TMD evolution
 as
 a double-scale evolution

Alexey A. Vladimirov
Universität Regensburg
in collaboration with Ignazio Scimemi
based on [1803.11089]

Universitāt Regensburg

TMD evolution
 is
 a double-scale evolution
 $F(x, b ; \mu, \zeta)$

TMD evolution must be taken into account with a great care

More freedom

- Relations between anomalous dimensions
- ζ-prescription

More ambiguity

- Many scales to "tune"
- Violation of transitivity in "naive" formulation (see [1803.11089])

NNLO fit and extraction of (unpol.) TMDPDF [Scimemi,AV;1706.01473]

- The largest number of data point (DY)
- The largest energy separation
- Consideration of various orders (NLO,NNLL,NNLO)
- Studies of theory error-bands

Included data (at $q_{T}<0.2 Q$)

	reaction	\sqrt{s}	Q	comment	points
E288	$p+C u \rightarrow \gamma^{*} \rightarrow \mu \mu$	19.4 GeV	$4-9 \mathrm{GeV}$	norm=0.8	35
E288	$p+C u \rightarrow \gamma^{*} \rightarrow \mu \mu$	23.8 GeV	$4-9 \mathrm{GeV}$	norm=0.8	45
E288	$p+C u \rightarrow \gamma^{*} \rightarrow \mu \mu$	27.4 GeV	$4-9 \& 11-14 \mathrm{GeV}$	norm=0.8	66
CDF+D0	$p+\bar{p} \rightarrow Z \rightarrow e e$	1.8 TeV	$66-116 \mathrm{GeV}$		4
CDF+D0	$p+\bar{p} \rightarrow Z \rightarrow e e$	1.96 TeV	$66-116 \mathrm{GeV}$		43
ATLAS	$p+p \rightarrow Z \rightarrow \mu \mu$	$7 \& 8 \mathrm{TeV}$	$66-116 \mathrm{GeV}$	tiny errors!	18
CMS	$p+p \rightarrow Z \rightarrow \mu \mu$	$7 \& 8 \mathrm{TeV}$	$60-120 \mathrm{GeV}$		14
LHCb	$p+p \rightarrow Z \rightarrow \mu \mu$	$7 \& 8 \& 13 \mathrm{TeV}$	$60-120 \mathrm{GeV}$		30
ATLAS	$p+p \rightarrow Z / \gamma^{*} \rightarrow \mu \mu$	8 TeV	$46-66 \mathrm{GeV}$		5
ATLAS	$p+p \rightarrow Z / \gamma^{*} \rightarrow \mu \mu$	8 TeV	$116-150 \mathrm{GeV}$		

Drell-Yan at $Q=5-6 \mathrm{GeV}$

TMD evolution is a key element

$$
\frac{\chi_{\text {global }}^{2}}{\text { d.o.f. }} \simeq 1.25
$$

Here:

- 3-loop evolution
- 2-loop coefficient function
- 2-loop matching
- ζ-prescription
plots from [1706.01473]

Universitãt Regensburg

Universităt Regensburg
$\because \because$

TMD evolution is used for two practical purposes

- Compare different experiments
- Modeling TMD distribution

$$
\frac{d \sigma}{d X} \sim \int d^{2} b e^{i\left(b q_{T}\right)} H_{f f^{\prime}}(Q, \mu) F_{f \leftarrow h}\left(x_{1}, b ; \mu, \zeta_{1}\right) F_{f^{\prime} \leftarrow h}\left(x_{2}, b ; \mu, \zeta_{2}\right)
$$

Universităt Regensburg

TMD evolution is used for two practical purposes

- Compare different experiments
- Modeling TMD distribution

$$
\begin{gathered}
\frac{d \sigma}{d X} \sim \int d^{2} b e^{i\left(b q_{T}\right)} H_{f f^{\prime}}(\underline{Q}, \mu) \\
\downarrow
\end{gathered} F_{f \leftarrow h}\left(x_{1}, b ; \mu, \zeta_{1}\right) F_{f^{\prime} \leftarrow h}\left(x_{2}, b ; \mu, \zeta_{2}\right)
$$

