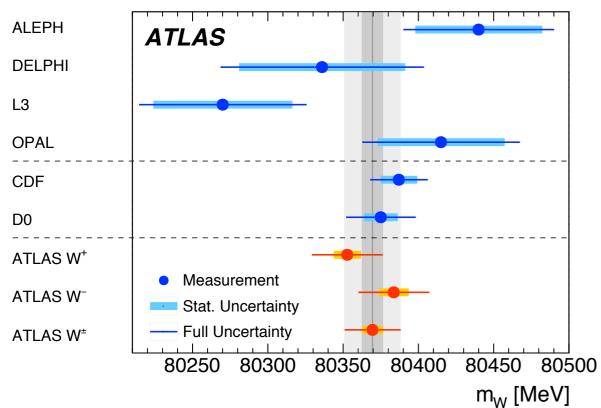
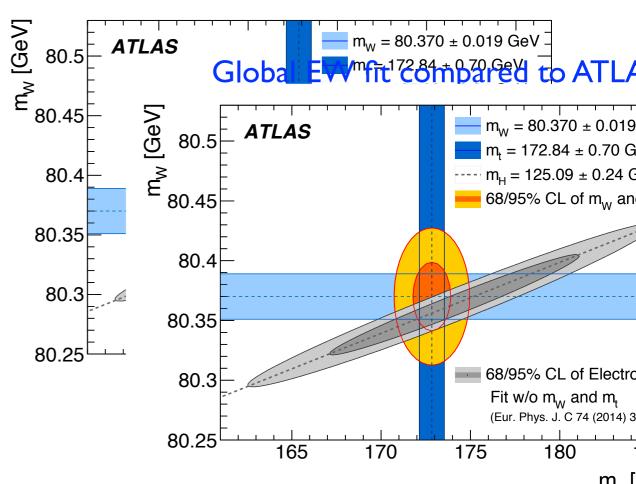
(Towards a quantitative study of) Flavour effects on the determination of Mw

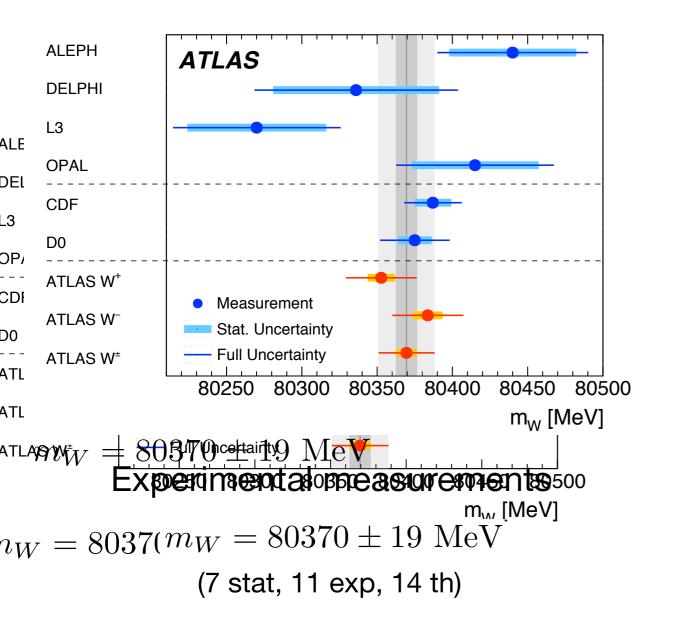
giuseppe bozzi

in collaboration with A.Bacchetta, P.Mulders, M.Radici, M.Ritzmann, A.Signori

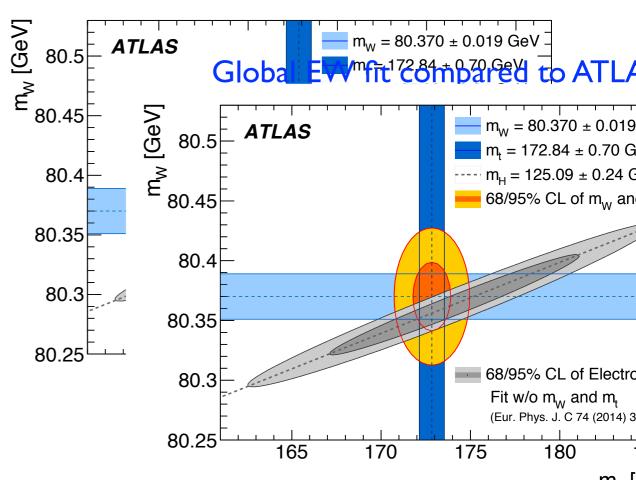



The W mass ATLAS, EPJC 78, 110 (2018)

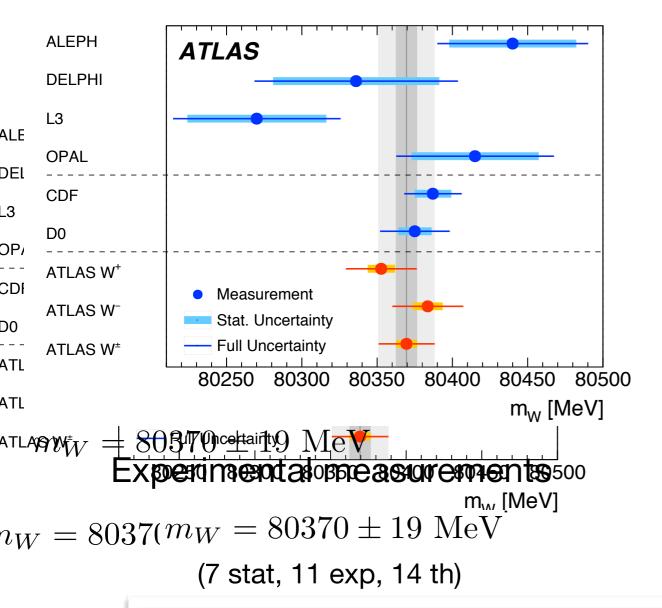
The W mass atlas, EPJC 78, 110 (2018) Global EW fit compared to ATLAS results

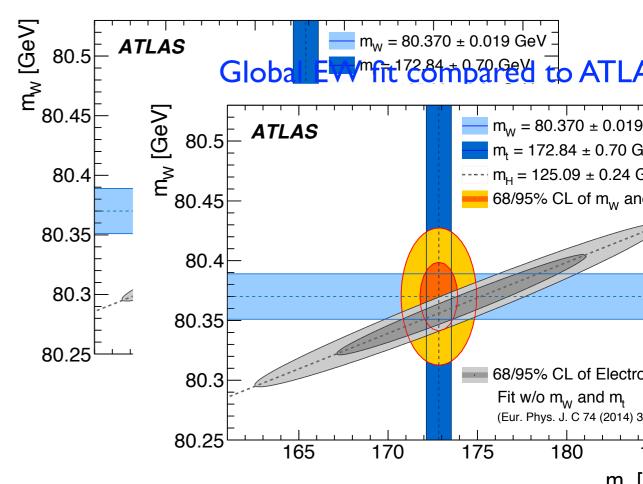

$$m_W = 80370 \pm 19 \ \mathrm{MeV}$$

Experimental measurements


$$m_W = 80370 \pm 19 \; {
m MeV}$$
 (7 stat, 11 exp, 14 th)

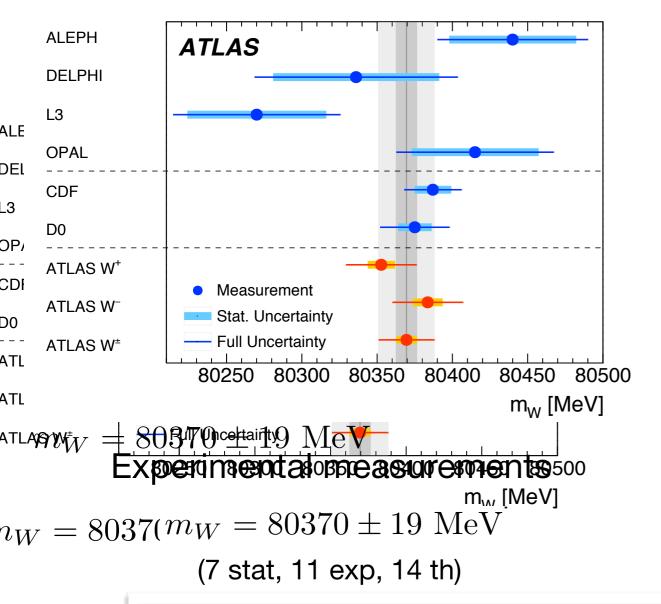
 $m_W = 80356 \pm 8 \text{ MeV}$

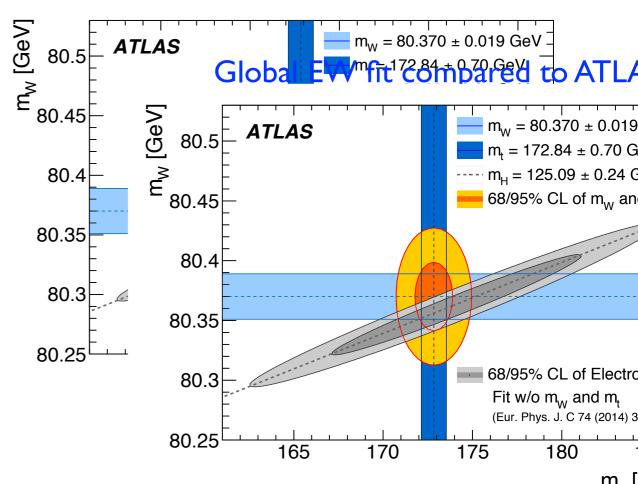

The W mass ATLAS, EPJC 78, 110 (2018) Global EW fit compared to ATLAS results



 $m_W = 80356744878180356 \pm 8 \text{ MeV}$

The W mass atlas, EPJC 78, 110 (2018)
Global EW fit compared to ATLAS results





 $m_W = 80356744878 = 8035648 = 8 \text{ MeV}$

The determination of the W-boson mass from the global fit of the electroweak parameters has an uncertainty of 8 MeV, which sets a natural target for the precision of the experimental measurement of the mass of the W boson. The modelling uncertainties, which currently dominate the overall uncertainty on the m_W measurement presented in this note, need to be reduced in order to fully exploit the larger data samples available at centre-of-mass energies of 8 and 13 TeV. A better knowledge of the PDFs, as achievable with the inclusion in PDF fits of recent precise measurements of W- and Z-boson rapidity cross sections with the ATLAS detector [41], and improved QCD and electroweak predictions for Drell-Yan production, are therefore crucial for future measurements of the W-boson mass at the LHC.

The W mass ATLAS, EPJC 78, 110 (2018)
Global EW fit compared to ATLAS results

 $m_W = 80356744878180356 \pm 8 \text{ MeV}$

The determination of the W-boson mass from the global fit of the electroweak parameters has an uncertainty of 8 MeV, which sets a natural target for the precision of the experimental measurement of the mass of the W boson. The modelling uncertainties, which currently dominate the overall uncertainty on the m_W measurement presented in this note, need to be reduced in order to fully exploit the larger data samples available at centre-of-mass energies of 8 and 13 TeV. A better knowledge of the PDFs, as achievable with the inclusion in PDF fits of recent precise measurements of W- and Z-boson rapidity cross sections with the ATLAS detector [41], and improved QCD and electroweak predictions for Drell-Yan production, are therefore crucial for future measurements of the W-boson mass at the LHC.

