Cold QCD at RHIC Recent Results and Prospects

> Oleg Eyser QCD Evolution May 20-24, 2018 Santa Fe, NM

moot

A Song of Quarks and Gluons

- How do gluons contribute to the proton spin?
- What is the landscape of the polarized sea in the nucleon?
- What do transverse spin phenomena teach us about the proton structure?

- What is the nature of the spin of the proton?
- How can we describe the multidimensional landscape of nucleons and nuclei?
- How do quarks and gluons hadronize into final state particles?
- What is the nature of the initial state in nuclear collisions?

World Data Landscape

Factorization and Scale

Initial / final state effects

- TMD factorization: two characteristic scales Q^2 and Q_T^2
- Collinear factorization: twist-3 with one hard scale
- Both are closely related

 $Q^2 \gg Q_T^2 \gtrsim \Lambda_{QCD}^2 \qquad Q^2, Q_T^2 \gg \Lambda_{QCD}^2$

$$-\int d^2 k_{\perp} \frac{|k_{\perp}^2|}{M} f_{1T}^{\perp q}(x, k_{\perp}^2) = T_{q,F}(x, x)$$

 $f_{1T}^{\perp q}$: Sivers TMD function $T_{q,F}$: Efremov-Teryaev-Qiu-Sterman correlator

RHIC as a Polarized Proton Collider

PHENIX

High resolution High rate DC / Pad Chambers / Muon Arms EMCal Forward EMCal, $3 < |\eta| < 4$

STAR Large acceptance $-1 < \eta < 2$

TPC+TOF

EMCal

Forward EMCal, 2.5 $<\eta<4$

TMD Functions in p + p

Sivers function f_{1T}^{\perp}	$\cos \phi_S$	W^{\pm} , Z^{0} , γ_{DY}^{*}
quark transversity h_1		
\otimes Collins fragmentation function H_1^{\perp}	$\cos(\phi_S - \phi_h)$	hadrons in jets
\otimes interference fragmentation H_1^{\angle}	$\cos \phi_R$	hadron pairs
gluon linear polarization h_1^g		
\otimes Collins-like fragmentation $H_1^{\perp,g}$	$\cos(\phi_S - 2\phi_h)$	hadrons in jets
quark-gluon correlator $T_{q,F}$	$\cos \phi_S$	Ydirect
gluon-gluon correlator T_G	$\cos \phi_S$	heavy flavor

Inclusive Hadrons (Midrapidity)

- Sensitive to T_G
- Neutral pions
- $\sqrt{s_{NN}} = 200 \text{ GeV}$
- $|\eta| < 0.35$
- Very high precision
- First look at nuclear effects
- p + Al not shown

Inclusive Jets (Midrapidity)

- Sensitive to gluon T_G
- $\sqrt{s} = 500 \text{ GeV}$
- Different rapidity regions
- Additional data on disk (350 pb⁻¹)

Heavy Flavor (Forward)

- Sensitive to gluon T_G
- $\sqrt{s} = 200 \text{ GeV}$
- Single muons mostly from heavy flavor meson decay
- $1.2 < |\eta| < 2.2$

Theory curves from

Phys. Rev. D84, 014026 (2011)

Additional data on disk (40 pb^{-1}) w/ improved instrumentation

Charged Hadrons (Forward)

- Hadrons are main background for muon
 measurement
- Mixture of mostly pions and Kaons
- x_F dependence very similar to BRAHMS (π^{\pm}) and other neutral mesons
- Shown at DIS 2018 (J. Bok)

• A dependence observed for $0.1 < x_F < 0.2$

 $A_N(A) = A_N^{p+p} \cdot \left(A^{1/3}\right)^{\alpha}$

 $\alpha = 1.21^{+1.00+0.40}_{-0.42-0.30}$

• More detailed in N_{coll}^{avg}

Interference Fragmentation

First observation of non-zero transversity in p + p collisions!

Hadrons in Jets

- Two scales for TMD measurement
 - $\circ p_T$ of jet
 - \circ j_T of hadron in jet

- Jet reconstruction (anti- k_T)
 - PYTHIA + GEANT
 - Kinematics corrected to particle level and parton level matching
 - Trigger bias
- Pion purities / hadron contamination
- Leak through from other asymmetries

 $d\sigma^{\uparrow} - d\sigma^{\downarrow} \propto d\Delta\sigma_{0} \sin\phi_{S} + d\Delta\sigma_{1}^{+} \sin(\phi_{S} + \phi_{H}) + d\Delta\sigma_{2}^{+} \sin(\phi_{S} + 2\phi_{H})$ $+ d\Delta\sigma_{1}^{-} \sin(\phi_{S} - \phi_{H}) + d\Delta\sigma_{2}^{-} \sin(\phi_{S} - 2\phi_{H})$

Collins Effect in Jets (Mid-Rapidity)

- First measurement of Collins effect in p+p collisions
- $\sqrt{s} = 500 \text{ GeV}$
- Multi-dimensional binning

