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Definition of W Term/FUU Structure Function

The SIDIS differential cross section is written in CSS formalisms as the following, Bacchetta et al (2006).

dσ

dxdydzd2Ph,⊥
= W + Y ≡ W + FO − ASY y =

Q2

xS

Defining q⊥ = Ph,⊥/z, the W terms describes the cross section in the region where q2
⊥/Q

2. The FO term

describes the cross section in the region where m2/q2
⊥. There is overlap in this region which is eliminated by

the ASY term. Precision matching of W and Y requires precision definition of W .

W

σ0
≈ FUU (x, z,Q, Ph,⊥) =

∑
q

e
2
q

∫
d

2
kd

2
pδ

2(z~k⊥ + ~p⊥ − ~Ph,⊥)D1(z, p2
⊥)F1(x, k2

⊥)

σ0 =
2πα2

em

Q2
1 + (1− y)2

y

The single photon picture of SIDIS is given by
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SIDIS Structure Functions in CSS Formalism

CSS formalism is carried out by Fourier transforming this to b space

δ
2(z~k⊥ + ~p⊥ − ~Ph,⊥) =

1
z2

∫
d2b

(2π)2
e
−i(~k⊥+~p⊥/z−~Ph,⊥/z)·~b

F
SIDIS
UU (x, z, q⊥) =

1
z2

∫
bdb

2π
J0(

Ph⊥b

z
)
∑
q

e
2
qD1(z, b)F1(x, b)

D1(z, b) = Ci←q ⊗D(z, µb∗ )e−
1
2Spert−S

D
NP

F1(x, b) = Cq←i ⊗ f
i
1(x, µb∗ )e−

1
2Spert−S

F
NP

Spert = ln(
Q2

µ2
b∗

)K̃(b∗(b), µb∗ ) +

∫ µQ

µb∗

dµ′

µ
[2γ(αs(µ′))− ln

Q2

µ′2
γK(αS(µ′))]

S
F
NP = gqb

2 + g2/2 ln(
b

b∗
) ln(

Q

Q0
) S

D
NP = gh

b2

z2
+ g2/2 ln(

b

b∗
) ln(

Q

Q0
)

Formulas given by Kang, Prokudin, Sun, Yuan (2015).
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SIDIS Structure Functions in CSS Formalism

F̃
SIDIS
UU (b) =

∑
q

e
2
q(Ci←q ⊗D(z, µb∗ ))(Cq←i ⊗ f

i
1(x, µb∗ ))e−Spert−S

D
NP
−SF

NP

F
SIDIS
UU (q⊥) =

1
z2

∫
bdb

2π
J0(q⊥b)F̃UU (b)

b∗ =
b√

1 + b2
b2
max

µb∗ =
2e−γE

b∗
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What are the Numerical issues?

F
SIDIS
UU ≈

1
z2

∫
bdb

2π
J0(

Ph⊥b

z
)F̃UU (b)
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Current numerical methods are plagued by large contributions of positive and negative values which generate

noise.

Adaptive Quadrature Monte Carlo Integration (Vegas Monte Carlo)

JLab data sets will roughly 4,000-10,000 points. There will also be large SIDIS data sets with HERMES and

COMPASS. These methods will negatively impact fits/matching for W/Y terms
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Overview of Ogata’s Formalism

Ogata established his quadrature formalism around the following approximation, Ogata (2005).∫ ∞
0

dxJν(x)f(x) ≈ π

∞∑
k=1

wνkψ
′(hξk)Jν(xk)f(xk)

wνk =
2

π2ξkJν+1(πξk)
, Jν(πξk) = 0 (1)

xνk =
π

h
ψ(hξk), ψ(z) = z tanh

(
π

2
sinh {z}

)
(2)

xk = πξk tanh
(
π

2
sinh {hξνk}

)
Spacing between nodes goes like 1/h. Ogata showed that the left hand side can be written as a contour

integral with approaching the poles at the zeros of the bessel functions. This formula can be thought of as

an expansion in residues of a contour integral. The double exponential die off of the terms eliminates the

issue with the summing of large positive and negative values. This eliminates the noise in the inversion. The

quadrature weights are defined in equation 1 along with the nodes in equation 2.
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Truncating the Quadrature Sum

xk = πξk tanh
(
π

2
sinh {hξk}

)
Jν(πξk) = 0

For a sufficiently large hξk the nodes approach the zeros of the bessel function. This analysis offers us two

insights into the Ogata’s quadrature method.

