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Hadron’s partonic structure in QCD

O Structure - “a still picture”
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B1 type structure C2, pyrite type structure Fullerene, C60

Motion of nuclei is much slower than the speed of light!
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O Structure - “a still picture”

Crystal Nano-

Structure:

NaCl, FeS2,
B1 type structure C2, pyrite type structure Fullerene, C60

Motion of nuclei is much slower than the speed of light!

O No “still picture” for hadron’s partonic structure!

Motion of quarks/gluons is relativistic!

SI:?JEC’:S;Z: Quantum “probabilities” (P, S|O(, ¥, A*)| P, S)

None of these matrix elements is a direct physical
observable in QCD - color confinement!

L Accessible hadron’s partonic structure?

= Universal matrix elements of quarks and/or gluons
1) can be related to good physical cross sections of hadron(s)
with controllable approximation,
2) can be calculated in lattice QCD, ...
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Need data of “many” good cross sections to be able to
extract the x, Q, flavor dependence of the structure, ...




Calculate the partonic structure in lattice QCD?

O Answer: Not directly!

Particle nature of quarks/gluons mm) Probes with large Q transfer
Large momentum transfer mm) Large “+” momentum dominates
Operators on light-cone mm) Can’t be calculated in lattice QCD



Calculate the partonic structure in lattice QCD?

O Answer: Not directly!

Particle nature of quarks/gluons mm) Probes with large Q transfer
Large momentum transfer mm) Large “+” momentum dominates
Operators on light-cone mm) Can’t be calculated in lattice QCD

J Quasi-PDFs: Ji, arXiv:1305.1539

£z
(o P) = [ e P, exp{—zg [ dnzAz<nz>}w<0>P>

Proposed N dy L A% M2
matching: alw, 1, P2) :L y z (§’E> aly: 1) + O (PZZ’ Pz

O Pseudo-PDFs: + gluon contribution beyond LO

MO (= p-£.6) = (pIBO0)7° 2, (0.6, v- AU(EIp) Radyushiin, 2017
:2pO‘M (v, €%) + 2 (p* V)M (v, €2) = 2p° M, (v, €2)
dv
P(x,&%) = iem 2p+M+(V &) with £ <0

Off-light-cone extension of PDFs:  f(z) = P(x, £2 = 0) with ¢&* = (07,67,0,

O Other approaches, ...
“OPE without OPE” (Chambers et al. 2017), Hadronic tensor (Liu et al. 1994, ...), ...



Hadron’s partonic structure in Lattice QCD

. . Ma and Qiu, arXiv:1404.6860
[ Good “Lattic cross sections”: arXiv:1709.03018

= Single hadron matrix element:
ou(@, 8. P?) = (PIT{0,(&)}[P) with w=P £, £ #0, and § = 0; and

1) can be calculated in lattice QCD with precision,
has a well-defined continuum limit (UV+IR safe perturbatively), and
2) can be factorized into universal matrix elements of quarks and gluons

with controllable approximation Collaboration between lattice QCD
and perturbative QCD!




Hadron’s partonic structure in Lattice QCD

. . Ma and Qiu, arXiv:1404.6860
[ Good “Lattic cross sections”: arXiv:1709.03018

= Single hadron matrix element:
on(@, &, P?) = (PIT{O,(&)}P) with w=P-& £ #0, and & = 0; and

1) can be calculated in lattice QCD with precision,
has a well-defined continuum limit (UV+IR safe perturbatively), and
2) can be factorized into universal matrix elements of quarks and gluons

with controllable approximation Collaboration between lattice QCD
1 Current-current correlators: and perturbative QCD!

Ojle (5) = gdjl Hdjy =2 Z Z ]1(5) .72(0)
with d; : Dimension of the current
Z; : Renormalization constant of the current

Sample currents:

7s(6) = €25 (g1l (€), v (€) =2y [g7 - E4)(£),
ivi(8) = €2, gy - SO al6) = &2 [_ZF;,,F;,,]@),...
d Quasi- and pseudo-PDFs:
O4(€) = Z7 (%) (€) 7 - £D(£,0) g (0) D(E,0) = Pei Jo &AM dA



Hadron’s partonic structure in Lattice QCD

Ma and Qiu, arXiv:1404.6860

1 Factorization: N arXiv:1709.03018
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Hadron’s partonic structure in Lattice QCD

Ma and Qiu, arXiv:1404.6860

1 Factorization: N arXiv:1709.03018
N R
2p+5(ﬂ? k™ /pT)

—|— Corrections

Hard-part Parton-distribution
Probe Structure

d QCD Global analysis:

Need data of “many” good lattice cross sections to be able to
extract the x, Q, flavor dependence of the structure, ...

