TMD evolution as a double-scale evolution

Alexey A. Vladimirov

Universität Regensburg

in collaboration with Ignazio Scimemi based on [1803.11089]

A.Vladimirov

TMD evolution

 May 20, 2018
 1 / 21

イロト イヨト イヨト イヨト

Universität Regensburg

 $egin{array}{c} {
m TMD \ evolution} \ {
m is} \ {
m a \ double-scale \ evolution} \ F(x,b;\mu,\zeta) \end{array}$

TMD evolution must be taken into account with a great care

More freedom

- Relations between anomalous dimensions
- ζ -prescription

More ambiguity

- Many scales to "tune"
- Violation of transitivity in "naive" formulation (see [1803.11089])

Universität Regensburg

NNLO fit and extraction of (unpol.) TMDPDF [Scimemi,AV;1706.01473]

- The largest number of data point (DY)
- The largest energy separation
- Consideration of various orders (NLO,NNLL,NNLO)
- Studies of theory error-bands

Included data (at $q_T < 0.2Q$)					
	reaction	\sqrt{s}	Q	comment	points
E288	$p + Cu \to \gamma^* \to \mu\mu$	19.4 GeV	4-9 GeV	norm=0.8	35
E288	$p + Cu \to \gamma^* \to \mu\mu$	23.8 GeV	4-9 GeV	norm=0.8	45
E288	$p + Cu \to \gamma^* \to \mu\mu$	$27.4 \mathrm{GeV}$	4-9 & 11-14 GeV	norm=0.8	66
CDF+D0	$p + \bar{p} \rightarrow Z \rightarrow ee$	1.8 TeV	66-116 GeV		44
CDF+D0	$p + \bar{p} \rightarrow Z \rightarrow ee$	1.96 TeV	66-116 GeV		43
ATLAS	$p + p \rightarrow Z \rightarrow \mu \mu$	7 & 8 TeV	66-116 GeV	tiny errors!	18
CMS	$p + p \rightarrow Z \rightarrow \mu \mu$	7 & 8 TeV	60-120 GeV		14
LHCb	$p + p \rightarrow Z \rightarrow \mu \mu$	7 & 8 & 13 TeV	60-120 GeV		30
ATLAS	$p + p \to Z/\gamma^* \to \mu\mu$	8 TeV	46-66 GeV		5
ATLAS	$p + p \to Z/\gamma^* \to \mu\mu$	8 TeV	$116-150 { m GeV}$		9
				Total	309

イロト イヨト イヨト イヨ

Motivation

Motivation

Motivation

- Compare different experiments
- Modeling TMD distribution

$$\frac{d\sigma}{dX} \sim \int d^2 b \, e^{i(bq_T)} H_{ff'}(Q,\mu) F_{f\leftarrow h}(x_1,b;\mu,\zeta_1) F_{f'\leftarrow h}(x_2,b;\mu,\zeta_2)$$

- Compare different experiments
- Modeling TMD distribution

$$\frac{d\sigma}{dX} \sim \int d^2 b \, e^{i(bq_T)} H_{ff'}(\underline{Q}, \mu) F_{f\leftarrow h}(x_1, b; \mu, \zeta_1) F_{f'\leftarrow h}(x_2, b; \mu, \zeta_2)$$

$$(\zeta_1 \zeta_2 = Q^4)$$

$$\mu = Q$$

$$(\zeta_1 \zeta_2 = Q^4)$$

$$(\zeta_1 \zeta_2 = Q^4)$$

- Compare different experiments
- Modeling TMD distribution

$$\frac{d\sigma}{dX} \sim \int d^2 b \, e^{i(bq_T)} H_{ff'}(\underline{Q}, \mu) F_{f\leftarrow h}(x_1, b; \mu, \zeta_1) F_{f'\leftarrow h}(x_2, b; \mu, \zeta_2)$$

$$(1, \zeta_2 = Q^4)$$

$$\mu = Q$$

$$(1, \zeta_2 = Q^2)$$

$$\begin{array}{c} \text{Minimize } \mathbf{L}_{\mu}, \, \mathbf{L}_{\sqrt{\zeta}} \\ \mu \sim \sqrt{\zeta} \sim b^{-1} \\ & & \\ & & \\ F(x,b;\mu,\zeta) \sim C(x,b;\mu,\zeta) \otimes \mathrm{PDF}(x,\mu) \\ & \\ & \\ \text{Typical model for TMD includes matching} \end{array}$$