Observables

accessible via counting experiments: cross sections and asymmetries

Observables

accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - M_Z at LEP as pole of the Breit-Wigner resonance factor
 - Mw at hadron colliders as fitting parameter of a template fit procedure

Observables

accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - M_Z at LEP as pole of the Breit-Wigner resonance factor
 - Mw at hadron colliders as fitting parameter of a template fit procedure

Template fit

Observables

accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - M_Z at LEP as pole of the Breit-Wigner resonance factor
 - Mw at hadron colliders as fitting parameter of a template fit procedure

Template fit

1. generate several histograms with the <u>highest available theoretical accuracy</u> and degree of realism in the detector simulation, and let the fit parameter (e.g. *Mw*) vary in a range

Observables

accessible via counting experiments: cross sections and asymmetries

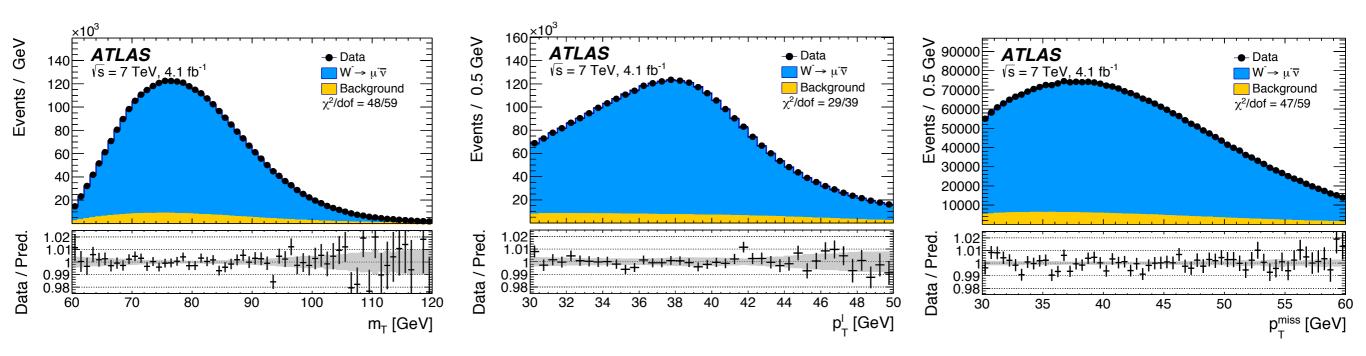
Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - M_Z at LEP as pole of the Breit-Wigner resonance factor
 - Mw at hadron colliders as fitting parameter of a template fit procedure

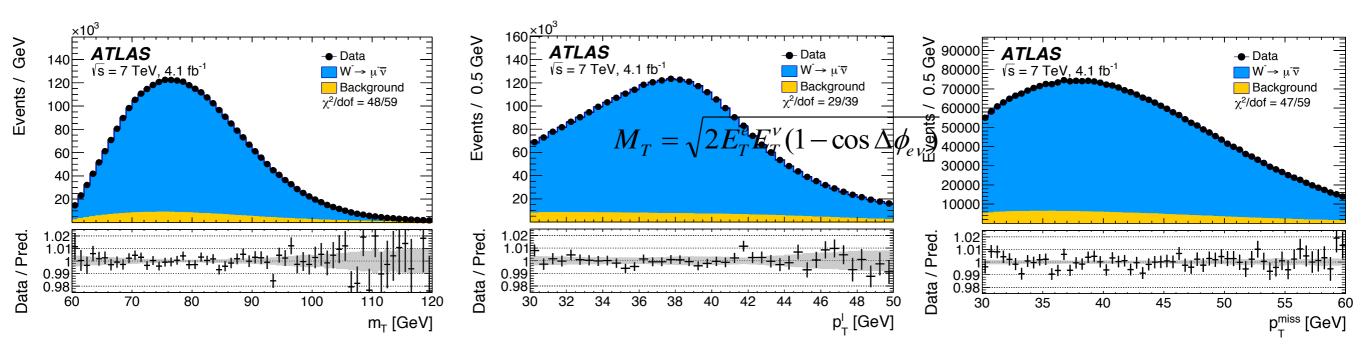
Template fit

- 1. generate several histograms with the <u>highest available theoretical accuracy</u> and degree of realism in the detector simulation, and let the fit parameter (e.g. *Mw*) vary in a range
- 2. the histogram that best describes data selects the preferred (i.e. measured) Mw

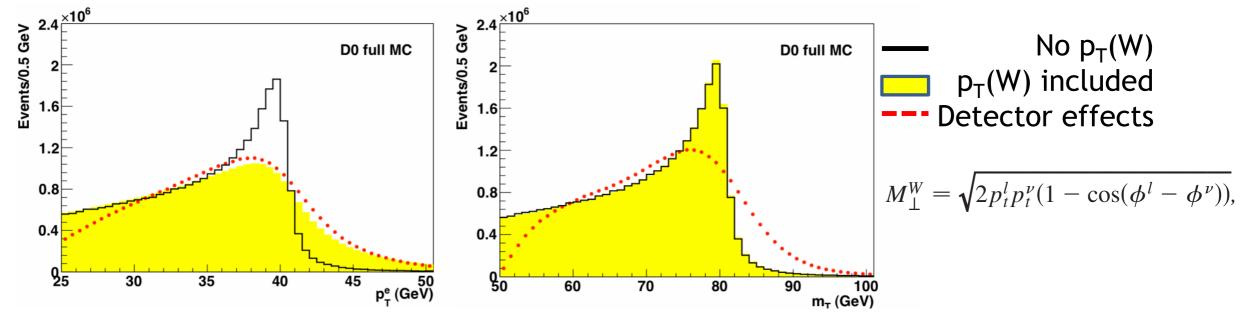
Observables

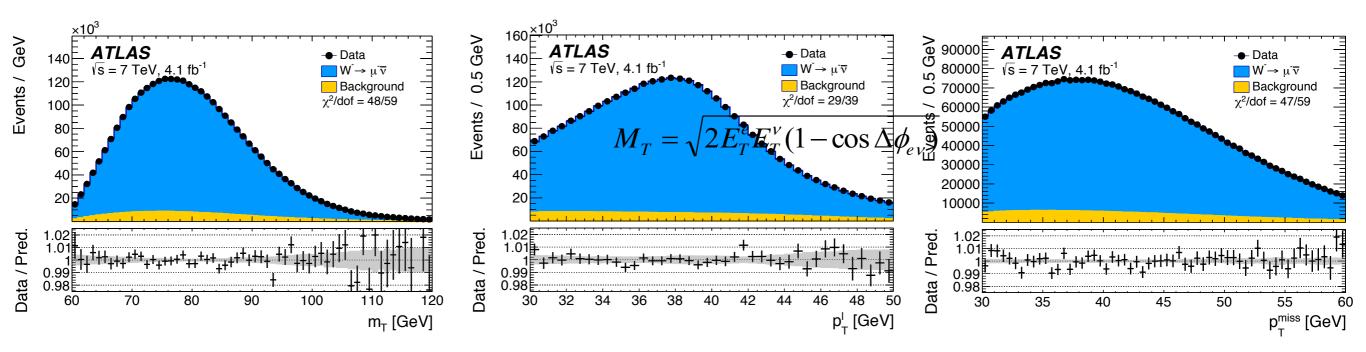

accessible via counting experiments: cross sections and asymmetries

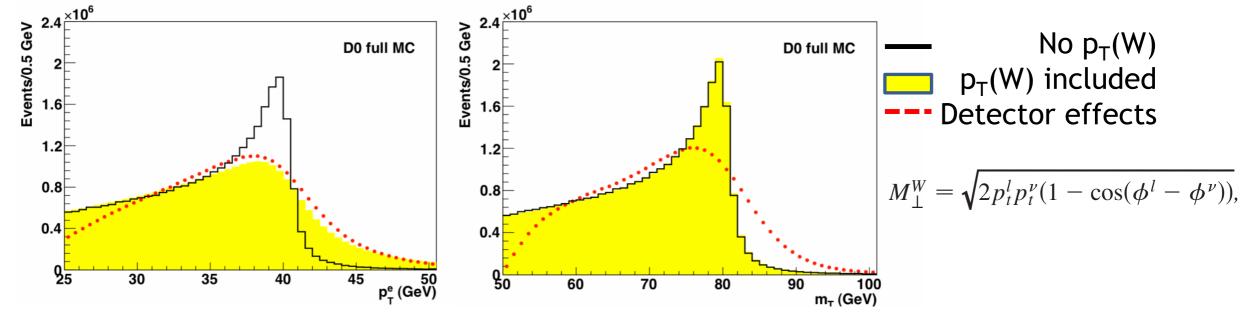
Pseudo-Observables


- functions of cross sections and symmetries
- require a model to be properly defined
 - *M*_Z at LEP as pole of the Breit-Wigner resonance factor
 - Mw at hadron colliders as fitting parameter of a template fit procedure

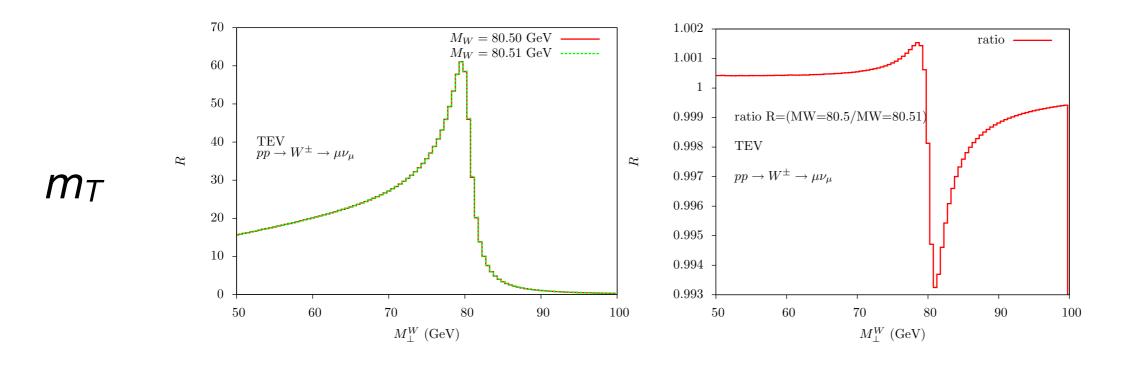
Template fit

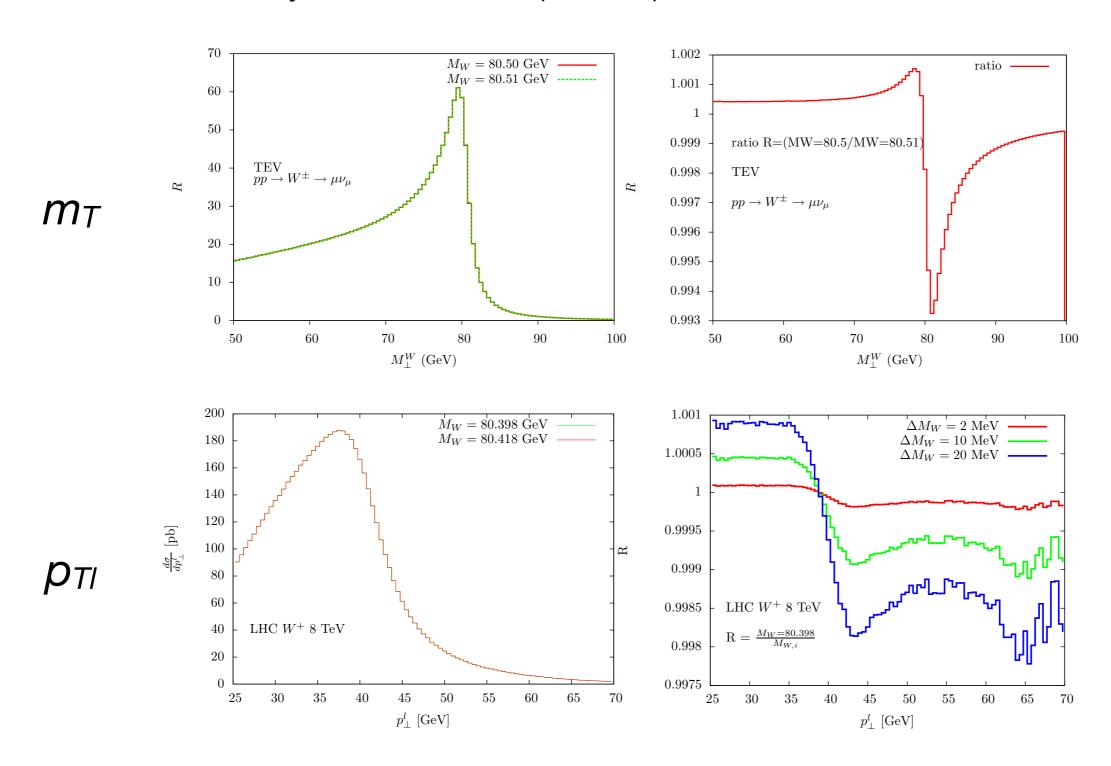

- 1. generate several histograms with the <u>highest available theoretical accuracy</u> and degree of realism in the detector simulation, and let the fit parameter (e.g. *Mw*) vary in a range
- 2. the histogram that best describes data selects the preferred (i.e. measured) Mw
- → the result of the fit depends on the hypotheses used to compute the templates (PDFs, scales, non-perturbative, different prescriptions, ...)
- these hypotheses should be treated as theoretical systematic errors