0 Complementarity and advantages:
< Complementary to existing approaches for extracting PDFs,

< Quasi-PDFs and pseudo-PDFs are special cases,

< Have tremendous potentials:

David Richards’
Neutron PDFs, ... (no free neutron target!) talk on Monday

Meson PDFs, such as pion, ...
More direct access to gluons — gluonic current, quark flavor, ...



Renormalization — Summary

O Current-current correlators — take care by construction:

Construct operators by using renormalizable, or conserved currents

O Renormalization of quasi- and pseudo-PDFs:
Quasi-quark distributions is multiplicatively renormalizable

(e, p2 pe) = e Gl Z 1 700G (60 12, p2)
Three classes of elementary divergent diagrams:

K, ¥ nooon 7 v
@) :.: = =% ¥+ Wﬂ o Ishikawa, Ma, Qiu and Yoshida
9_935’ Q arXiv: 1701.03108

(b) f ': - ;.:. ':Q + Gééc % + e
o¢ F; 5
J y
1 ¥ h 5
- + q{(ﬁ - 4 e
l) . l) M

Pseudo-quark distributions takes care of the UV renormalization by

dv
2 w:u
P(z,£%) = / 9 M p=po o (v, )/Mp =p" (0, 5 ) Different matching

—
(g]
°
= -
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Renormalization — quasi-quark

O Coordinate-space definition:

- P=8x

Fop(&ss 17, pz) =—5— (D)4 (&) LoD ({€.,04) y(0)|h(p))

0 Why the proof is hard:
* Because of z-direction dependence, Lorentz symmetry is
broken, hard to exhaust all possible UV divergences
* Renormalization of composite operator is needed

O Broken Lorentz symmetry:
Both 3D and 4D loop-integration can generate UV divergences

0 01 1 S

~7 -
AZ}) Y A 1 Y [/I - l/l + 1~7ll~l

[
P )2 I) [7

(c)
‘ (a)
UV: 4-D integration UV: 3-D integration

/ dd] 1 a3l d3l
Cr) Py — )7 el b




Renormalization — quasi-quark

O Quasi-quark at one-loop:
2
- n _— —1 1
Y z -
A , ‘.. 2 f)/
w k k > |k ki k k| | &
\ L
[ Y // ] ‘3) 'WT‘T
[ \ [ ¥
p pl P WL R P
(a) (b) (c) (d)
4 Fig. 1(a): _
. 5 < Cutoff “a” between fields
, ezngz 1 arma £2—2a §z—a ¢ C l . . d d f
My, = — Tr [T dry dro onclusion independent o
p= N a rita regulator ) .
x/ d*l o iPzbs gilz(r2—r1) <—’i9uv) <> 3D-integration: d'l=d’ldl,
(2m)* 2 a3l a3l
. . 1 1 72 /‘2_ 2
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Renormalization — quasi-quark

O Quasi-quark at one-loop:

Y z _
A fy

p p pt  |p P p
(b) (c) (d)

0 Complete one-loop contribution:

. 1
MO M +2 % Myp+2 x 5Mic + Mua
T a a 4e

< At one-loop, all 3D integrations are finite
< Divergence only come from the region when all momentum
components go to infinity

m) Localized UV divergence in all directions!

Very different from the UV behavior of normal PDFs: (1,12, 1), A =



Renormalization — quasi-quark

lshikgwa, Ma, Qiu,
0 Power counting and divergent sub-diagrams: Yoshida (2017)

Lr ()r

(a) -1/a, In(1/a):

@ -y
(b) - In(1/a) ?: 0

r r

= + | =—
A

A

+ aes

(c) -In(1/a):

(c)
Happen only when all loop momenta go to infinity — localized!

d Example of convergent sub-diagrams:

0 v

0 F Ly




Renormalization — quasi-quark

lshikgwa, Ma, Qiu,
O Power divergence: Yoshida (2017)

Y ; /5
0 rooo0 ! rooo0 ! >y
+ :.: <+ :.:.: 4 e

I +c¢ / dry + (.'2 / drq / dro + - -+
J0O J 0 < T

— Peclodr’ = eer

b]

. |tis allowed to introduce an overall factor e <%zl to remove all

power UV divergences

O Interpretation:

* Mass renormalization of test particle Dotsenko, Vergeles, NPB (1980)

0 Log divergence in from gauge link:

- Besides power divergence, there are also logarithmic UV

divergences
« Itis known that these divergences can be removed by a “wave

function” renormalization of the test particle, Z;,(}.