TMD evolution is used for two practical purposes

- Compare different experiments
- Modeling TMD distribution

$$
\begin{gathered}
\frac{d \sigma}{d X} \sim \int d^{2} b e^{i\left(b q_{T}\right)} H_{f f^{\prime}}(\underline{Q}, \mu) \\
\downarrow
\end{gathered} F_{f \leftarrow h}\left(x_{1}, b ; \mu, \zeta_{1}\right) F_{f^{\prime} \leftarrow h}\left(x_{2}, b ; \mu, \zeta_{2}\right), ~ \begin{gathered}
\zeta_{1} \zeta_{2}=Q^{4} \\
\text { or } \\
\zeta_{1}=\zeta_{2}=Q^{2}
\end{gathered}
$$

Typical model for TMD includes matching

TMD evolution is used for two practical purposes

- Compare different experiments
- Modeling TMD distribution

TMD evolution equations

$$
\begin{align*}
\mu^{2} \frac{d}{d \mu^{2}} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =\frac{\gamma_{F}^{f}(\mu, \zeta)}{2} F_{f \leftarrow h}(x, b ; \mu, \zeta), \tag{1}\\
\zeta \frac{d}{d \zeta} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =-\mathcal{D}^{f}(\mu, b) F_{f \leftarrow h}(x, b ; \mu, \zeta), \tag{2}
\end{align*}
$$

Solution: $\quad F\left(x, \mathbf{b} ; \mu_{f}, \zeta_{f}\right)=R\left[\mathbf{b} ;\left(\mu_{f}, \zeta_{f}\right) \rightarrow\left(\mu_{i}, \zeta_{i}\right)\right] F\left(x, \mathbf{b} ; \mu_{i}, \zeta_{i}\right)$

- γ_{F} - TMD anomalous dimension
- \mathcal{D} - rapidity anomalous dimension $\left(=-\frac{\tilde{K}}{2}[\right.$ Collins' book $],=K[$ Bacchetta, at al,1703.10157])
- Anomalous dimensions are universal, i.e. depend only on flavor (gluon/quark).

TMD evolution is two-dimensional

TMD evolution is two-dimensional

TMD evolution is two-dimensional

Examples

Solution 1

$$
\ln R=\int_{\mu_{i}}^{\mu_{f}} \frac{d \mu}{\mu} \gamma_{F}\left(\mu, \zeta_{f}\right)-\mathcal{D}\left(\mu_{i}, b\right) \ln \left(\frac{\zeta_{f}}{\zeta_{i}}\right)
$$

[Collins' textbook],[Aybat,Rogers,1101.5057],... 99\% popular

Examples

Solution 1

$$
\ln R=\int_{\mu_{i}}^{\mu_{f}} \frac{d \mu}{\mu} \gamma_{F}\left(\mu, \zeta_{f}\right)-\mathcal{D}\left(\mu_{i}, b\right) \ln \left(\frac{\zeta_{f}}{\zeta_{i}}\right)
$$

[Collins' textbook],[Aybat,Rogers,1101.5057],... 99% popular

Examples

Solution 1

$$
\ln R=\int_{\mu_{i}}^{\mu_{f}} \frac{d \mu}{\mu} \gamma_{F}\left(\mu, \zeta_{f}\right)-\mathcal{D}\left(\mu_{i}, b\right) \ln \left(\frac{\zeta_{f}}{\zeta_{i}}\right)
$$

[Collins' textbook],[Aybat,Rogers,1101.5057],... 99% popular

Examples

Solution 1

$$
\ln R=\int_{\mu_{i}}^{\mu_{f}} \frac{d \mu}{\mu} \gamma_{F}\left(\mu, \zeta_{f}\right)-\mathcal{D}\left(\mu_{i}, b\right) \ln \left(\frac{\zeta_{f}}{\zeta_{i}}\right)
$$