 $p_T - z$

7

Ζ

Nuclear Fragmentation Functions• Identified hadron in jet $(|\eta| < 1)$

17

 h_1, h_{1T}^{\perp}

p

- Transverse momentum dependent
- Nuclear effects in hadronization
- Test universality
 - e + A and p + A

Jet Asymmetries (Forward)

- Electromagnetic jets with correlated π^0
- $2.5 < |\eta| < 4.0$
- $\sqrt{s} = 500 \text{ GeV}$
- Background corrected asymmetries
 - Small asymmetries with π^0 tag
 - Small Collins effect
 - Publication in preparation

Gluon Linear Polarization

Collins-like fragmentation

 $d\sigma^{\uparrow} - d\sigma^{\downarrow} \propto A_{UT} \cdot \cos(\phi_{S} - 2\phi_{h})$

- Expected to be small but completely unconstrained
- First measurement!

Phys. Rev. D97, 032004 (2018)

Comparison with Phys. Lett. B773, 300-306 (2017)

Gluon Fragmentation Functions

- Mid-Rapidity $|\eta| < 1.0$
- 200 / 500 GeV
- Charged pions π^+ / π^- in jet
- Projections 360 pb⁻¹
 Kaufmann, DSSV14 PDF+FF

 $\frac{d\sigma^{pp \to jet + X}}{dp_{iet} \, d\eta \, dz_h}$

- Differential in hadron p_T -fraction, \mathbf{Z}_h , sensitive to gluon fragmentation (Kaufmann, Mukherjee, Vogelsang)
- Complementary to LHC

Non-Universality of Sivers Effect

Gamberg, Kang, Prokudin Phys. Rev. Lett. 110, 232301 (2013) with HERMES data

W-Boson Production in p + p

$$p+p \to W^\pm \to e^\pm + \nu$$

- Requires full reconstruction of W^{\pm} kinematics
- Missing transverse momentum from recoil

$$P_T^W = P_T^e + P_T^\nu = P_T^{recoil}$$

Events

6000

5000

4000

3000

2000

PYTHIA before correction

PYTHIA after correction P^W_T - PYTHIA Generated

P^W_T - RhicBOS 500 GeV

Next Steps

- Successful completion of run 2017
 - $\sqrt{s} = 510 \text{ GeV}$
 - $\mathcal{L}_{int} = 350 \text{ pb}^{-1}$
 - $P_p = 55\%$

- Rigorous test of the universality of TMD spin-orbit effects
- Experimental constraint on strength of Q^2 -evolution

At the same time...

FMS equipped with pre/post-shower detectors 2015/2017

- $2.5 < \eta < 4.0$
- High p_T trigger
- Excellent background rejection required (10⁶)
- Multi-variate analysis based on simulation with full detector response

 $4.0 < M_{DY} < 9.0 \text{ GeV}$

Direct photon production

(projections, data on disk)

Gluon Polarization $\frac{1}{2} = \Delta \Sigma + \Delta G + L_q + L_G$

First evidence of non-zero gluon polarization Phys. Rev. Lett. 113, 012001 (2014)

- Small x largely unconstrained
- Forward rapidity $\rightarrow \text{low } x$
- Correlated probes \rightarrow functional form
- First measurement of $A_{LL}(dijets)$
- $\sqrt{s} = 200 \text{ GeV}$

Different Dijet Topologies

- $\sqrt{s} = 200 \text{ GeV}$ (2009)
- Publication in preparation

More Results Underway

- $\sqrt{s} = 510 \text{ GeV}$, 2012 and 2013
- Final results (2012) will have three η -bins

 $\begin{array}{c|c}
-0.9 < \eta < -0.3 \\
0.3 < \eta < 0.3 \\
0.3 < \eta < 0.9
\end{array}$ 4 dijet topologies

• Underlying event correction

- π^0 at forward rapidity
- $2.5 < \eta < 4.0$
- $\sqrt{s} = 510 \text{ GeV}, 2012 + 2013$
- Publication in preparation

Sea Quark Helicity

• Parity violating (single-spin) asymmetry

$$A_L(l^-) = \frac{\Delta \bar{u}(x_1) d(x_2) (1 - \cos \theta)^2 - \Delta d(x_1) \bar{u}(x_2) (1 + \cos \theta)^2}{\Delta \bar{u}(x_1) d(x_2) (1 - \cos \theta)^2 + \Delta d(x_1) \bar{u}(x_2) (1 + \cos \theta)^2}$$

Flavor Composition of the Sea

$$R(x_F) = \frac{\sigma_{W^+}}{\sigma_{W^-}} = \frac{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}{\bar{u}(x_1)d(x_2) + d(x_1)\bar{u}(x_2)}$$

- Unpolarized (longitudinal+transverse)
- STAR coverage: 0.1 < x < 0.3
- Final results will include Z^0 ratio
- Projected uncertainties