Renormalization — quasi-quark

Ishikawa, Ma, Qiu,

d Log divergence from gluon-gauge link vertex: Yoshida (2017)

0r

>7 « Logarithmic UV: can be absorbed by the coupling
constant renormalization of QCD.

d UV from vertex correction:

« The most dangerous UV diagram, may mix with other operators
* Locality of UV divergence: no dependenceonr, —r; orp

« UV divergence is proportional to quark-gaugelink vertex at
lowest order, with a constant coefficient

* A constant counter termis able to remove this UV divergence.
1 Renormalization to all orders:
* Using bookkeeping forests subtraction method, the net effectis

to introduce a constant multiplicative renormalizaton factor
Z;qlfor the quark-gaugelink vertex.



Factorization

1 Does the renormalized lattice cross section and
quasi-PDFs share the same CO properties with
normal PDFs?

d Can we extract PDFs from lattice cross section or
renormalized quasi-PDFs reliably?

—|— Corrections



Factorization

. . . Ma and Qiu, arXiv:1404.6860
1 Factorized formula for lattice cross section: arXiv:1709.03018

o (w, €2,P?) Z/ = falz,1?) x K2(2w,€2,22P?, 4%) + O(€ N3 op)

with  fo(z, 12) = —fu(—2, 42)



Factorization

. . . Ma and Qiu, arXiv:1404.6860
1 Factorized formula for lattice cross section: arXiv:1709.03018

o (w, €2,P?) Z/ = falz,1?) x K2(2w,€2,22P?, 4%) + O(€ N3 op)

ith  fo(z. 12) = —fu(—z, 2
0 Steps needed to prove: with - fa(z,17) = —fa(—2, 1%)

Let 52 be small but not vanishing, apply OPE to the operator,

on(w, €%, P?) ZZ“ (1a)(g2, u2) e ... £ x (P|OSLY),, ()| P)
\

with Local, symmetric and traceless with spin J

(P0G, (12)|P) = 24 (u?) x (P, - -- P, — traces)
With reduced matrix element: A% (u?) = (P|OW4)(u?)| P)



Factorization

. . . Ma and Qiu, arXiv:1404.6860
1 Factorized formula for lattice cross section: arXiv:1709.03018

) = 3 [ 1 .58 )+ 0N

ith a,72=_a—72
O Steps needed to prove: with  fa(z, 1) fa(=2,17)

Let 52 be small but not vanishing, apply OPE to the operator,

on(w, €2, P?) =30 ST WO (€, i) € €77 x (PO, (1) P)
J=0 a A

with Local, symmetric and traceless with spin J

(P0G, (12)|P) = 24 (u?) x (P, - -- P, — traces)
With reduced matrix element: A% (u?) = (P|OW4)(u?)| P)

—

on(w,&2,P?) =" W&, 4?) 24V (1) x B (w, P2¢?)

J=0 a
with ¥ ;(w, P?¢?) =& ... &Y/ (B,, --- P,, — traces)

1J/2] No approximation yet!

—ZCJ,w (—P2¢? /4)



Factorization

Ma and Qiu, arXiv:1404.6860

O Approximation — leading power/twist: arXiv:1709.03018
N . .
AU (%) = 5 /ldmfj‘lfa(:r-,u“) With symmetry factor: S, = 1,2 for a = ¢, ¢

—)

u) f P Z/ _fa Zz, ll XI\ (lw’g‘z“,‘r‘zp'z’#?) +O(£2A2QCD)

with fa Zsu(“)(g %) By (2w, 2? P2E?)
J— a

Note: our proof of factorization is valid only when |w| < 1 and |p2£2| <1



Factorization

. . . . Ma and Qiu, arXiv:1404.6860
O Approximation — leading power/twist: arXiv:1709.03018

'Tan s B 1 ! , _
A(-J'a)(,u.“) =35 / da‘;lfj_lfa(l',u.“) With symmetry factor: S, = 1.2 for a = q,¢.
a J-1