[Collins' textbook],[Aybat,Rogers,1101.5057],... 99\% popular

Solution 3

$$
\begin{aligned}
& \ln R=\int_{0}^{1}\left(\gamma_{F}(\mu(t), \zeta(t)) \frac{\mu_{f}-\mu_{i}}{\left(\mu_{f}-\mu_{i}\right) t+\mu_{i}}\right. \\
&\left.-\mathcal{D}(\mu(t), b) \frac{\zeta_{f}-\zeta_{i}}{\left(\zeta_{f}-\zeta_{i}\right) t+\zeta_{i}}\right) d t
\end{aligned}
$$

Unique solution
Solution exist only if
integrability condition holds
$\zeta \frac{d \gamma_{F}}{d \zeta}=-\mu^{2} \frac{d \mathcal{D}}{d \mu^{2}}$

$\vec{\nabla} \times \overrightarrow{\mathbf{E}}=0$
$\overrightarrow{\mathbf{E}}$ is conservative field

Unique solution

Solution exist only if
integrability condition holds

$$
\zeta \frac{d \gamma_{F}}{d \zeta}=-\mu^{2} \frac{d \mathcal{D}}{d \mu^{2}}
$$

$\vec{\nabla} \times \overrightarrow{\mathbf{E}}=0$
$\overrightarrow{\mathbf{E}}$ is conservative field

Integrability condition is trivially satisfied due to collinear overlap of divergences

$$
\zeta \frac{d}{d \zeta} \gamma_{F}(\mu, \zeta)=-\Gamma(\mu), \quad \quad \mu^{2} \frac{d}{d \mu^{2}} \mathcal{D}(\mu, b)=\Gamma(\mu)
$$

Unique solution

Solution exist only if integrability condition holds

$$
\zeta \frac{d \gamma_{F}}{d \zeta}=-\mu^{2} \frac{d \mathcal{D}}{d \mu^{2}}
$$

$\vec{\nabla} \times \overrightarrow{\mathbf{E}}=0$
$\overrightarrow{\mathbf{E}}$ is conservative field

Integrability condition is trivially satisfied due to collinear overlap of divergences

$$
\zeta \frac{d}{d \zeta} \gamma_{F}(\mu, \zeta)=-\Gamma(\mu), \quad \quad \mu^{2} \frac{d}{d \mu^{2}} \mathcal{D}(\mu, b) \neq \Gamma(\mu)
$$

In fixed order PT integrability condition is violated.
The restoration procedure is ambigous (large impact at large- b)
See extended dicussion in [Scimemi,AV;1803.11089]

Evolution potential

$$
\begin{aligned}
& \text { Solution exist only if } \\
& \text { integrability condition holds } \\
& \quad \zeta \frac{d \gamma_{F}}{d \zeta}=-\mu^{2} \frac{d \mathcal{D}}{d \mu^{2}}
\end{aligned}
$$

$$
\vec{\nabla} \times \overrightarrow{\mathbf{E}}=0
$$

$\overrightarrow{\mathbf{E}}$ is conservative field

Conservative field is determined by a potential

$$
\overrightarrow{\mathbf{E}}=\vec{\nabla} U
$$

Evolution is a difference
between potentials

$$
R\left[\left(\mu_{f}, \zeta_{f}\right) \rightarrow\left(\mu_{i}, \zeta_{i}\right)\right]=\exp \left(U_{f}-U_{i}\right)
$$

Evolution potential

$$
\begin{aligned}
& \text { Solution exist only if } \\
& \text { integrability condition holds } \\
& \quad \zeta \frac{d \gamma_{F}}{d \zeta}=-\mu^{2} \frac{d \mathcal{D}}{d \mu^{2}}
\end{aligned}
$$

$$
\vec{\nabla} \times \overrightarrow{\mathbf{E}}=0
$$

$\overrightarrow{\mathbf{E}}$ is conservative field

Conservative field is determined by a potential

$$
\overrightarrow{\mathbf{E}}=\vec{\nabla} U
$$

Evolution is a difference
between potentials

$$
R\left[\left(\mu_{f}, \zeta_{f}\right) \rightarrow\left(\mu_{i}, \zeta_{i}\right)\right]=\exp \left(U_{f}-U_{i}\right)
$$

This absolutely standard picture contains an important message.