With fully reconstructed W kinematics

Forward Detector Upgrade

 $2.5 < \eta < 4.0$

	p+p / p+A	A+A
Tracking	charge separation photon suppression	$rac{\delta p}{p}pprox 20-30\%$ at $0.2 < p_T < 2.0~{ m GeV}/c$

	р+р / р+А	A+A
ECAL	$\approx 10\%/\sqrt{E}$	$\approx 20\%/\sqrt{E}$
HCAL	$\approx 60\%/\sqrt{E}$	n/a

Spin Dependent Fragmentation

- Hadron in jet
 - STAR measured at midrapidity
 - Move to higher *x*

$$\delta q = \int_0^1 [\delta q(x) - \delta \bar{q}(x)] dx$$

Multi-dimensional binning

Other Hadron / Jet Observables

- Suggested large spin dependent effects in quark fragmentation
 - Collinear quark-gluon-quark correlators

 $\widehat{H}_{FU}^{\Im}(z,z_z)$

- Flavor dependence
- Evolution effects of ETQS distribution functions

- Test origin of large transverse asymmetries
- Compare direct photons and jets

$$-\int d^{2}k_{\perp} \frac{|k_{\perp}^{2}|}{M} f_{1T}^{\perp q}(x,k_{\perp}^{2}) = T_{q,F}(x,x)$$

- Cancellation of *u* & *d* quark Sivers
- Bias from high-z charged pion

More Cold QCD at RHIC

- Extend *x*-range for gluon helicity with dijets
- Nuclear parton distributions
- Nuclear suppression R_{pA}
 - Drell-Yan \rightarrow sea quarks
 - Direct photons \rightarrow gluons

no data

 10^{-1}

EPS09

H- DSSZ

 10^{-2}

x 10⁻¹

HKN07

Outlook

Year	\sqrt{s}	Delivered	Scientific Goals	Observable	Required
	(GeV)	Luminosity			Upgrade
2021	p [⊤] p @	1.1 fb ⁻¹	TMDs at low and high x	A_{UT} for Collins	Forward instrum.
	510	10 weeks		observables, i.e. hadron in jet	ECal+HCal+Tracking
				modulations at $\eta > 1$	
2021	<i>p</i> • <i>p</i> @	1.1 fb ⁻¹ 10 weeks	$\Delta g(x)$ at small x	A_{LL} for jets, di-	Forward instrum. ECal+HCal
	510	10		at $\eta > 1$	2000 11000
2023	p [⊤] p @	300 pb ⁻¹	Subprocess driving the large	A_N for charged	Forward instrum.
	200	8 weeks	A_N at high x_F and η	hadrons and	ECal+HCal+Tracking
				flavor enhanced	
				jets	
2023	p¹Au	1.8 pb ⁻¹	What is the nature of the	R_{pAu} direct	
	a	8 weeks	initial state and hadronization	photons and DY	Forward instrum.
	200		in nuclear collisions		ECal+Hcal+Tracking
			Clean signatures for		
			Clear signatures for	Dihadrons, γ -jet,	
2022		12 C - 12		n-jet, diffraction	Description
2023	p'Al	12.6 pb	A-dependence of nPDF,	R_{pAl} : direct	Forward instrum.
	200	8 weeks	A-dependence for Saturation	photons and DY	ECal+HCal+Tracking
	200			Dihadrons, y-jet,	
				h-jet, diffraction	

Ideally...

Drell-Yan Production $p^{\uparrow} + p \rightarrow \gamma^* \rightarrow l^+ + l^ \sqrt{s} = 500 \text{ GeV}$ $Q^2 = M^2 \gg p_T^2$ Get rid of background Scan *x* with rapidity Accumulate a few fb^{-1}

Nuclear Effects in $A_N(\pi^0)$

- Polarized: Transverse spin asymmetries of inclusive π^0 production
- Possibly gluon saturation effects (CGC)
- Nuclear effects on fragmentation process
- RHIC Run 2015
 - $\vec{p} + p/\vec{p} + Al/\vec{p} + Au$

2009 Dijet Cross Section

- Dijet cross section plotted as a function of dijet invariant mass corrected back to particle level
- Experimental systematic uncertainties include detector effects and uncertainties from unfolding
- Theory predictions corrected for underlying event effects
- Uncertainty on underlying event correction and theory prediction take into account scale variation and PDF uncertainties

Nuclear Parton Distributions

- Initial conditions for heavy ion collisions (here Pb)
 - Largely unconstrained
 - LHC Run I p + Pb data at very high Q^2

Nuclear Modification: $R_{pA}(\gamma_{dir})$

Nuclear Modification: $R_{pA}(\gamma_{DY}^*)$

Drell-Yan production

- $2.5 < \eta_{\gamma^*} < 4.5$
- Moderate-high $Q^2 = M_{\gamma^*}^2$
- Medium x

- Drell-Yan at forward η
- 2017: $p + p @ \sqrt{s} = 500 \text{ GeV}$
- 2023: $p + p/Al/Au @ \sqrt{s_{NN}} = 200 \text{ GeV}$

