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Definition of W Term/Fy gy Structure Function

The SIDIS differential cross section is written in CSS formalisms as the following, Bacchetta et al (2006).
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Defining ¢ | = Ph,L/Zv the W terms describes the cross section in the region where qi/Q2. The FO term
describes the cross section in the region where m2/qi. There is overlap in this region which is eliminated by

the ASY term. Precision matching of W and Y requires precision definition of W.
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The single photon picture of SIDIS is given by




SIDIS Structure Functions in C Formalism

CSS formalism is carried out by Fourier transforming this to b space
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Formulas given by Kang, Prokudin, Sun, Yuan (2015).




Formalism

SIDIS Structure Functions in
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What are the Numerical iss
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Current numerical methods are plagued by large contributions of positive and negative values which generate
noise.

o Adaptive Quadrature Monte Carlo Integration (Vegas Monte Carlo)

JLab data sets will roughly 4,000-10,000 points. There will also be large SIDIS data sets with HERMES and

COMPASS. These methods will negatively impact fits/matching for W/Y terms
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Overview of Ogata’s Formalism

Ogata established his quadrature formalism around the following approximation, Ogata (2005).
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Spacing between nodes goes like 1/h. Ogata showed that the left hand side can be written as a contour
integral with approaching the poles at the zeros of the bessel functions. This formula can be thought of as
an expansion in residues of a contour integral. The double exponential die off of the terms eliminates the

issue with the summing of large positive and negative values. This eliminates the noise in the inversion. The

quadrature weights are defined in equation 1 along with the nodes in equation 2.




Truncating the Quadrature Sum
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For a sufficiently large h§} the nodes approach the zeros of the bessel function. This analysis offers us two
insights into the Ogata’s quadrature method.
o For sufficiently large h§) we may introduce a cutoff to the sum.
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o The rate at which the nodes approach the zeros of the bessel function is inversely related to the

magnitude of the h parameter.

o The position of the nodes and therefore computational efficiency is controlled by the parameters h

and N.




Optimization Scheme for TMDs

Since computation time scales with the number of function calls N, we will need to minimize N while

maintaining convergence.
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Here b > 10 terms go to zero like a Gaussian due to non-perturbative effects. If we fix our parameters so
that the nodes have converged to the zeros of the Bessel functions in this region as well, then the terms will

go to zero even faster! We notice that sampling near the origin is weighted by x, ) this means that sampling

close to the origin will also give small contributions. Need to sample where Fyri7(b) is largest.
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Optimization Scheme for TMDs
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The largest contributions to the sum will come from the terms in the sum that are sampled near the peak of

the this function. Parisi et al (1979), Collins et al (1983) showed that TMDs peak in b space near 1/Q. The

end points of the nodes in b space are
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‘We enforce av; < 1 and 1 < avjy. We can then invert this set of equations to solve for h and N.




urrent Inversion Algorithms

We currently have three working algorithms.

o Ogata inversion with fixed a1, an for all input functions. Inversion algorithm takes a function, v and

a value for ¢ as an input.

o An inversion method with an adaptive sampler for determining a1 and ap that is specific to the
function. Inversion algorithm takes a function, v, a value for ¢ | as an input, and the maximum

number of sampling points as an input.

o A full adaptive integration method. Inversion algorithm takes a function, v, a value for g as an

input, a relative error e as input.

First two methods give approximately the same numerical cost at 20 sampling points. The third method is

much more costly but is the most accurate.




Demonstration for Test Function

Let’s take the parameterization (Gaussian)
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The parameterization was used by Anselmino, Boglione, Gonzalez, Melis,and Prokudin (2013) to fit
HERMES multiplicities for /K production. One point was z = 0.15 P, | = 1 and o = 0.4.

This has an analytic inversion given by

_p2 2
P2

e
Fyy(w,z, Pp, 1, Q% = 1.80) = o° E Fy(z)D1(2) ———5—

T22
q

We will use this to look at the error.




Adaptive Determination of a1 and apn
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Figure: b-space function to be inverted




Adaptive Determination of a1 and apn
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Figure: Initial sampling. Error is approximately 0.03




Adaptive Determination of a1 and apn
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Figure: One iteration. Function decreased «;. Error is approximately 10~




Adaptive Determination of a1 and apn
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Figure: Two iterations. Function increased ay. Error is approximately 107°
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@ Comparison with other Numerical Methods




Benchmarking
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Figure: Error was estimated by doubling ay and halfing «;. The difference between this inversion and the

previous one was used to estimate error.
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@ Preliminary Fits Using Ogata Algorithm




Fitting Scheme
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‘We compute the operator coefficient expansions and the hard coefficients order avg and precalculate them.

‘We use “
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‘Where we use the perturbative Sudakovs a NLL.
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Here the ¢ represents whether or not the quark is valence or sea. Which we fit to have different widths.




Preliminary Fit

‘We fit the parameters
9q,val 9q,sea 9h,val 9h,sea 92 bmax Ca Qo
Here pug = C2Q. We choose the cuts by Anselmino, Boglione, Gonzalez, Melis,and Prokudin (2013)

QR%>>169 2<06 P, /z< g

and fit to Hermes multiplicities.




This is not a
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the fit!

[JAM FITTER
jcount = 1213
elapsed time(mins)=7
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opening /u/home/j/jdterry/Projects/Hankel/fitpack/external/CILIB/tbl_CJ15l0/CJ151l0_00.tbl
Opening fu/home/j/jdterry/Projects/Hankel/fitpack/external/CILIB/tbl_CJ15nlo/CJ15nlo_06.tbl

This gives a Xz/dof =~ 2.5. Fit ran in 70 mins. I did the same fit with adaptive quadrature and it took 48

hours. This method is roughly a factor of 50 times faster.




Summary/Closing Rema

o Our Ogata algorithm avoids noise and performs efficient sampling.

o Remark: This has been tested for other v # 0 and showed similar efficiency.

o Future Work

o Fit to Drell-Yan.

¢ Application to W + Y for SIDIS.

Thank you for your time!
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