 M_W extracted from the study of the shape of m_T , p_{TI} , p_{Tmiss} jacobian peak enhances sensitivity to M_W


 M_W extracted from the study of the shape of m_T , p_{TI} , p_{Tmiss} jacobian peak enhances sensitivity to M_W

Transverse mass: important detector smearing effects, weakly sensitive to p_{TW} modelling Lepton p_T : moderate detector smearing effects, extremely sensitive to p_{TW} modelling


 M_W extracted from the study of the shape of m_T , p_{TI} , p_{Tmiss} jacobian peak enhances sensitivity to M_W


Transverse mass: important detector smearing effects, weakly sensitive to p_{TW} modelling Lepton p_T : moderate detector smearing effects, extremely sensitive to p_{TW} modelling

 p_{TW} modelling depends on flavour and all-order treatment of QCD corrections

Challenging shape measurement: a distortion at the few per mille level of the distributions yields a shift of O(10 MeV) of the M_W value

Challenging shape measurement: a distortion at the few per mille level of the distributions yields a shift of O(10 MeV) of the M_W value

Breakdown of uncertainties

CDF D0

m_T	fit uncertaintie	es		p_T^ℓ fit uncertainties					
Source	$W ightarrow \mu \nu$	$W \rightarrow ev$	Common	Source	$W \rightarrow \mu \nu$	$W \rightarrow ev$	Common		
Lepton energy scale	7	10	5	Lepton energy scale	7	10	5		
Lepton energy resolution	1	4	0	Lepton energy resolution	1	4	0		
Lepton efficiency	0	0	0	Lepton efficiency	1	2	0		
Lepton tower removal	2	3	2	Lepton tower removal	0	0	0		
Recoil scale	5	5	5	Recoil scale	6	6	6		
Recoil resolution	7	7	7	Recoil resolution	5	5	5		
Backgrounds	3	4	0	Backgrounds	5	3	0		
PDFs	10	10	10	PDFs	9	9	9		
W boson p_T	3	3	3	W boson p_T	9	9	9		
Photon radiation	4	4	4	Photon radiation	4	4	4		
Statistical	16	19	0	Statistical	18	21	0		
Total	23	26	15	Total	25	28	16		

		1	1	ı
Source	Section	m_T	p_T^e	$ \not\!\!E_T$
Experimental				
Electron Energy Scale	VII C 4	16	17	16
Electron Energy Resolution	VII C 5	2	2	3
Electron Shower Model	VC	4	6	7
Electron Energy Loss	VD	4	4	4
Recoil Model	VIID3	5	6	14
Electron Efficiencies	VIIB10	1	3	5
Backgrounds	VIII	2	2	2
\sum (Experimental)		18	20	24
W Production and Decay Model				
PDF	VIC	11	11	14
QED	VIB	7	7	9
Boson p_T	VIA	2	5	2
\sum (Model)		13	14	17
Systematic Uncertainty (Experimental and Model)		22	24	29
W Boson Statistics	IX	13	14	15
Total Uncertainty		26	28	33

ATLAS

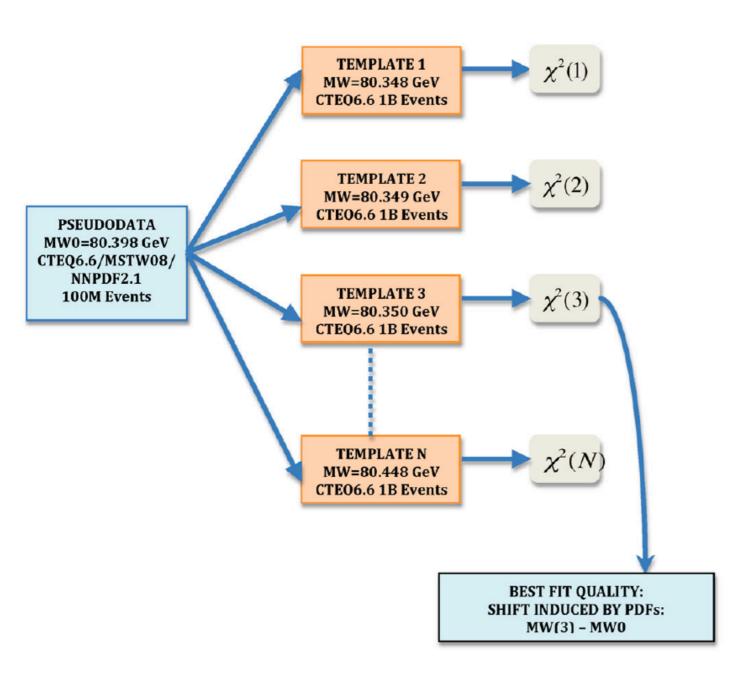
Combined categories	Value [MeV]	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc.	Bckg. Unc.	QCD Unc.	EWK Unc.	PDF Unc.	Total Unc.	χ^2/dof of Comb.
$m_{\rm T}, W^{+}, e-\mu$	80370.0	12.3	8.3	6.7	14.5	9.7	9.4	3.4	16.9	30.9	2/6
$m_{\mathrm{T}},W^{-},\mathrm{e}\text{-}\mu$	80381.1	13.9	8.8	6.6	11.8	10.2	9.7	3.4	16.2	30.5	7/6
$m_{\mathrm{T}},W^{\pm},\mathrm{e}\text{-}\mu$	80375.7	9.6	7.8	5.5	13.0	8.3	9.6	3.4	10.2	25.1	11/13
$p_{\mathrm{T}}^{\ell}, W^{+}, \mathrm{e}\text{-}\mu$	80352.0	9.6	6.5	8.4	2.5	5.2	8.3	5.7	14.5	23.5	5/6
$p_{\mathrm{T}}^{\hat{\ell}},W^{-},\mathrm{e} ext{-}\mu$	80383.4	10.8	7.0	8.1	2.5	6.1	8.1	5.7	13.5	23.6	10/6
$p_{\mathrm{T}}^{\hat{\ell}},W^{\pm},\mathrm{e} ext{-}\mu$	80369.4	7.2	6.3	6.7	2.5	4.6	8.3	5.7	9.0	18.7	19/13
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mathrm{e}$	80347.2	9.9	0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$m_{\rm T},W^{\pm},{ m e}$	80364.6	13.5	0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^+, {\rm e}$	80345.4	11.7	0	16.0	3.8	7.4	8.3	5.0	13.7	27.4	1/5
$m_{\rm T}$ - $p_{\rm T}^{\hat{\ell}}, W^{-}, e$	80359.4	12.9	0	15.1	3.9	8.5	8.4	4.9	13.4	27.6	8/5
m_{T} - $p_{\mathrm{T}}^{\dot{\ell}}$, W^{\pm} , e	80349.8	9.0	0	14.7	3.3	6.1	8.3	5.1	9.0	22.9	12/11
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.3	10.1	10.7	0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{ m T},W^{\pm},\mu$	80381.5	13.0	11.6	0	13.0	6.0	9.6	3.4	11.2	27.2	3/7
m_{T} - $p_{\mathrm{T}}^{\ell},W^{+},\mu$	80364.1	11.4	12.4	0	4.0	4.7	8.8	5.4	17.6	27.2	5/7
m_{T} - $p_{\mathrm{T}}^{\hat{\ell}},W^{-},\mu$	80398.6	12.0	13.0	0	4.1	5.7	8.4	5.3	16.8	27.4	3/7
m_{T} - $p_{\mathrm{T}}^{\dot{\ell}},W^{\pm},\mu$	80382.0	8.6	10.7	0	3.7	4.3	8.6	5.4	10.9	21.0	10/15
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^+, {\rm e}$ - μ	80352.7	8.9	6.6	8.2	3.1	5.5	8.4	5.4	14.6	23.4	7/13
$m_{\rm T}$ - $p_{\rm T}^{\hat{\ell}}, W^{-}, e$ - μ	80383.6	9.7	7.2	7.8	3.3	6.6	8.3	5.3	13.6	23.4	15/13
m_{T} - p_{T}^{ℓ} , W^{\pm} , e- μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

Breakdown of uncertainties

CDF D0

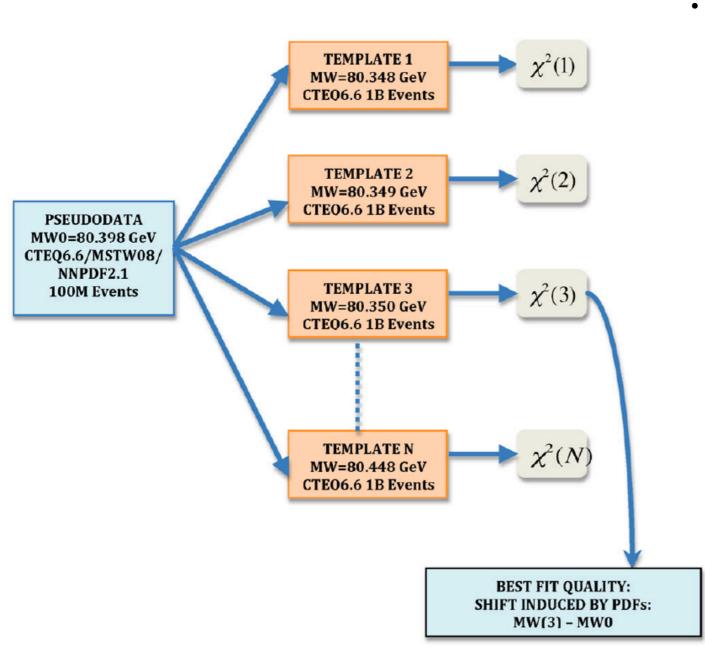
m_T	fit uncertaintie	es		p_T^ℓ	fit uncertaintie	es	
Source	$W ightarrow \mu \nu$	$W \rightarrow ev$	Common	Source	$W \rightarrow \mu \nu$	$W \rightarrow ev$	Common
Lepton energy scale	7	10	5	Lepton energy scale	7	10	5
Lepton energy resolution	1	4	0	Lepton energy resolution	1	4	0
Lepton efficiency	0	0	0	Lepton efficiency	1	2	0
Lepton tower removal	2	3	2	Lepton tower removal	0	0	0
Recoil scale	5	5	5	Recoil scale	6	6	6
Recoil resolution	7	7	7	Recoil resolution	5	5	5
Backgrounds	3	4	0	Backgrounds	5	3	0
PDFs	10	10	10	PDFs	9	9	9
W boson p_T	3	3	3	W boson p_T	9	9	9
Photon radiation	4	4	4	Photon radiation	4	4	4
Statistical	16	19	0	Statistical	18	21	0
Total	23	26	15	Total	25	28	16
				·			