Note: our proof of factorization is valid only when |w| < 1 and |p2§2| <1
O Extrapolate into large w region:

< Validity of OPE guarantees that o , is an analytic function of w,
so as its Taylor series of w around w=0, defined above

< If we fix £ to be short-distance, while we increase w by adjusting p,
we can’t introduce any new perturbative divergence

< Thatis, 0, remains to be an analytic function of w unless w =

Factorization holds for any finite value of w and p? &2, if & is short-distance



Coefficient/matching functions

O Matching coefficients for current-current correlators:

2

1{3:25—11”“(5 W) By (2w, 2° P?¢) mmm) Need W(H9(&%, %)

a) Calculate K2(aw,£2,0,pu) - coefficient in CO factorization with p?=0
b) Expand KZ2(zw,£%,0,1) in power series of xw
c) Extract w72 (¢2 42) with ¥;(zw,0) = (2w)’



Coefficient/matching functions

O Matching coefficients for current-current correlators:

Z 5 wila) (&2 42 B (aw, 22 P2E?) ) mmm) Need W' (&2 12

a) Calculate K&(zw,&2,0,u) - coefficient in CO factorization with p?=0

b) Expand KZ2(zw,£%,0,1) in power series of xw
c) Extract w79 (&2, 42) with ¥;(2w,0) = (2w)’

0 LO matching:

— “l Le )
2

p=0 (a) (b)

. o 1 1 -
Fig. (a) KIO) (2w, €2,0,p) = §H[k£]e'£'k = 2zwe'™

‘ W (5 J.q)

= i/-1/(J = 1)



Coefficient/matching functions

O Matching coefficients for current-current correlators:
Z 5 wila) (&2 42 B (aw, 22 P2E?) ) mmm) Need W' (&2 12

a) Calculate K&(zw,&2,0,u) - coefficient in CO factorization with p?=0
b) Expand KZ2(zw,£%,0,1) in power series of xw
c) Extract w72 (£2 42) with ¥;(z2w,0) = (2w)’

0 LO matching:

‘ KA Yk K
2

p° =0 o :
. ' 1 - |
Fig. (a) K9 (200, £2,0, 1) = =Tr[kg]e’* = 2mwe™
’ ‘ IV(Jq) i7-1/(J — 1)!
Fig. (b,c) M i&t d*l Tr[g]]e (k-1 2. g o
- T2 ] o 12 +ic ] 92772 zwe' e = M;
Kg(/g/ v(l‘w,q O,p) =—2i % ’;{g‘;% gg;';gsi:;lg?t



Comparison with other approaches

d Momentum-space version - Fourier transform:

With @ = 254 = L and valid for &2 < 1

q
4¢
- d £

Ko = | — e K2%(zP -¢,€2,22P? p)

n . &4
Care is needed for the physical region when &2 > 1

Contribution from large &2 > 1 region — poles and cuts



Comparison with other approaches

0 Momentum-space version — Fourier transform:
~ o~ 2 po a .
5u@,0%, P = [ FeEon(P- €% P)

With @ = 254 = L and valid for &2 < 1

q

_ d*¢

Ki= [ T Ka@P - £6,22P% p)

Care is needed for the physical region when &2 > 1
Contribution from large &2 > 1 region — poles and cuts

d Connection to quasi- and pseudo-PDFs:

d
With I\g( ) ‘ / 2 oq(w, &2, P?) = fu(z, 1)

modulo O(a 9) corrections and higher twist corrections

e—lI.u

=

With &, ='O, the integral over w = —¢ - P = —|&||P| cos @

Quasi-PDFs: & =0, p = p,
i

5 =&, with fixed P-
Pseudo-PDFs: &0 = O, , €

=&, with fixed &



One-loop example: quark =>quark

Ma and Qiu, arXiv:1404.6860
0 Expand the factorization formula:

dx ff: ~
Fon (@, 72, P2) Z / Cy (212 ) £yl )
To order o:

fo@) = £ (z) ® CY) (#/z) + fu))(x) ®CY)) (&)
=) Cy(t i Pr) =

fyn& %, Po) = £t p?)



