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Motivation

TMD evolution
is

a double-scale evolution

F (x, b;µ, ζ)

TMD evolution must be taken into account with a great care

More freedom
Relations between anomalous
dimensions
ζ-prescription

More ambiguity
Many scales to "tune"
Violation of transitivity in "naive"
formulation (see [1803.11089])
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Motivation

NNLO fit and extraction of (unpol.) TMDPDF
[Scimemi,AV;1706.01473]

The largest number of data point (DY)
The largest energy separation
Consideration of various orders (NLO,NNLL,NNLO)
Studies of theory error-bands

Included data (at qT < 0.2Q)
reaction

√
s Q comment points

E288 p + Cu→ γ∗ → µµ 19.4 GeV 4-9 GeV norm=0.8 35
E288 p + Cu→ γ∗ → µµ 23.8 GeV 4-9 GeV norm=0.8 45
E288 p + Cu→ γ∗ → µµ 27.4 GeV 4-9 & 11-14 GeV norm=0.8 66

CDF+D0 p + p̄→ Z → ee 1.8 TeV 66-116 GeV 44
CDF+D0 p + p̄→ Z → ee 1.96 TeV 66-116 GeV 43
ATLAS p + p→ Z → µµ 7 & 8 TeV 66-116 GeV tiny errors! 18
CMS p + p→ Z → µµ 7 & 8 TeV 60-120 GeV 14
LHCb p + p→ Z → µµ 7 & 8 & 13 TeV 60-120 GeV 30
ATLAS p + p→ Z/γ∗ → µµ 8 TeV 46-66 GeV 5
ATLAS p + p→ Z/γ∗ → µµ 8 TeV 116-150 GeV 9

Total 309
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Motivation

Drell-Yan at Q = 5− 6GeV

ATLAS 8TeV
46-66 GeV

model 2 NNLO
χ2/points=0.21

Ν=1.08

ATLAS 8TeV
116-150 GeV

model 2 NNLO
χ2/points=0.30

Ν=0.98
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Drell-Yan at Q = 116− 150GeV
TMD evolution is a key

element
χ2
global
d.o.f.

' 1.25

Here:
3-loop evolution
2-loop coefficient
function
2-loop matching
ζ-prescription

plots from [1706.01473]

The main difficulty is to
make parts of factorized
expression work together

It is much more difficult
for large energy separation

and in SIDIS + DY

TMD evolution is the central element,
and it requares critical "reexamination"

and it is the topic of this talk
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TMD evolution

TMD evolution is used for two practical purposes

Compare different experiments
Modeling TMD distribution

dσ

dX
∼
∫
d2b ei(bqT )Hff ′ (Q,µ)Ff←h(x1, b;µ, ζ1)Ff ′←h(x2, b;µ, ζ2)

Minimize ln(Q/µ)
µ = Q

ζ1ζ2 = Q4

or
ζ1 = ζ2 = Q2

F (x, b;µ, ζ) ∼ C(x, b;µ, ζ)⊗ PDF(x, µ)

Typical model for TMD includes matching

Minimize Lµ, L√ζ
µ ∼
√
ζ ∼ b−1

F (x, b;µf , ζf ) = R[b, (µf , ζf )→ (µi, ζi)]F (x, b;µi, ζi)

Initial
scale

Final
scale

TMD evolution factor
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TMD evolution: theory

TMD evolution equations

µ2 d

dµ2
Ff←h(x, b;µ, ζ) =

γfF (µ, ζ)

2
Ff←h(x, b;µ, ζ), (1)

ζ
d

dζ
Ff←h(x, b;µ, ζ) = −Df (µ, b)Ff←h(x, b;µ, ζ), (2)

Solution: F (x,b;µf , ζf ) = R[b; (µf , ζf )→ (µi, ζi)]F (x,b;µi, ζi)

γF – TMD anomalous dimension

D – rapidity anomalous dimension (= − K̃
2
[Collins’ book], = K[Bacchetta, at

al,1703.10157])
Anomalous dimensions are universal, i.e. depend only on flavor (gluon/quark).
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TMD evolution: theory

TMD evolution is two-dimensional

µ
2 d

dµ2

ζ
d

dζ

F =


γF

2

−D

F

−→
∇∇∇F =

−→
EF

−→
E is 2D evolution field
in −→ννν = (lnµ2, ln ζ)

coordinates

ln ζ

ln μ2

NLO b=0.5GeV
-1

Solution

R[(µf , ζf )→ (µi, ζi)] = exp

(∫
P
d−→ννν ·

−→
E

)
(µf , ζf )

(µi, ζi)

The integration path
is unimportant!
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TMD evolution: theory

Examples

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 1

lnR =

∫ µf

µi

dµ

µ
γF (µ, ζf )−D(µi, b) ln

(
ζf

ζi

)
[Collins’ textbook],[Aybat,Rogers,1101.5057],...