Source	Section	m_T	p_T^e	E_T
Experimental				
Electron Energy Scale	VII C 4	16	17	16
Electron Energy Resolution	VII C 5	2	2	3
Electron Shower Model	VC	4	6	7
Electron Energy Loss	VD	4	4	4
Recoil Model	VIID3	5	6	14
Electron Efficiencies	VIIB 10	1	3	5
Backgrounds	VIII	2	2	2
\sum (Experimental)		18	20	24
W Production and Decay Model				
PDF	VIC	11	11	14
QED	VIB	7	7	9
Boson p_T	VIA	2	5	2
∑(Model)		13	14	17
Systematic Uncertainty (Experimental and Model)		22	24	29
W Boson Statistics	IX	13	14	15
Total Uncertainty		26	28	33


ATLAS

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EWK	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
											<u> </u>
$m_{\mathrm{T}},W^{+},\mathrm{e}\text{-}\mu$	80370.0	12.3	8.3	6.7	14.5	9.7	9.4	3.4	16.9	30.9	2/6
$m_{\rm T},W^-,{ m e}$ - μ	80381.1	13.9	8.8	6.6	11.8	10.2	9.7	3.4	16.2	30.5	7/6
$m_{\mathrm{T}},W^{\pm},\mathrm{e}\text{-}\mu$	80375.7	9.6	7.8	5.5	13.0	8.3	9.6	3.4	10.2	25.1	11/13
$p_{\mathrm{T}}^{\ell}, W^{+}, \mathrm{e}\text{-}\mu$	80352.0	9.6	6.5	8.4	2.5	5.2	8.3	5.7	14.5	23.5	5/6
$p_{\mathrm{T}}^{\bar{\ell}},W^{-},\mathrm{e}\text{-}\mu$	80383.4	10.8	7.0	8.1	2.5	6.1	8.1	5.7	13.5	23.6	10/6
$p_{\mathrm{T}}^{\ell},W^{\pm},\mathrm{e}\text{-}\mu$	80369.4	7.2	6.3	6.7	2.5	4.6	8.3	5.7	9.0	18.7	19/13
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mathrm{e}$	80347.2	9.9	0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$m_{\rm T}, W^{\pm}, {\rm e}$	80364.6	13.5	0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^+, e$	80345.4	11.7	0	16.0	3.8	7.4	8.3	5.0	13.7	27.4	1/5
$m_{\rm T}$ - $p_{\rm T}^{\ell}$, W^{-} , e	80359.4	12.9	0	15.1	3.9	8.5	8.4	4.9	13.4	27.6	8/5
m_{T} - p_{T}^{ℓ} , W^{\pm} , e	80349.8	9.0	0	14.7	3.3	6.1	8.3	5.1	9.0	22.9	12/11
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.3	10.1	10.7	0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{\mathrm{T}}, W^{\pm}, \mu$	80381.5	13.0	11.6	0	13.0	6.0	9.6	3.4	11.2	27.2	3/7
m_{T} - p_{T}^{ℓ} , W^{+} , μ	80364.1	11.4	12.4	0	4.0	4.7	8.8	5.4	17.6	27.2	5/7
m_{T} - p_{T}^{ℓ} , W^{-} , μ	80398.6	12.0	13.0	0	4.1	5.7	8.4	5.3	16.8	27.4	3/7
m_{T} - p_{T}^{ℓ} , W^{\pm} , μ	80382.0	8.6	10.7	0	3.7	4.3	8.6	5.4	10.9	21.0	10/15
m_{T} - p_{T}^{ℓ} , W^{+} , e- μ	80352.7	8.9	6.6	8.2	3.1	5.5	8.4	5.4	14.6	23.4	7/13
m_{T} - p_{T}^{ℓ} , W^{-} , e- μ	80383.6	9.7	7.2	7.8	3.3	6.6	8.3	5.3	13.6	23.4	15/13
m_{T} - p_{T}^{ℓ} , W^{\pm} , e- μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27
						_				_	

Bozzi, Rojo, Vicini PRD 83, 113008 (2011)


Bozzi, Rojo, Vicini PRD 83, 113008 (2011)

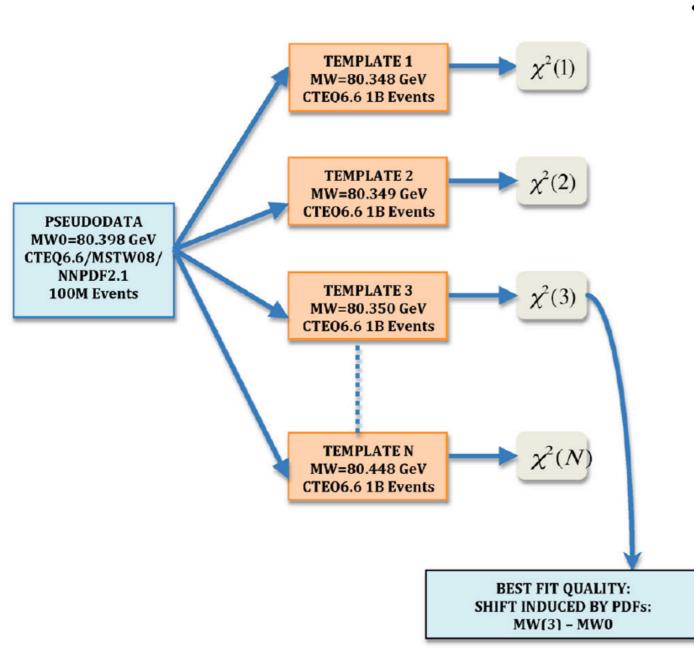
- pseudodata with different PDF sets: <u>low-statistics</u> (100M) and <u>fixed Mwo</u>
- templates with a reference PDF set (CTEQ6.6): <u>high-statistics</u> (1B) and <u>different Mw</u>
- same code used to generate both pseudodata and templates → only effect probed is the PDF one

Bozzi, Rojo, Vicini PRD 83, 113008 (2011)

- pseudodata with different PDF sets: <u>low-statistics</u> (100M) and <u>fixed Mwo</u>
- templates with a reference PDF set (CTEQ6.6): <u>high-statistics</u> (1B) and <u>different Mw</u>
- same code used to generate both pseudodata and templates → only effect probed is the PDF one

• PDF error = combination of different M_W results from each replica, according to the formulae recommended by the PDF collaborations

Hessian: CTEQ, MSTW


$$\sigma_X^2 = \frac{1}{4} \sum_{k=1}^{N} [X(S_k^+) - X(S_k^-)]^2$$

Montecarlo: NNPDF

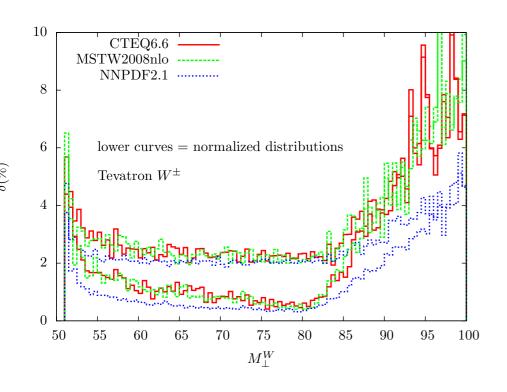
$$\sigma_X^2 = \frac{1}{N_{\text{rep}} - 1} \sum_{i}^{N_{\text{rep}}} [X^i - X]^2$$

Bozzi, Rojo, Vicini PRD 83, 113008 (2011)

- pseudodata with different PDF sets: <u>low-statistics</u> (100M) and <u>fixed Mwo</u>
- templates with a reference PDF set (CTEQ6.6): <u>high-statistics</u> (1B) and <u>different Mw</u>
- same code used to generate both pseudodata and templates → only effect probed is the PDF one

• PDF error = combination of different M_W results from each replica, according to the formulae recommended by the PDF collaborations

Hessian: CTEQ, MSTW


$$\sigma_X^2 = \frac{1}{4} \sum_{k=1}^{N} [X(S_k^+) - X(S_k^-)]^2$$

Montecarlo: NNPDF

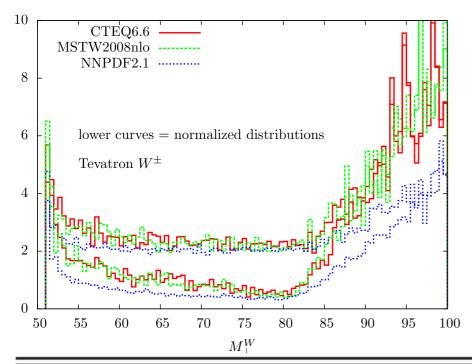
$$\sigma_X^2 = \frac{1}{N_{\text{rep}} - 1} \sum_{i}^{N_{\text{rep}}} [X^i - X]^2$$

 M_W shift = distance between the PDF set under study and the reference set

Effects on transverse mass

Bozzi, Rojo, Vicini PRD 83, 113008 (2011)

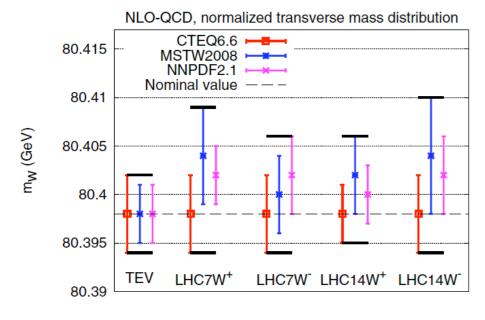
- Normalised distributions: reduced sensitivity to PDFs
- Ratio of (non-)normalised distributions w.r.t. to central PDF set
- Distributions obtained with **DYNNLO**

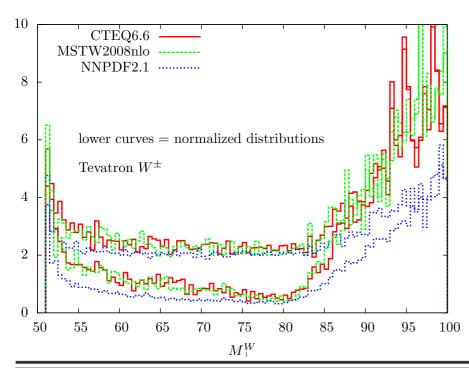

Bozzi, Rojo, Vicini PRD 83, 113008 (2011)

- Normalised distributions: reduced sensitivity to PDFs
- Ratio of (non-)normalised distributions w.r.t. to central PDF set
- Distributions obtained with **DYNNLO**

10		TEQ6. /2008nl			ı	T	T	T	Á	
8 -		PDF2.								
6 -		er curv vatron V		ormali	zed dis	tributio	ons			
4 -]]] !*Mn=[k.								
2 -		հուներ Նար _ե	holer Lidt	ران بود است				per e	.i	-
		eria de la companio	Contraction .	uur nan	, in little		,			
0 LL 50	55	60	65	70	75	80	85	90	95	100
30					M_{\perp}^{W}			• •		-00

