforward (though a little cumbersome). Diagrammatically it is

• We get

$$T_{10}(zs) = T_{10}^{(0)}(zs) + \frac{\alpha_s N_c}{2\pi} \int_{\Lambda^2/s}^{1} \frac{dz'}{z'} \int_{1/z's}^{x_{10}^2 z/z'} \frac{dx_{21}^2}{x_{21}^2} T_{10}(z's)$$

Small-x Asymptotics of Quark Transversity

- Solution of the transversity evolution equation is straightforward.
- The resulting small-x asymptotics is

$$h_{1T}^q(x,k_T^2) \sim h_{1T}^{\perp q}(x,k_T^2) \sim \left(\frac{1}{x}\right)^{\alpha_t^q} \quad \text{with} \quad \alpha_t^q = -1 + 2\sqrt{\frac{\alpha_s C_F}{\pi}}$$

- Note the suppression by x² compared to the unpolarized quark TMDs.
- For $\alpha_s = 0.3$ we get

$$h_{1T}^q(x,k_T^2) \sim h_{1T}^{\perp q}(x,k_T^2) \sim x^{0.286}$$

• This certainly satisfies the Soffer bound, but is not likely to produce much tensor charge from small x.

$$\delta q(Q^2) = \int_{0}^{1} dx \, h_1(x, Q^2)$$

Conclusions

- We now have a well-defined operator prescription for finding the smallx asymptotics of any TMD (either at large-N_c or at large N_c&N_f).
- We have

$$\Delta q(x,Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h^q} \quad \text{with} \quad \alpha_h^q = \frac{4}{\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 2.31 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$
$$\Delta G(x,Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h^G} \quad \text{with} \quad \alpha_h^G = \frac{13}{4\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 1.88 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$
$$h_{1T}^q(x,k_T^2) \sim h_{1T}^{\perp q}(x,k_T^2) \sim \left(\frac{1}{x}\right)^{\alpha_t^q} \quad \text{with} \quad \alpha_t^q = -1 + 2\sqrt{\frac{\alpha_s C_F}{\pi}}$$

 Future helicity work may involve including running coupling corrections + solving the large-N_c&N_f equations + OAM at small x to constrain the spin+OAM coming from small-x quarks and gluons.

Backup Slides

Impact of our $\Delta\Sigma$ on the proton spin

• We have attached a $\Delta \tilde{\Sigma}(x, Q^2) = N x^{-\alpha_h}$ curve to the existing hPDF's fits at some ad hoc small value of x labeled x_0 :

Impact of our $\Delta\Sigma$ on the proton spin

• Defining $\Delta\Sigma^{[x_{min}]}(Q^2) \equiv \int_{x_{min}}^{1} dx \, \Delta\Sigma(x, Q^2)$ we plot it for x₀=0.03, 0.01, 0.001:

- We observe a moderate to significant enhancement of quark spin.
- More detailed phenomenology is needed in the future.

Impact of our ΔG on the proton spin

• We have attached a $\Delta \tilde{G}(x,Q^2) = N x^{-\alpha_h^G}$ curve to the existing hPDF's fits at some ad hoc small value of x labeled x_0 :

"ballpark" phenomenology

Impact of our ΔG on the proton spin

• Defining $S_G^{[x_{min}]}(Q^2) \equiv \int_{x_{min}}^1 dx \, \Delta G(x,Q^2)$ we plot it for x₀=0.08, 0.05, 0.001:

- We observe a moderate enhancement of gluon spin.
- More detailed phenomenology is needed in the future.