The TMD distribution is not defined by a scale (μ, ζ)
It is defined by an equipotential line.

The scaling is defined by a difference between seales
 a difference between potentials

The TMD distribution is not defined by a scale (μ, ζ) It is defined by an equipotential line.

The scaling is defined by a difference between scales
a difference between potentials

Evolution factor to both points is the same although the scales are different by $10^{2} \mathrm{GeV}^{2}$

TMD distributions on the same equipotential line are equivalent.

TMD distributions on the same equipotential line are equivalent.

In ζ-prescription we set $\zeta \rightarrow \zeta_{\mu}(\boldsymbol{\nu})$

- TMDs are "enumerated" by $\boldsymbol{\nu}$ (the number of line)
- TMDs are "naive" scale-independent

$$
\mu \frac{d}{d \mu} F\left(x, b ; \mu, \zeta_{\mu}\right)=0 \quad \Rightarrow \text { No double-logs in the matching. }
$$

Universitãt Regensburg

In ζ-prescription we set

$$
\zeta \rightarrow \zeta_{\mu}(\boldsymbol{\nu})
$$

- TMDs are "enumerated" by $\boldsymbol{\nu}$ (the number of line)
- TMDs are "naive" scale-independent

$$
\mu \frac{d}{d \mu} F\left(x, b ; \mu, \zeta_{\mu}\right)=0 \quad \Rightarrow \text { No double-logs in the matching. }
$$

TMD distribution depends only on the "number" of equipotential line

$$
F(x, \mathbf{b} ; \mu, \zeta) \rightarrow F(x, \mathbf{b} ; \nu)
$$

$$
\begin{gathered}
\frac{d F(x, \mathbf{b} ; \nu)}{d \nu}=\frac{d U(\mathbf{b} ; \nu)}{d \nu} F(x, \mathbf{b} ; \nu) \\
F(x, \mathbf{b} ; \nu)=e^{U(\mathbf{b} ; \nu)-U\left(\mathbf{b} ; \nu_{0}\right)} F\left(x, \mathbf{b} ; \nu_{0}\right)
\end{gathered}
$$

Best way to measure the difference between potentials

$$
R=\left(\frac{\zeta_{f}}{\zeta_{\mu_{f}}}\right)^{-\mathcal{D}\left(\mu_{f}, b\right)}
$$

- Numerically simple (and fast)
- $\mu_{f}=Q$ thus a_{s} is small
- Does just the same job as the Sudakov exponent

- Some non-interesting singularities at $\mu, \zeta \rightarrow \infty$
- Landau pole at $\mu=\Lambda$
- Saddle point (blue dot)

$$
\mathcal{D}\left(\mu_{\text {saddle }}, b\right)=0, \quad \gamma_{M}\left(\mu_{\text {saddle }}, \zeta_{\text {saddle }}, b\right)=0
$$

Universal scale－independent TMD

There is a unique line which passes though all μ＇s
The optimal TMD distribution
$F(x, b)=F\left(x, b ; \mu, \zeta_{\mu}\right)$
where ζ_{μ} is the special line．

Universităt Regensburg

TMD cross-section

$$
\frac{d \sigma}{d X}=\sigma_{0} \sum_{f} \int \frac{d^{2} b}{4 \pi} e^{i\left(b \cdot q_{T}\right)} H_{f f^{\prime}}(Q)\left\{\tilde{R}^{f}[b ; Q]\right\}^{2} \tilde{F}_{f \leftarrow h}\left(x_{1}, b\right) \tilde{F}_{f^{\prime} \leftarrow h}\left(x_{2}, b\right),
$$

with $\zeta_{f}=\mu_{f}^{2}=Q^{2}$

$$
\tilde{R}^{f}[b ; Q]=(Q b)^{-\mathcal{D}_{\mathrm{NP}}^{f}(Q, b)} \exp \left\{-\mathcal{D}_{\mathrm{NP}}^{f}(Q, b) v^{f}(Q, b)\right\}
$$