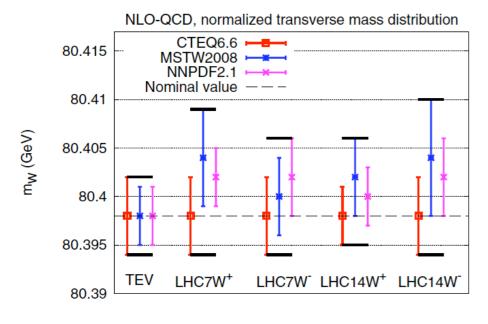
	CTEQ6.6		MSTW2008		NNPDF2.1		
	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$\delta_{ m pdf}^{ m tot}$
Tevatron, W [±]	80.398 ± 0.004	1.42	80.398 ± 0.003	1.42	80.398 ± 0.003	1.30	4
LHC 7 TeV W ⁺	80.398 ± 0.004	1.22	80.404 ± 0.005	1.55	80.402 ± 0.003	1.35	8
LHC 7 TeV W ⁻	80.398 ± 0.004	1.22	80.400 ± 0.004	1.19	80.402 ± 0.004	1.78	6
LHC 14 TeV W+	80.398 ± 0.003	1.34	80.402 ± 0.004	1.48	80.400 ± 0.003	1.41	6
LHC 14 TeV W ⁻	80.398 ± 0.004	1.44	80.404 ± 0.006	1.38	80.402 ± 0.004	1.57	8


Effects on transverse mass


Bozzi, Rojo, Vicini PRD 83, 113008 (2011)

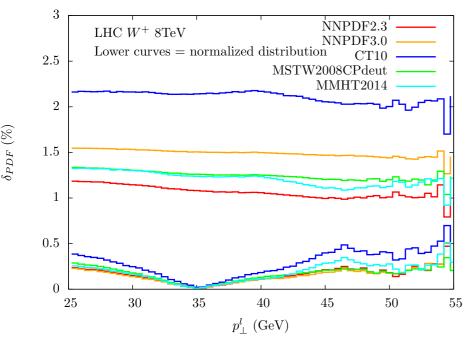
- Normalised distributions: reduced sensitivity to PDFs
- Ratio of (non-)normalised distributions w.r.t. to central PDF set
- Distributions obtained with **DYNNLO**

	CTEQ6.6		MSTW2008		NNPDF2.1		
	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$\delta_{ m pdf}^{ m tot}$
Tevatron, W [±]	80.398 ± 0.004	1.42	80.398 ± 0.003	1.42	80.398 ± 0.003	1.30	4
LHC 7 TeV W ⁺	80.398 ± 0.004	1.22	80.404 ± 0.005	1.55	80.402 ± 0.003	1.35	8
LHC 7 TeV W ⁻	80.398 ± 0.004	1.22	80.400 ± 0.004	1.19	80.402 ± 0.004	1.78	6
LHC 14 TeV W+	80.398 ± 0.003	1.34	80.402 ± 0.004	1.48	80.400 ± 0.003	1.41	6
LHC 14 TeV W	80.398 ± 0.004	1.44	80.404 ± 0.006	1.38	80.402 ± 0.004	1.57	8


Effects on transverse mass

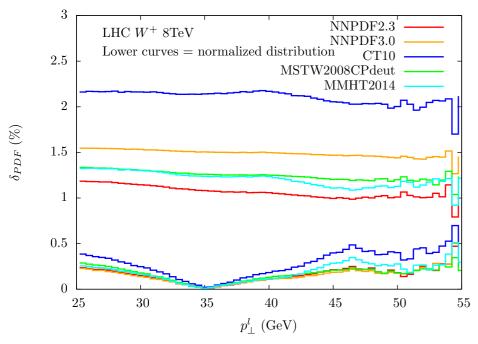
Bozzi, Rojo, Vicini PRD 83, 113008 (2011)

- Normalised distributions: reduced sensitivity to PDFs
- Ratio of (non-)normalised distributions w.r.t. to central PDF set
- Distributions obtained with **DYNNLO**


	CTEQ6.6		MSTW2008		NNPDF2,1		
	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$\delta_{ m pdf}^{ m tot}$
Tevatron, W [±]	80.398 ± 0.004	1.42	80.398 ± 0.003	1.42	80.398 ± 0.003	1.30	4
LHC 7 TeV W ⁺	80.398 ± 0.004	1.22	80.404 ± 0.005	1.55	80.402 ± 0.003	1.35	8
LHC 7 TeV W ⁻	80.398 ± 0.004	1.22	80.400 ± 0.004	1.19	80.402 ± 0.004	1.78	6
LHC 14 TeV W+	80.398 ± 0.003	1.34	80.402 ± 0.004	1.48	80.400 ± 0.003	1.41	6
LHC 14 TeV W ⁻	80.398 ± 0.004	1.44	80.404 ± 0.006	1.38	80.402 ± 0.004	1.57	8

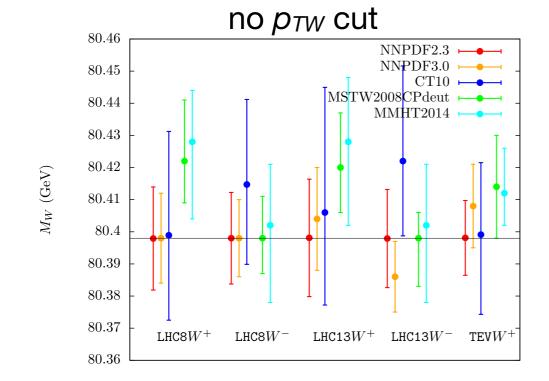
- Accuracy of templates <u>essential</u>: highly demanding computing task!
- For transverse mass distribution, a fixed-order NLO-QCD analysis is sufficient to assess this PDF uncertainty
- PDF error is moderate at the Tevatron but also at the LHC

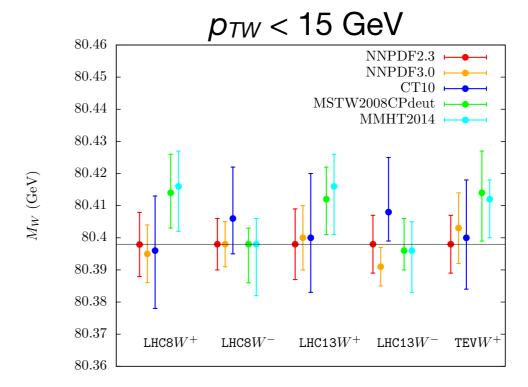
Effects on lepton p_T


Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

- Conservative estimate of the PDF uncertainty: CC-DY channel alone
- Distributions obtained with **POWHEG+PYTHIA 6.4**
- PDF uncertainty over relevant p_T range almost flat: O(2%)
- Uncertainty of normalised distributions: below the O(0.5%) level (but still sufficient to yield large M_W shifts)

Effects on lepton p_T


Bozzi, Citelli, Vicini PRD 91, 113005 (2015)



- Conservative estimate of the PDF uncertainty: CC-DY channel alone
- Distributions obtained with POWHEG+PYTHIA 6.4
- PDF uncertainty over relevant p_T range almost flat: O(2%)
- Uncertainty of normalised distributions: below the O(0.5%) level (but still sufficient to yield large M_W shifts)

	no p_{\perp}^{V}	V cut	$p_{\perp}^W < 15 \text{ GeV}$		
	$\delta_{PDF} \; (\mathrm{MeV})$	$\Delta_{sets} \; (\mathrm{MeV})$	$\delta_{PDF} (\mathrm{MeV})$	$\Delta_{sets} \; (\text{MeV})$	
Tevatron 1.96 TeV	27	16	21	15	
LHC 8 TeV W^+	33	26	24	18	
W^-	29	16	18	8	
LHC 13 TeV W^+	34	22	20	14	
W^-	34	24	18	12	

- Individual PDF sets provide non-pessimistic estimates: $\Delta M_W \sim O(10 \text{ MeV})$
- Global envelope still shows large discrepancies of the central values
- p_{TW} cut is relevant

• $p_{TI} \Leftrightarrow p_{TW} \Leftrightarrow QCD$ initial state radiation + intrinsic k_T (usually, a Gaussian in k_T)

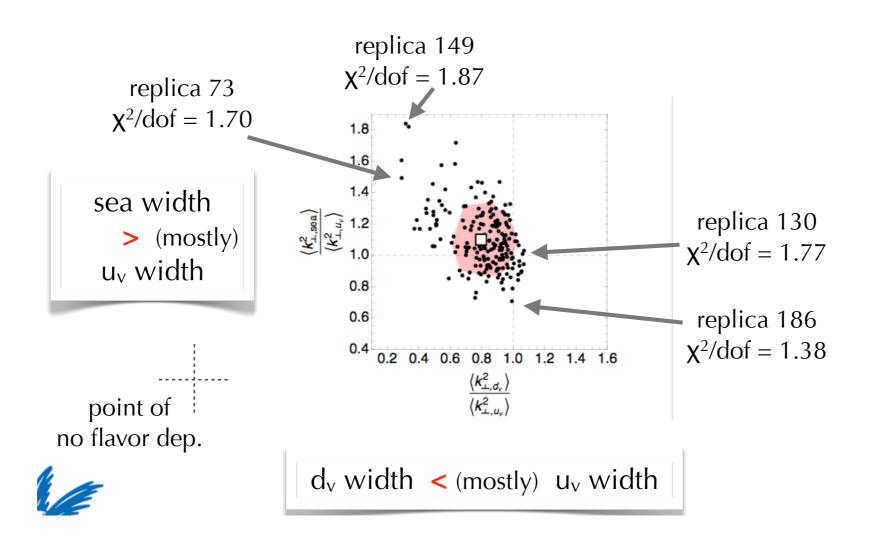
- $p_{TI} \Leftrightarrow p_{TW} \Leftrightarrow QCD$ initial state radiation + intrinsic k_T (usually, a Gaussian in k_T)
- PDF uncertainties and k_T -modelling entangled \Rightarrow no universal (flavour-independent) model

- $p_{TI} \Leftrightarrow p_{TW} \Leftrightarrow QCD$ initial state radiation + intrinsic k_T (usually, a Gaussian in k_T)
- PDF uncertainties and k_T -modelling entangled \Rightarrow no universal (flavour-independent) model
- Intrinsic *kT* effects measured on *Z* data and used to predict *W* distributions, assuming universality Konychev, Nadolsky, PLB 633, 710 (2006)