One-loop example: quark =>quark

Ma and Qiu, arXiv:1404.6860
0 Expand the factorization formula:

dx :E ~
Fon (@, 72, P2) Z / Cy (212 ) £yl )
To order o:

-~

fON @) = fo(z) ®CL)) (3

a/q q/q(x/x) T f(l)( ) ® Cé%(r/r)
) C) (i p2 P;) = o)) (t, 3%, Po) — fo(t, 1)
0 Feynman diagrams: _ §
ki1 Lk k k k[ 1 Jk
Same diagrams for both frwswse|  + % Y Yo+ % \ Y
fq/q and fq/q PA [ "p Hp l p -P p
But, in different gauge: n, -A=0 for fq/q n-A=0 for fy/,
d Gluon propagatorinn,. A=0:

- 1208 4 nolh

B n?[*1°
L

B with n2 = —1



One-loop “quasi-quark” distribution in a quark

Ma and Qiu, arXiv:1404.6860
J Real + virtual contribution:

(1) - -2 a, (4me 7 a2 /+°° dl, o 1( o 1-e 2)
P)=C = y)—o(1-2)d-|1-y+ y
ffI/q( ) = Fo I'(1—e¢) Jo l2+2€ o P, ] Y 2

% y 1—y N (1 —y)A\2 N A2 L L= (1—y)X
\//\2+y \//\2 1 —y 23;/2\//\2'*'@/ Qy\/)\2+(1—y)2 2 [/\2+(1_y)2]3/2
where y =1,/P,, \? =12/P% Cr = (N? —1)/(2N.)

O Cancelation of CO divergence:

VA2 412 -yl +Sen(l _/}\/x\‘-’ (1-y)* =1 -y
\/,\+l ¢\- (1-y)> VA2 92 | VAT 4 (1-y)?

Only the first term is CO divergent for 0 <y <1, which is the same
as the divergence of the normal quark distribution — necessary!

=20 <y<1)- [Sgn(y)

d UV renormalization:
Different treatment for the upper limit of li integration - “scheme”

Here, a UV cutoff is used - other scheme is discussed in the paper



One-loop coefficient functions

Ma and Qiu, arXiv:1404.6860

Q0 MS scheme for f,/,(z, 1)

- 1 1 CO, UV IR finite!
Cora(t: A%, 1% Pr) = fol (6, /%, P.) = fo)u (b, 1)
C( ) 2 ~9
mm) oot _ 1+ W o] e A Sen()A,
Cr= 1—t w2 T2 T T A+ It

1+ ¢ Ay Ai_;
e [Sgn(t)ln (l-l-m)-i—Sgn(l—t)ln (1+2|1_t|)HN

where A; = +/i?/P2+1t2—|t|, Sgn(t) = 1if t > 0, and —1 otherwise,

O Generalized “+” description:
For a testing function

+00 +00 -
| atfaw] mey= [ g ino) - n(1) ht) t=i/a

—00 —00

Explicit verification of the CO factorization at one-loop

Note: A — O (Pi) as P, - oo the linear power UV divergence!
A



Summary and outlook

O “lattice cross sections” = single hadron matrix elements
calculable in Lattice QCD, renormalizable + factorizable in QCD

Going beyond the quasi-PDFs

O Extract PDFs by global analysis of data of “Lattice x-sections”

n(w, &2,P?%) Z/ —fa z,1%) x K%(zw, &%, 22 P2, u?) +O(£2AéCD)
with fa('l’fll-z) = —fa(—'l’ell-z)
O Conservation of difficulties — an example:

Use heavy-light flavor changing current to suppress
noise from the middle propagator:

= folz, 1*) + folz, p?) = fo(z, 1) if mg ~u

No free-lunch! But, we are trying to
find a better way to get our lunch!




Summary and outlook

O “lattice cross sections” = single hadron matrix elements
calculable in Lattice QCD, renormalizable + factorizable in QCD

Going beyond the quasi-PDFs

O Extract PDFs by global analysis of data of “Lattice x-sections”

n(w, &2,P?%) Z/ —fa z,1%) x K%(zw, &%, 22 P2, u?) +O(£2AéCD)
with fa('l’fll-z) = —fa(—'l’ell-z)
O Conservation of difficulties — an example:

Use heavy-light flavor changing current to suppress
noise from the middle propagator:

= folz, 1*) + folz, p?) = fo(z, 1) if mg ~u

No free-lunch! But, we are trying to
find a better way to get our lunch!

O Lattice QCD can be used to study hadron structure, but,
more works are needed!

Thank you!