May 20, 2018

5 / 21

A.Vladimirov

TMD evolution

- Compare different experiments
- Modeling TMD distribution

TMD evolution equations

$$\mu^{2} \frac{d}{d\mu^{2}} F_{f \leftarrow h}(x, b; \mu, \zeta) = \frac{\gamma_{F}^{f}(\mu, \zeta)}{2} F_{f \leftarrow h}(x, b; \mu, \zeta), \qquad (1)$$

$$\zeta \frac{d}{d\zeta} F_{f \leftarrow h}(x, b; \mu, \zeta) = -\mathcal{D}^{f}(\mu, b) F_{f \leftarrow h}(x, b; \mu, \zeta), \qquad (2)$$

Solution: $F(x, \mathbf{b}; \mu_f, \zeta_f) = R[\mathbf{b}; (\mu_f, \zeta_f) \to (\mu_i, \zeta_i)]F(x, \mathbf{b}; \mu_i, \zeta_i)$

- γ_F TMD anomalous dimension
- \mathcal{D} rapidity anomalous dimension (= $-\frac{\tilde{K}}{2}$ [Collins' book], = K[Bacchetta, at al,1703.10157])
- Anomalous dimensions are *universal*, i.e. depend only on flavor (gluon/quark).

Universität Regensburg

6 / 21

May 20, 2018

イロト イヨト イヨト イヨト

TMD evolution is two-dimensional

A.Vladimirov

TMD evolution

TMD evolution is two-dimensional

TMD evolution is two-dimensional

TMD evolution

A.Vladimirov

A.Vladimirov

The TMD distribution is not defined by a scale (μ, ζ) It is defined by an equipotential line.

The scaling is defined by a difference between scales a difference between potentials

イロト イヨト イヨト イヨ

11 / 21

May 20, 2018

The TMD distribution is not defined by a scale (μ, ζ) It is defined by an equipotential line.

The scaling is defined by a difference between scales a difference between potentials

Evolution factor to both points is the same although the scales are different by 10^2GeV^2

イロト イヨト イヨト イヨ

May 20, 2018

Universität Regensburg

11 / 21

TMD distributions on the same equipotential line are equivalent.

TMD distributions on the same equipotential line are equivalent.

In ζ -prescription we set $\zeta \to \zeta_{\mu}(\boldsymbol{\nu})$

- $\bullet\,$ TMDs are "enumerated" by $\pmb{\nu}$ (the number of line)
- TMDs are "naive" scale-independent

$$\mu \frac{d}{d\mu} F(x,b;\mu,\zeta_{\mu}) = 0 \qquad \Rightarrow \text{No double-logs in the matching.}$$

In ζ -prescription we set $\zeta \to \zeta_{\mu}(\boldsymbol{\nu})$

- $\bullet\,$ TMDs are "enumerated" by $\pmb{\nu}$ (the number of line)
- TMDs are "naive" scale-independent

$$\mu \frac{d}{d\mu} F(x, b; \mu, \zeta_{\mu}) = 0 \qquad \qquad \Rightarrow \text{No double-logs in the matching.}$$

TMD distribution depends only on the "number" of equipotential line

$$F(x, \mathbf{b}; \boldsymbol{\mu}, \boldsymbol{\zeta}) \to F(x, \mathbf{b}; \boldsymbol{\nu})$$

$$\frac{dF(x,\mathbf{b};\nu)}{d\nu} = \frac{dU(\mathbf{b};\nu)}{d\nu}F(x,\mathbf{b};\nu)$$

$$\updownarrow$$

$$F(x,\mathbf{b};\nu) = e^{U(\mathbf{b};\nu) - U(\mathbf{b};\nu_0)}F(x,\mathbf{b};\nu_0)$$

A.Vladimirov

TMD evolution

May 20, 2018 12 / 21

$$R = \left(\frac{\zeta_f}{\zeta_{\mu_f}}\right)^{-\mathcal{D}(\mu_f, \delta)}$$

.