- $p_{TI} \leftarrow p_{TW} \leftarrow QCD$ initial state radiation + intrinsic k_T (usually, a Gaussian in k_T)
- PDF uncertainties and k_T -modelling entangled \Rightarrow no universal (flavour-independent) model
- Intrinsic kT effects measured on Z data and used to predict W distributions, assuming universality
 Konychev, Nadolsky, PLB 633, 710 (2006)

but

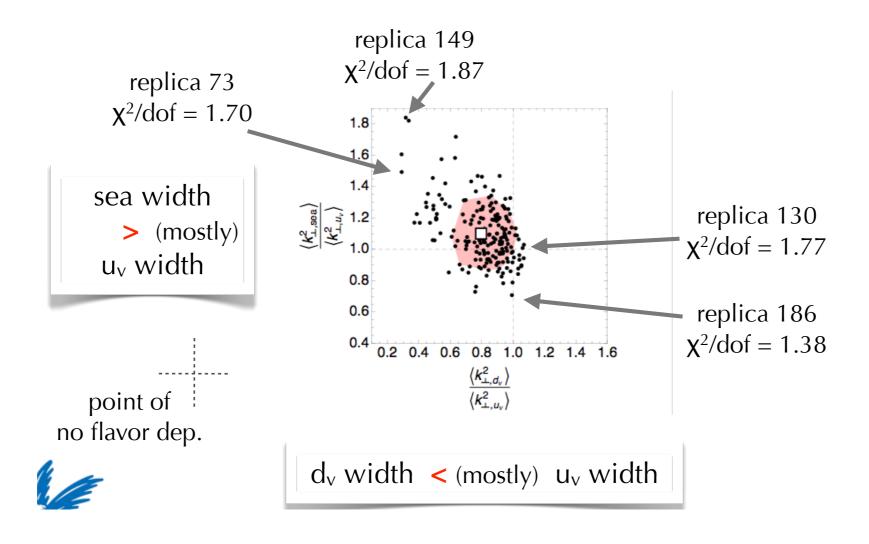
different flavour structure


different phase space available

- $p_{TI} \leftarrow p_{TW} \leftarrow QCD$ initial state radiation + intrinsic k_T (usually, a Gaussian in k_T)
- PDF uncertainties and k_T -modelling entangled \Rightarrow no universal (flavour-independent) model
- Intrinsic kT effects measured on Z data and used to predict W distributions, assuming universality Iming universality Konychev, Nadolsky, PLB 633, 710 (2006) $\langle \hat{k}_{\perp,a}^2 \rangle$ for $a=u_v,\,d_v,\,{
 m sea.}\,$ In total, we use five different parameters to $q_T \overset{\text{PDFs.-Since the present-data}}{\leqslant Q} \text{have a limited coverage in } x, \text{ we found } q_T \overset{Q}{\leqslant} Q$ $q_T \sim \Lambda_{\rm QCD}$ $\langle \hat{k}_{\perp,a}^2 \rangle$ for $A_s = f v_v \cdot T v_v \cdot$ PDFs of the contraction of the property of th $q_T \sim \Lambda_{\rm QCD}$ $f_1^a(x,k_T)=f_1^a(x)$ 45 1c population de la company PARSE EXCITED TO THE TIME SINGULATION OF THE PROPERTY OF THE WING HE HAD RECEIVED THE PROPERTY OF THE PROPERTY processos cereorismos processos de la contracta de la contract furthelighting is the fifther of the following the first initiated by a strange quark antiqual testing $D_1^{a/h}(x_x, P_{t-1}) = D_1^a(x_x) \frac{\text{further distinctions of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process of the process initiated by a strange quark rantique possess of the process of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process initiated by a strange quark rantique possess of the process in the process of the process of the process in the process in the process in the process of the process of the process of the process in the process of the proc$ practice expectation of the production of the p

Extraction of parameters from SIDIS

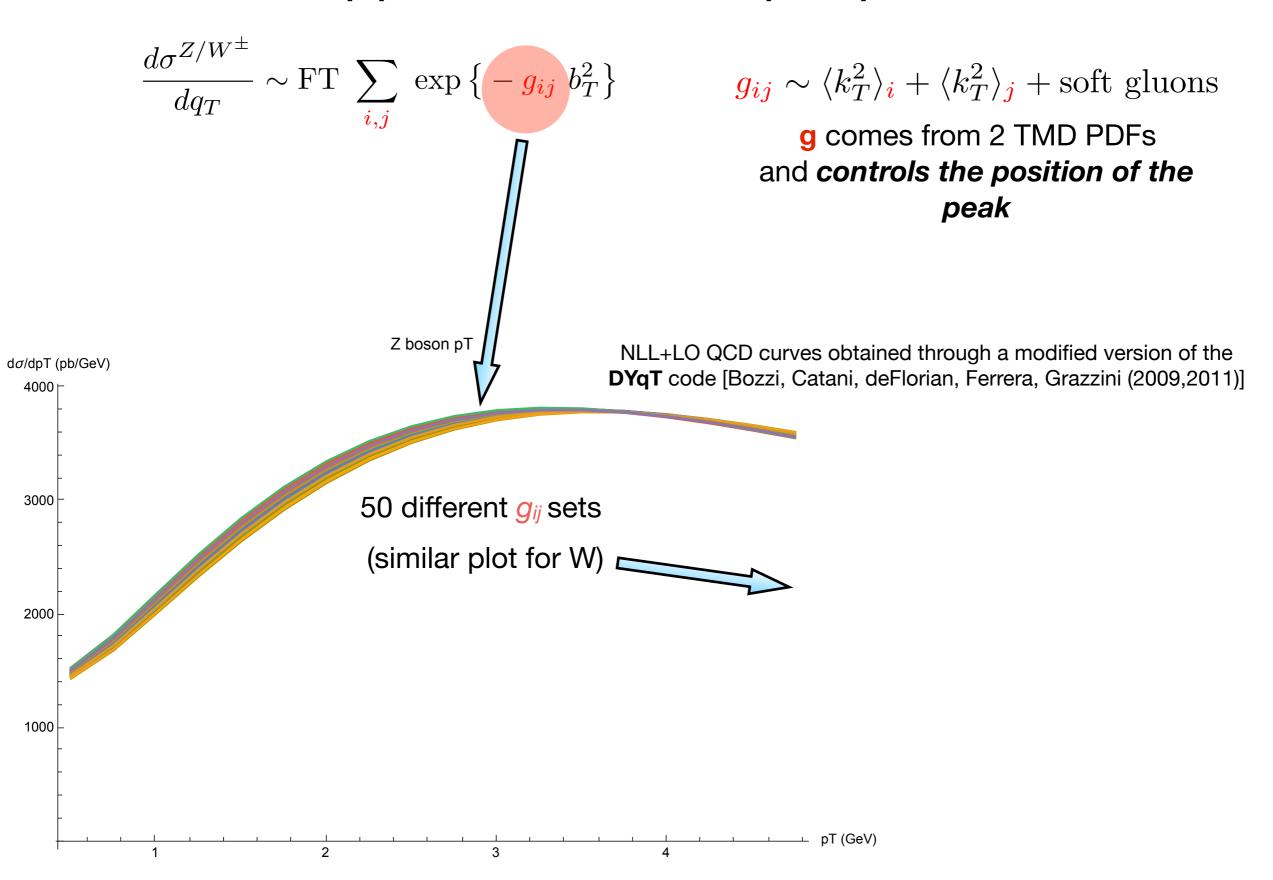
Signori, Bacchetta, Radici, Schnell, JHEP 1311, 194 (2013)

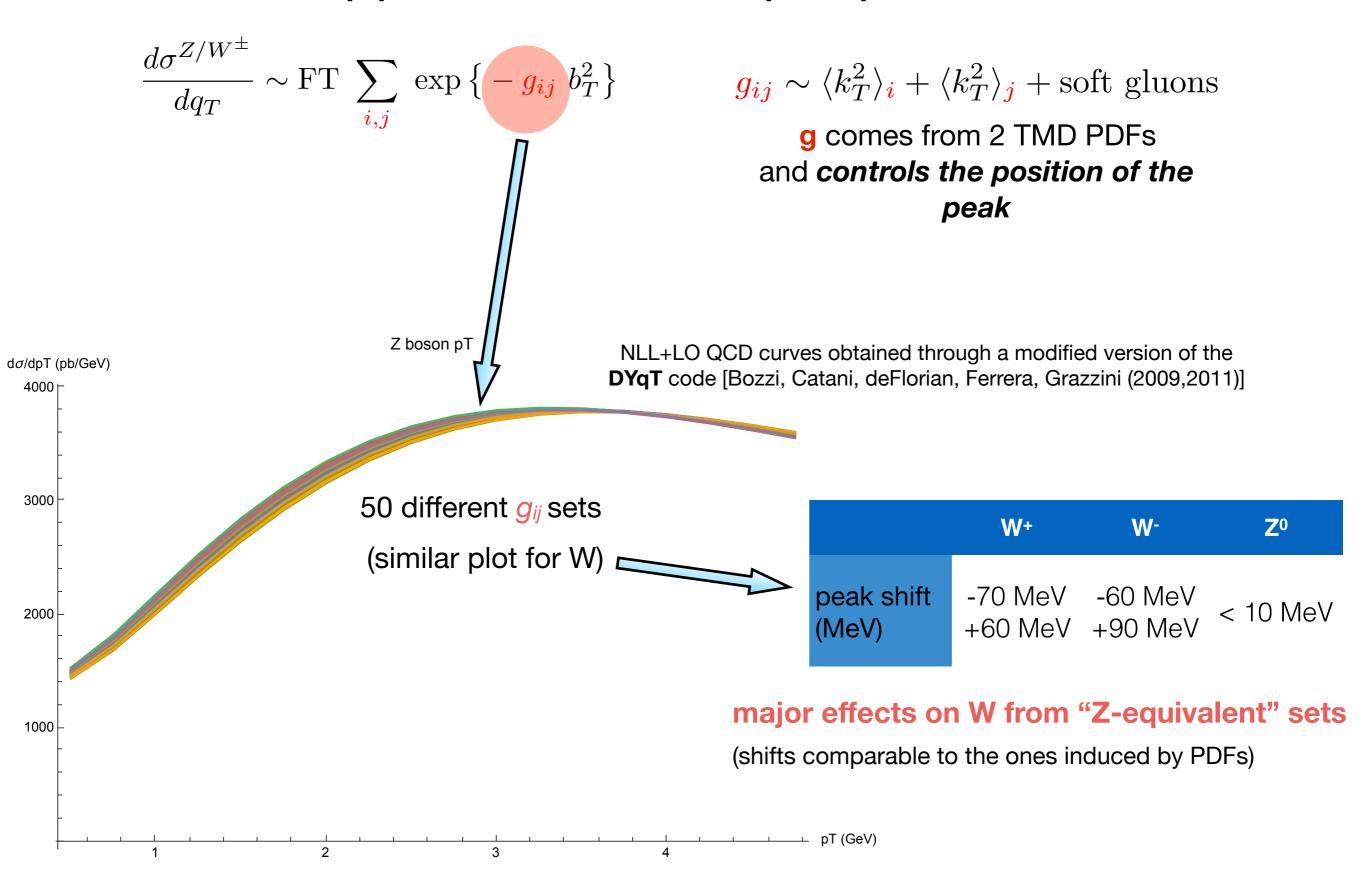

template fit on HERMES data: distribution of parameters

Extraction of parameters from SIDIS

Signori, Bacchetta, Radici, Schnell, JHEP 1311, 194 (2013)

template fit on HERMES data: distribution of parameters




On average, sea > $u_v > d_v$

$$\frac{d\sigma^{Z/W^{\pm}}}{dq_T} \sim \mathrm{FT} \; \sum_{\pmb{i},\pmb{j}} \; \exp\big\{-g_{\pmb{i}\pmb{j}} \; b_T^2\big\} \qquad \qquad g_{\pmb{i}\pmb{j}} \sim \langle k_T^2\rangle_{\pmb{i}} + \langle k_T^2\rangle_{\pmb{j}} + \mathrm{soft \; gluons}$$
 g comes from 2 TMD PDFs

$$g_{ij} \sim \langle k_T^2 \rangle_i + \langle k_T^2 \rangle_j + \text{soft gluons}$$

and controls the position of the peak

• Select 15 flavour-dependent NP sets for which $\Delta(Z \text{ peak}) < 100 \text{ MeV}$ and compute low-statistics m_T and p_T distributions

- Select 15 flavour-dependent NP sets for which $\Delta(Z \text{ peak}) < 100 \text{ MeV}$ and compute low-statistics m_T and p_T distributions
 - → these are our **pseudodata**

- Select 15 *flavour-dependent* NP sets for which Δ (Z peak) < 100 MeV and compute *low-statistics* m_T and p_{Tl} distributions
 - → these are our pseudodata
- Select a universal (flavour-independent) NP parameter and compute high-statistics m_T and $p_{T/T}$ distributions for 30 different values of M_W