99% popular

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 2

lnR =

∫ µf

µi

dµ

µ
γF (µ, ζi)−D(µf , b) ln

(
ζf

ζi

)

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 3

lnR =

∫ 1

0

(
γF (µ(t), ζ(t))

µf − µi
(µf − µi)t+ µi

−D(µ(t), b)
ζf − ζi

(ζf − ζi)t+ ζi

)
dt
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TMD evolution: theory

Unique solution
Solution exist only if

integrability condition holds

ζ
dγF

dζ
= −µ2 dD

dµ2

−→
∇∇∇ ×

−→
E = 0

−→
E is conservative field

Integrability condition is trivially satisfied due to
collinear overlap of divergences

ζ
d

dζ
γF (µ, ζ) = −Γ(µ),

In fixed order PT integrability condition is violated.
The restoration procedure is ambigous

(large impact at large-b)
See extended dicussion in [Scimemi,AV;1803.11089]

MZ → 1/b∗

b[GeV]

NLOlnR

0.5 1.0 1.5 2.0 2.5

-2.5

-2.0

-1.5

-1.0

-0.5

b[GeV]

NNLOlnR
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-4
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b[GeV]

N
3
LOlnR

0.5 1.0 1.5 2.0 2.5

-4
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-2

-1
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TMD evolution: theory

Evolution potential
Solution exist only if

integrability condition holds

ζ
dγF

dζ
= −µ2 dD

dµ2

−→
∇∇∇ ×

−→
E = 0

−→
E is conservative field

1 10 102

1

10

102

μ2 [GeV
2]

ζ
[G

e
V

2
]

Conservative field is determined
by a potential

−→
E =

−→
∇∇∇U

Evolution is a difference
between potentials

R[(µf , ζf )→ (µi, ζi)] = exp
(
Uf − Ui

)

(µf , ζf )

(µi, ζi)

This absolutely standard picture
contains an important message.
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TMD evolution: theory

The TMD distribution is not defined by a scale (µ, ζ)
It is defined by an equipotential line.

1 10 102

1

10

102

μ2 [GeV
2]

ζ
[G

e
V

2
]

The scaling is defined by
a difference between scales

a difference between potentials

TMD(x, b, 1)

TMD(x, b, 2)

TMD(x, b, 3)

We can enumerate them by a lines
not by (µ, ζ)

F (x, b;µ, ζ)→ F (z, b; line)

Initially in [Scimemi,AV,1706.01473]
we call it ζ-prescription
which is misleading.

There is nothing to prescribe.
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TMD evolution: theory

TMD distributions on the same equipotential line are equivalent.
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Singularities of E

In ζ-prescription we set
ζ → ζµ(ννν)

TMDs are "enumerated" by ννν (the number of line)
TMDs are "naive" scale-independent

µ
d

dµ
F (x, b;µ, ζµ) = 0 ⇒ No double-logs in the matching.

TMD distribution depends only on the "number" of equipotential line

F (x,b;µ, ζ)→ F (x,b; ν)

dF (x,b; ν)

dν
=
dU(b; ν)

dν
F (x,b; ν)

m

F (x,b; ν) = eU(b;ν)−U(b;ν0)F (x,b; ν0)
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Singularities of E

Best way to measure the difference between potentials
ln ζ

ln μ2

3

2

1

Im
p
ro
ve
d
D

fi
xe
d
μ

(μ f ,ζ f )

(μi,ζi)

(μ f ,ζμ f )

μ0

Integration "difficult"

In
te
gr
at
io
n
el
em

en
ta
ry

R =
( ζf

ζµf

)−D(µf ,b)

Numerically simple (and fast)
µf = Q thus as is small
Does just the same job as the
Sudakov exponent
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Singularities of E