- Numerically simple (and fast)
- $\mu_f = Q$ thus a_s is small

• Does just the same job as the Sudakov exponent

A.Vladimirov

May 20, 2018 13 / 21

Universität Regensburg

- Some non-interesting singularities at $\mu, \zeta \to \infty$
- Landau pole at $\mu = \Lambda$
- Saddle point (blue dot)

 $\mathcal{D}(\mu_{\text{saddle}}, b) = 0, \qquad \gamma_M(\mu_{\text{saddle}}, \zeta_{\text{saddle}}, b) = 0$

iniversitat kegensburg

(ロ) (日) (日) (日) (日)

Universal scale-independent TMD

There is a unique line which passes though all μ 's

The optimal TMD distribution $F(x,b) = F(x,b;\mu,\zeta_{\mu})$

where ζ_{μ} is the special line.

TMD cross-section

$$\frac{d\sigma}{dX} = \sigma_0 \sum_f \int \frac{d^2 b}{4\pi} e^{i(b \cdot q_T)} H_{ff'}(Q) \{ \tilde{R}^f[b;Q] \}^2 \tilde{F}_{f \leftarrow h}(x_1,b) \tilde{F}_{f' \leftarrow h}(x_2,b),$$

with $\zeta_f=\mu_f^2=Q^2$

$$\tilde{R}^{f}[b;Q] = (Qb)^{-\mathcal{D}^{f}_{\mathrm{NP}}(Q,b)} \exp\{-\mathcal{D}^{f}_{\mathrm{NP}}(Q,b)v^{f}(Q,b)\}$$

- v is given perturbative series, $v = \frac{3}{2} + a_s \dots$
- \tilde{F} is TMD in the "naive" ζ -prescription
 - There are no approximations (ala high energy expansion of integrals).
 - There are only (μ_f, ζ_f) scales and no solution dependence.
 - Clear separation of TMD evolution from the model for TMD distribution.

A.Vladimirov

r

May 20, 2018

臣

イロト イヨト イヨト イヨト

Universität Regensburg

16 / 21

Evolution with *b*-dependent scale (CSS-like) $(Q, Q^2) \rightarrow (\mu_b, \mu_b^2)$

A.Vladimirov

TMD evolution

≣ → ∢ ≣ → ∃ → ♀ < ? May 20, 2018 17 / 21

イロト イヨト イヨト イヨト

Uncertainties of TMD cross-section

Less number of scales = less theory error

- The variation of c_1 is the variation of the evolution path (only).
- The variation of c_3 is the variation of the evolution path (almost).

We found significant reduction of theory error band.

Test uncertainties

Optimal evolution

CSS-like evolution (ζ -prescription)

Update of the NNLO DY fit,

 χ^2 -values practically the same (a bit better), parameters within (previous) error-bars significant reduction of theory uncertainties.

Universität Regensburg

イロト イヨト イヨト イヨト

arTeMiDe v1.3

- Variety of evolutions
- LO, NLO, NNLO
- No restriction for NP models
- Fast code
- DY cross-sections
- SIDIS cross-sections (not tuned yet)
- Theory uncertainty bands

イロト イヨト イヨト イヨト

https://teorica.fis.ucm.es/artemide/

3

Conclusion

Main message:

TMD evolution is a double scale evolution.

Therefore, it should be considered with care, and then it grants many simplifications.

Message 1:

TMD distributions on a same equipotential line are equivalent. Enumerate them with lines!

- Universal for all quantum numbers
- Very simple practical formula (no integrations!)
- Guarantied absence of (large) logarithms in the matching coefficient
- TMD model is independent on evolution order.

E.g You can use NNLO unpolarized and LO Sivers together, without theory tensions

Message 2 (unpresented):

In truncated PT there is the solution-dependence of evolution (see [1803.11089])

- It could be strong.
- There is no unique way to fix it.

Double-scale evolution is not unique for TMD case. It also appears in k_T -resummation, joint resummation, DPDs, etc.

< <p>I

Backuj

Problem 1: Violation of transitivity

There is a violation of transitivity ~ 2 % which seems better at NNLO

Backu

Problem 1: Violation of transitivity

Backup

Universität Regensburg

23 / 21

May 20, 2018

イロト イヨト イヨト イヨト

A.Vladimirov

TMD evolution

Backup

How strong is modification of the field?