- Select 15 *flavour-dependent* NP sets for which $\Delta(Z \text{ peak}) < 100 \text{ MeV}$ and compute *low-statistics* m_T and p_{TI} distributions
 - → these are our pseudodata
- Select a universal (*flavour-independent*) NP parameter and compute *high-statistics* m_T and $p_{T/T}$ distributions for 30 different values of M_W
 - → these are our **templates**

- Select 15 *flavour-dependent* NP sets for which $\Delta(Z \text{ peak}) < 100 \text{ MeV}$ and compute *low-statistics* m_T and p_{TI} distributions
 - → these are our pseudodata
- Select a universal (flavour-independent) NP parameter and compute high-statistics m_T and p_T distributions for 30 different values of M_W
 - → these are our **templates**
- perform the template fit procedure and compute the shifts induced by flavour effects

NLL+LO QCD analysis obtained through a modified version of the **DYRes** code [Catani, deFlorian, Ferrera, Grazzini, JHEP 1512, 047 (2015)]

- Select 15 *flavour-dependent* NP sets for which Δ (Z peak) < 100 MeV and compute *low-statistics* m_T and p_T / distributions
 - → these are our pseudodata
- Select a universal (flavour-independent) NP parameter and compute high-statistics m_T and p_{TI} distributions for 30 different values of M_W
 - → these are our templates
- perform the template fit procedure and compute the shifts induced by flavour effects
- transverse mass: few MeV shifts, generally favouring lower values (preferred by EW fit)

transverse mass

Set	$\triangle MW$
1	- 3
2	- 3
3	- 1
4	- 1
5	- 3
6	- 1
7	- 3
8	-2
9	-2
10	- 1
11	- 3
12	-2
13	- 2
14	- 3
15	- 3

NLL+LO QCD analysis obtained through a modified version of the **DYRes** code [Catani, deFlorian, Ferrera, Grazzini, JHEP 1512, 047 (2015)]

- Select 15 *flavour-dependent* NP sets for which Δ (Z peak) < 100 MeV and compute *low-statistics* m_T and p_T / distributions
 - → these are our pseudodata
- Select a universal (flavour-independent) NP
 parameter and compute high-statistics m_T and p_{TI}
 distributions for 30 different values of M_W
 - → these are our templates
- perform the template fit procedure and compute the shifts induced by flavour effects
- transverse mass: few MeV shifts, generally favouring lower values (preferred by EW fit)
- lepton pt & missing pt: quite important shifts (envelope: 21 MeV)

transverse mass	lepton pt	missing pt
Set △MW	Set △MW	Set △MW
1 -3	1 2	1 -6
2 – 3	2 2	2 -6
3 -1	3 2	3 -3
4 -1	4 -4	4 -13
5 – 3	5 – 11	5 – 15
6 -1	6 – 4	6 -13
7 – 3	7 – 14	7 - 15
8 – 2	8 1	8 -4
9 – 2	9 – 15	9 – 15
10 -1	10 5	10 1
11 -3	11 1	11 -4
12 – 2	12 -1	12 -4
13 – 2	13 6	13 – 5
14 -3	14 -3	14 - 10
15 - 3	15 0	15 -6

NLL+LO QCD analysis obtained through a modified version of the **DYRes** code [Catani, deFlorian, Ferrera, Grazzini, JHEP 1512, 047 (2015)]

We are entering the era of precision physics at the LHC, as was the case for LEP many years ago
 —> any kind of perturbative and non-perturbative effect must be under control

- We are entering the era of precision physics at the LHC, as was the case for LEP many years ago
 —> any kind of perturbative and non-perturbative effect must be under control
- A precise determination of the W mass is essential (especially with no New Physics around...)

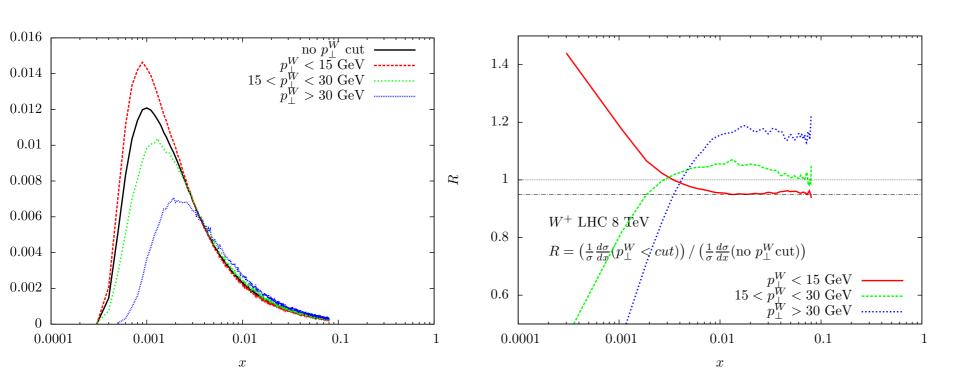
- We are entering the era of precision physics at the LHC, as was the case for LEP many years ago
 —> any kind of perturbative and non-perturbative effect must be under control
- A precise determination of the W mass is essential (especially with no New Physics around...)
- Flavour effects are both important and detectable: no "flavour-blind" analysis should be allowed

- We are entering the era of precision physics at the LHC, as was the case for LEP many years ago
 —> any kind of perturbative and non-perturbative effect must be under control
- A precise determination of the W mass is essential (especially with no New Physics around...)
- Flavour effects are both important and detectable: no "flavour-blind" analysis should be allowed
- From Wikipedia's "Flavour" page:

- We are entering the era of precision physics at the LHC, as was the case for LEP many years ago
 —> any kind of perturbative and non-perturbative effect must be under control
- A precise determination of the W mass is essential (especially with no New Physics around...)
- Flavour effects are both important and detectable: no "flavour-blind" analysis should be allowed
- From Wikipedia's "Flavour" page:

"Flavour creation is performed by a specially trained scientist called a "flavorist", whose job combines scientific knowledge with creativity to develop new and distinctive flavours. The flavour creation begins when the flavorist receives a brief from the client. In the brief, the clients attempt to communicate exactly what type of flavour they seek, in what application it will be used, and any special requirements. The communication barrier can be quite difficult to overcome since most people are not experienced at describing flavours. The flavorist uses his or her knowledge to create a formula and compound it. The flavour is then submitted to the client for testing. Several iterations, with feedback from the client, may be needed before the right flavour is found."

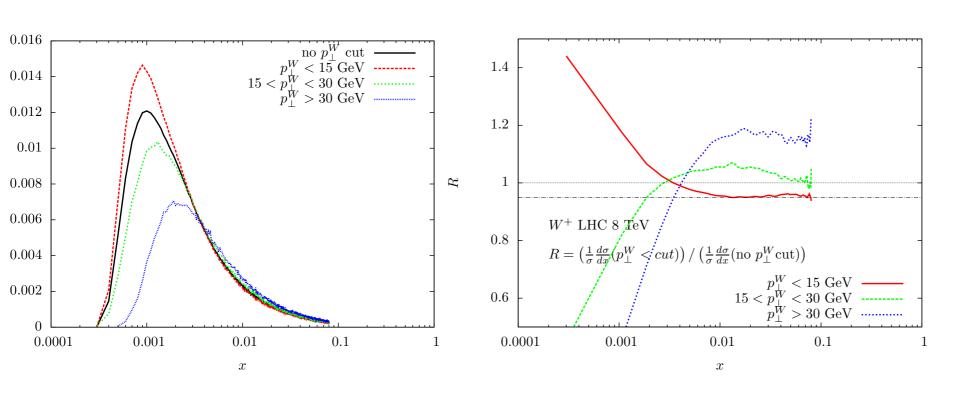
- We are entering the era of precision physics at the LHC, as was the case for LEP many years ago
 —> any kind of perturbative and non-perturbative effect must be under control
- A precise determination of the W mass is essential (especially with no New Physics around...)
- Flavour effects are both important and detectable: no "flavour-blind" analysis should be allowed
- From Wikipedia's "Flavour" page:


"Flavour creation is performed by a specially trained scientist called a "flavorist", whose job combines scientific knowledge with creativity to develop new and distinctive flavours. The flavour creation begins when the flavorist receives a brief from the client. In the brief, the clients attempt to communicate exactly what type of flavour they seek, in what application it will be used, and any special requirements. The communication barrier can be quite difficult to overcome since most people are not experienced at describing flavours. The flavorist uses his or her knowledge to create a formula and compound it. The flavour is then submitted to the client for testing. Several iterations, with feedback from the client, may be needed before the right flavour is found."

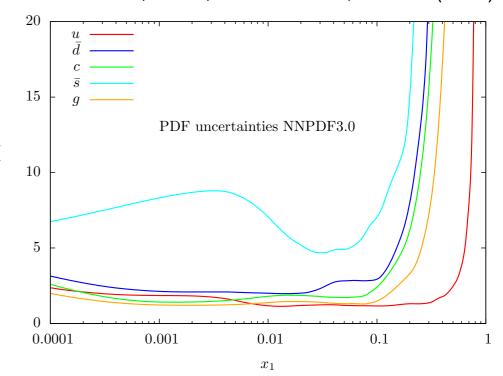
• An especially blended flavour paper soon on your screen by your favourite flavorists!

Backup slides

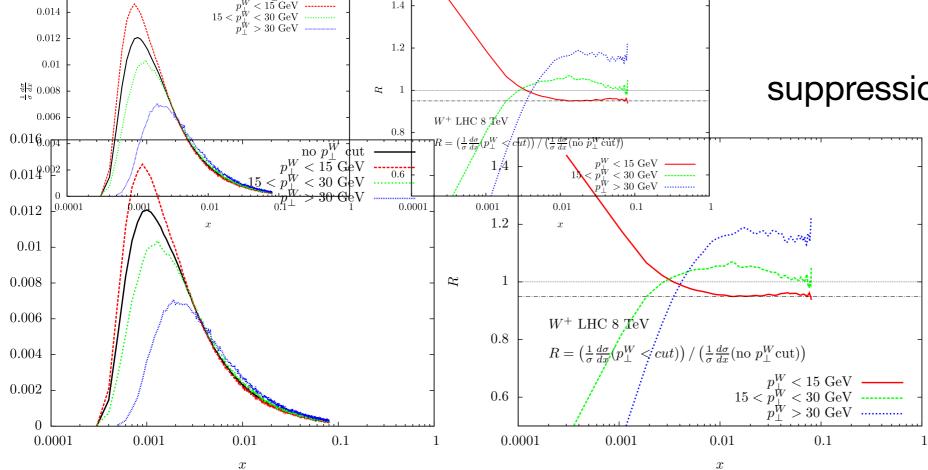
Bozzi, Citelli, Vicini PRD 91, 113005 (2015)


normalized distributions			
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \text{ GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)


normalized distributions			
cut on p_{\perp}^{W}	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \text{ GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

strong p_{TW} cut reduces M_W uncertainty


Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

normalized distributions			
cut on p_{\perp}^{W}	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009 §
$p_{\perp}^W < 10 \text{ GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

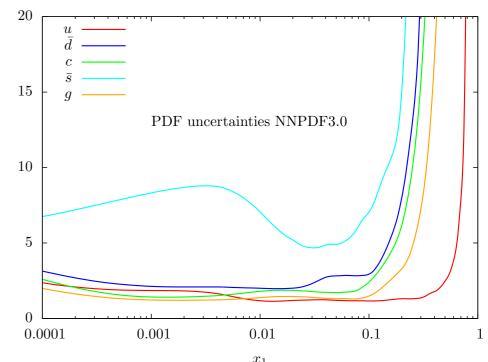
strong p_{TW} cut reduces M_W uncertainty