Which line is the best?
b=0.2GeV
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Some non-interesting singularities at µ, ζ →∞
Landau pole at µ = Λ

Saddle point (blue dot)

D(µsaddle, b) = 0, γM (µsaddle, ζsaddle, b) = 0
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Universal TMD

Universal scale-independent TMD

There is a unique line which passes though all µ’s

The optimal TMD distribution

F (x, b) = F (x, b;µ, ζµ)

where ζµ is the special line.
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TMD cross-section

TMD cross-section

dσ

dX
= σ0

∑
f

∫
d2b

4π
ei(b·qT )Hff ′ (Q){R̃f [b;Q]}2F̃f←h(x1, b)F̃f ′←h(x2, b),

with ζf = µ2
f = Q2

R̃f [b;Q] = (Qb)−D
f
NP(Q,b) exp{−DfNP(Q, b)vf (Q, b)}

v is given perturbative series, v = 3
2

+ as...

F̃ is TMD in the "naive" ζ-prescription

There are no approximations (ala high energy expansion of integrals).
There are only (µf , ζf ) scales and no solution dependence.
Clear separation of TMD evolution from the model for TMD
distribution.
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TMD cross-section

Evolution with b-dependent scale (CSS-like)
(Q,Q2)→ (µb, µ

2
b)

Here µb =
C0

b∗
with bmax = 1.2GeV−1
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Analogy in DIS
Scale depends on paremeter ↔ dσ = C(Q)R[Q→ ch(x)]f(x, ch(x))

PDF f(x, ch(x)) has no interpretation, no sense, and
depends on the order of evolution in use.
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TMD cross-section

Optimal version
(Q,Q2)→ (Q, ζQ)

b=3.5GeV
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Analogy in DIS
Scale (potential) is fixed ↔ dσ = C(Q)R[Q→ 2GeV]f(x, 2GeV)

PDF f(x, 2GeV) is just a model and
is dependent on the order of evolution in use.
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Test uncertainties

Uncertainties of TMD cross-section

Less number of scales = less theory error

The variation of c1 is the variation of the evolution path (only).
The variation of c3 is the variation of the evolution path (almost).

We found significant reduction of theory error band.

Z-boson production at CDF run 2
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Test uncertainties

CSS-like evolution (ζ-prescription) Optimal evolution

ATLAS 7TeV
model 1 NNLL/NNLO

χ2/points=2.01
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Update of the NNLO DY fit,
χ2-values practically the same (a bit better), parameters within (previous) error-bars

significant reduction of theory uncertainties.
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Test uncertainties

arTeMiDe v1.3

Variety of evolutions
LO, NLO, NNLO
No restriction for NP models
Fast code
DY cross-sections
SIDIS cross-sections (not tuned
yet)
Theory uncertainty bands

https://teorica.fis.ucm.es/artemide/
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Conclusion

Conclusion

Main message:
TMD evolution is a double scale evolution.

Therefore, it should be considered with care, and then it grants many simplifications.

Message 1:
TMD distributions on a same equipotential line are equivalent. Enumerate them with lines!

Universal for all quantum numbers
Very simple practical formula (no integrations!)
Guarantied absence of (large) logarithms in the matching coefficient
TMD model is independent on evolution order.
E.g You can use NNLO unpolarized and LO Sivers together, without theory tensions

Message 2 (unpresented):
In truncated PT there is the solution-dependence of evolution (see [1803.11089])

It could be strong.
There is no unique way to fix it.

Double-scale evolution is not unique for TMD case. It also appears in kT -resummation,
joint resummation, DPDs, etc.
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Backup

Problem 1: Violation of transitivity

R[b;X → Y ] R[b;Y → X] = 1

F
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There is a violation of transitivity ∼ 2 % which seems better at NNLO
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Backup

Problem 1: Violation of transitivity

R[b;X → Y ] R[b;Y → X] = 1
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There is a VERY strong violation of transitivity, which seems worse at NNLO
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Backup

The difference between solutions is ∼ aN+1Lµ︸ ︷︷ ︸
main b

or ∼ aN+1LµL
N
µ0︸ ︷︷ ︸

large b
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Backup

How strong is modification of the field?

ln ζ

ln μ2

NLO b=0.5GeV
-1

ln ζ

ln μ2

N
3
LO b=0.5GeV

-1
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