- v is given perturbative series, $v=\frac{3}{2}+a_{s} \ldots$
- \tilde{F} is TMD in the "naive" ζ-prescription
- There are no approximations (ala high energy expansion of integrals).
- There are only $\left(\mu_{f}, \zeta_{f}\right)$ scales and no solution dependence.
- Clear separation of TMD evolution from the model for TMD distribution.

Evolution with b-dependent scale (CSS-like) $\left(Q, Q^{2}\right) \rightarrow\left(\mu_{b}, \mu_{b}^{2}\right)$

Here $\mu_{b}=\frac{C_{0}}{b^{*}}$ with $b_{\max }=1.2 \mathrm{GeV}^{-1}$
Analogy in DIS
Scale depends on paremeter \leftrightarrow $d \sigma=C(Q) R[Q \rightarrow \operatorname{ch}(x)] f(x, \operatorname{ch}(x))$ PDF $f(x, \operatorname{ch}(x))$ has no interpretation, no sense, and depends on the order of evolution in use.

Optimal version $\left(Q, Q^{2}\right) \rightarrow\left(Q, \zeta_{Q}\right)$

Analogy in DIS
Scale (potential) is fixed $\quad \leftrightarrow \quad d \sigma=C(Q) R[Q \rightarrow 2 \mathrm{GeV}] f(x, 2 \mathrm{GeV})$
PDF $f(x, 2 \mathrm{GeV})$ is just a model and
is dependent on the order of evolution in use.

Uncertainties of TMD cross-section

Less number of scales $=$ less theory error

- The variation of c_{1} is the variation of the evolution path (only).
- The variation of c_{3} is the variation of the evolution path (almost).

We found significant reduction of theory error band.

Universitãt Regensburg

Update of the NNLO DY fit, χ^{2}-values practically the same (a bit better), parameters within (previous) error-bars significant reduction of theory uncertainties.

arTeMiDe v1.3

- Variety of evolutions
- LO, NLO, NNLO
- No restriction for NP models
- Fast code
- DY cross-sections
- SIDIS cross-sections (not tuned yet)
- Theory uncertainty bands https://teorica.fis.ucm.es/artemide/

Universitãt Regensburg

Conclusion

Main message:

TMD evolution is a double scale evolution.
Therefore, it should be considered with care, and then it grants many simplifications.

Message 1:
TMD distributions on a same equipotential line are equivalent. Enumerate them with lines!

- Universal for all quantum numbers
- Very simple practical formula (no integrations!)
- Guarantied absence of (large) logarithms in the matching coefficient
- TMD model is independent on evolution order.
E.g You can use NNLO unpolarized and LO Sivers together, without theory tensions

Message 2 (unpresented):
In truncated PT there is the solution-dependence of evolution (see [1803.11089])

- It could be strong.
- There is no unique way to fix it.

Double-scale evolution is not unique for TMD case. It also appears in k_{T}-resummation, joint resummation, DPDs, etc.

Problem 1: Violation of transitivity

$$
R[\mathbf{b} ; X \rightarrow Y] R[\mathbf{b} ; Y \rightarrow X]=1
$$

There is a violation of transitivity $\sim 2 \%$ which seems better at NNLO

Problem 1: Violation of transitivity

$$
R[\mathbf{b} ; Y \rightarrow X]=1
$$

There is a VERY strong violation of transitivity, which seems worse at NNLO

The difference between solutions is $\underbrace{\sim a^{N+1} \mathbf{L}_{\mu}}_{\text {main b }}$ or $\underbrace{\sim a^{N+1} \mathbf{L}_{\mu} \mathbf{L}_{\mu_{0}}^{N}}_{\text {large b }}$

How strong is modification of the field?

Universitāt Regensburg
三