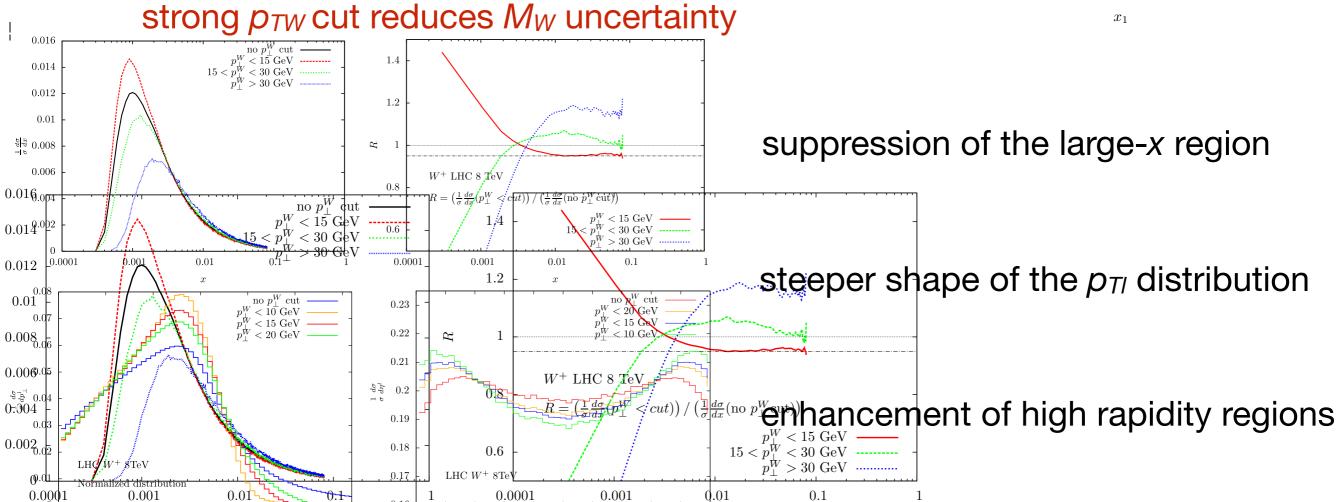
0.016

suppression of the large-x region

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

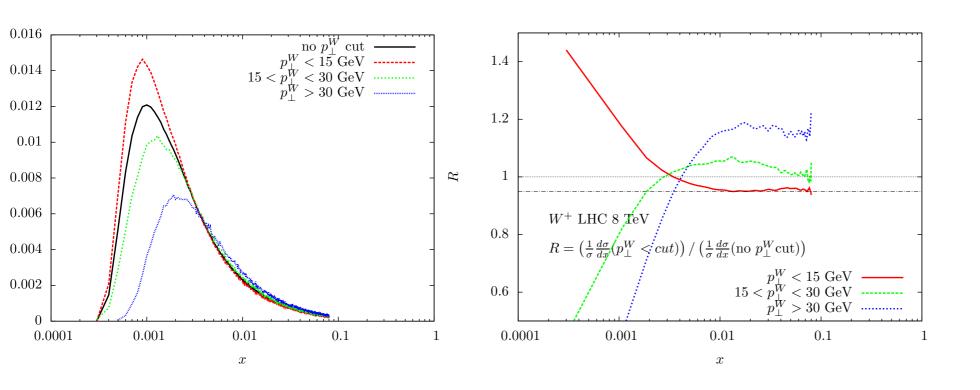
normalized distributions			
cut on p_{\perp}^{W}	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \text{ GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012


-2


 p_{\perp}^{l} (GeV)

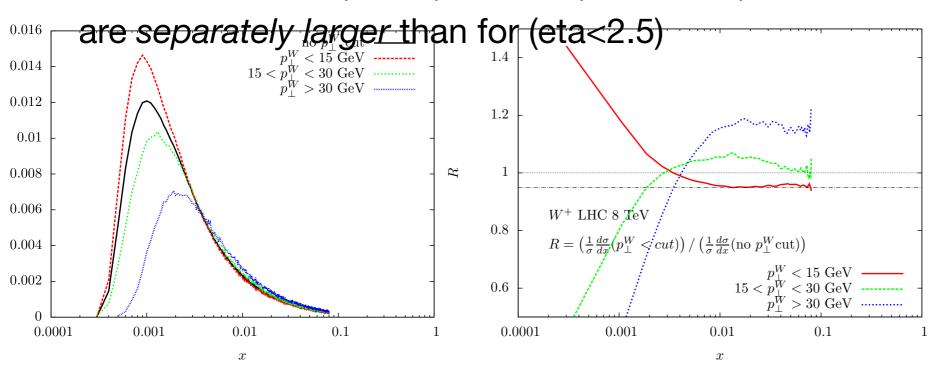
-1.5 -1

0.5


1 1.5

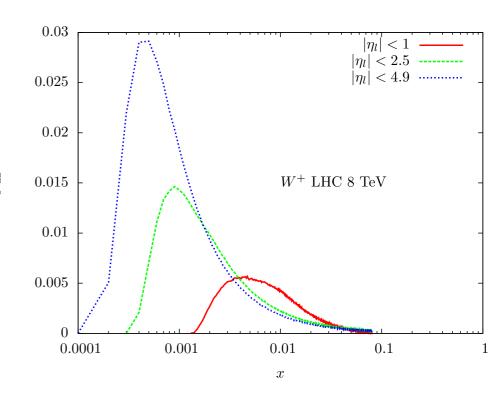
Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

normalized distributions			
cut on p_{\perp}^{W}	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \text{ GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

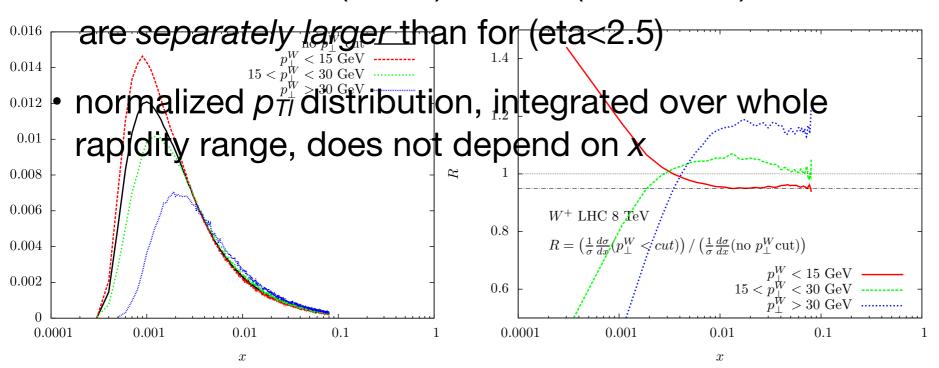


Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

normalized distributions			
cut on p_{\perp}^{W}	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \text{ GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

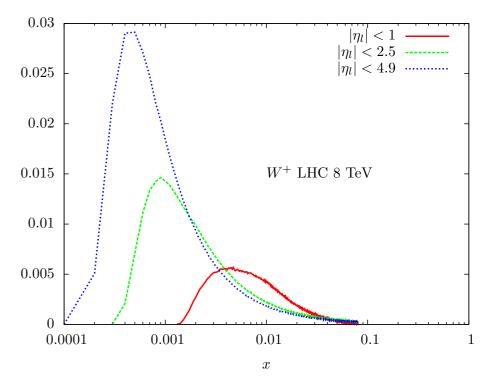

loose lepton pseudorapidity cut reduces M_W uncertainty

uncertainties for (eta<1) and for (1<eta<2.5)


Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

normalized distributions			
cut on p_{\perp}^{W}	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \text{ GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

loose lepton pseudorapidity cut reduces M_W uncertainty


uncertainties for (eta<1) and for (1<eta<2.5)

 \boldsymbol{x}

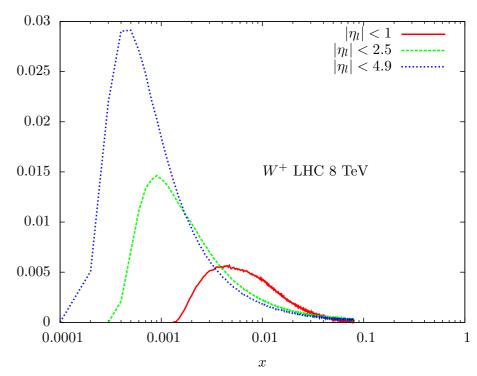
Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

normalized distributions			
cut on p_{\perp}^{W}	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \text{ GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

loose lepton pseudorapidity cut reduces M_W uncertainty

uncertainties for (eta<1) and for (1<eta<2.5)

are separately larger than for (eta<2.5) 0.0160.014 normalized $p_{TI}^{\frac{p_1^{\text{w}}}{2}}$ distribution, integrated over whole 0.012rapidity range, does not depend on x 0.010.008 0.006W⁺ LHC 8 TeV 0.8 $R = \left(\frac{1}{\sigma} \frac{d\sigma}{dx} (p_{\perp}^{W} < cut)\right) / \left(\frac{1}{\sigma} \frac{d\sigma}{dx} (\text{no } p_{\perp}^{W} \text{cut})\right)$ 0.0040.0020.60.0001 0.001 0.01 0.10.0001 0.001 0.01


 \boldsymbol{x}

correlation of parton luminosities within the 40.5 GeV p_{TI} bin

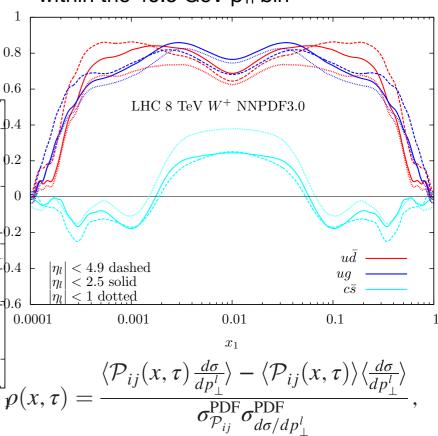
Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

normalized distributions		
cut on $ \eta_l $	CT10	NNPDF3.0
$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012
	cut on $ \eta_l $ $ \eta_l < 2.5$ $ \eta_l < 4.9$	cut on $ \eta_l $ CT10 $ \eta_l < 2.5$ $80.400 + 0.032 - 0.027$ $ \eta_l < 2.5$ $80.396 + 0.027 - 0.020$ $ \eta_l < 2.5$ $80.396 + 0.017 - 0.018$ $ \eta_l < 2.5$ $80.392 + 0.015 - 0.012$ $ \eta_l < 1.0$ $80.400 + 0.032 - 0.021$ $ \eta_l < 2.5$ $80.396 + 0.017 - 0.018$ $ \eta_l < 4.9$ $80.400 + 0.009 - 0.004$

loose lepton pseudorapidity cut reduces M_W uncertainty

uncertainties for (eta<1) and for (1<eta<2.5)

are separately larger than for (eta<2.5)


0.006

0.002

• normalized $p_H^{v_{ij}} \stackrel{\text{13 GeV}}{\text{distribution, integrated over whole}}$ rapidity range, does not depend on x

PDF sum rules \rightarrow non trivial compensations $p_{\perp}^{W^{+} \, LHC \, 8 \, TeV}$ between different rapidity intervals among $p_{\perp}^{W^{+} \, CHC \, 8 \, TeV}$ between different rapidity intervals among $p_{\perp}^{W^{+} \, CHC \, 8 \, TeV}$ $p_{\perp}^{W^{+} \, CHC \, 8 \, T$

correlation of parton luminosities within the 40.5 GeV p_{TI} bin