For sufficiently large hξk we may introduce a cutoff to the sum.

π

∞∑
k=1

wνkψ
′(hξk)Jν(xk)f(xk) ≈ π

N∑
k=1

wνkψ
′(hξk)Jν(xk)f(xk)

The rate at which the nodes approach the zeros of the bessel function is inversely related to the

magnitude of the h parameter.

The position of the nodes and therefore computational efficiency is controlled by the parameters h

and N .
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Optimization Scheme for TMDs

Since computation time scales with the number of function calls N , we will need to minimize N while

maintaining convergence.
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)

1
z2

∫
bdb

2π
J0(bq⊥)F̃UU (b) ≈

1
2z2q2

⊥

N∑
k=1

wkψ
′(hξk)Jν(xk)xkF̃i(xk)

Here b > 10 terms go to zero like a Gaussian due to non-perturbative effects. If we fix our parameters so

that the nodes have converged to the zeros of the Bessel functions in this region as well, then the terms will

go to zero even faster! We notice that sampling near the origin is weighted by xνk this means that sampling

close to the origin will also give small contributions. Need to sample where F̃UU (b) is largest.

b
1 =

πξ1

q⊥
tanh

(
π

2
sinh{hξ1}

)
b
N =

πξN

q⊥
tanh

(
π

2
sinh{hξN}

)
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Optimization Scheme for TMDs
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The largest contributions to the sum will come from the terms in the sum that are sampled near the peak of

the this function. Parisi et al (1979), Collins et al (1983) showed that TMDs peak in b space near 1/Q. The

end points of the nodes in b space are

b
1 =

α1

Q
=
πξ1

q⊥
tanh

(
π

2
sinh{hξ1}

)
b
N =

αN

Q
=
πξN

q⊥
tanh

(
π

2
sinh{hξN}

)
We enforce α1 < 1 and 1 < αN . We can then invert this set of equations to solve for h and N .
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Current Inversion Algorithms

We currently have three working algorithms.

Ogata inversion with fixed α1, αN for all input functions. Inversion algorithm takes a function, ν and

a value for q⊥ as an input.

An inversion method with an adaptive sampler for determining α1 and αN that is specific to the

function. Inversion algorithm takes a function, ν, a value for q⊥ as an input, and the maximum

number of sampling points as an input.

A full adaptive integration method. Inversion algorithm takes a function, ν, a value for q⊥ as an

input, a relative error εR as input.

First two methods give approximately the same numerical cost at 20 sampling points. The third method is

much more costly but is the most accurate.
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Demonstration for Test Function

Let’s take the parameterization (Gaussian)

FUU (x, z, q⊥) =
1
z2

∑
q

e
2
qD1(z)F1(x)

∫
bdb

2π
J0(q⊥b)e

−b2/4σ2

The parameterization was used by Anselmino, Boglione, Gonzalez, Melis,and Prokudin (2013) to fit

HERMES multiplicities for π/K production. One point was z = 0.15 Ph,⊥ = 1 and σ = 0.4.

This has an analytic inversion given by

FUU (x, z, Ph,⊥, Q
2 = 1.80) = σ

2
∑
q

F1(x)D1(z)
e
−P2

h,⊥σ
2

πz2

We will use this to look at the error.
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Adaptive Determination of α1 and αN
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Figure: b-space function to be inverted
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Adaptive Determination of α1 and αN
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Figure: Initial sampling. Error is approximately 0.03
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Adaptive Determination of α1 and αN
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Figure: One iteration. Function decreased α1. Error is approximately 10−5
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Adaptive Determination of α1 and αN
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Figure: Two iterations. Function increased αN . Error is approximately 10−6
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Benchmarking Inversions
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Figure: Error was estimated by doubling αN and halfing α1. The difference between this inversion and the

previous one was used to estimate error.

J.D. Terry (UCLA) Numerical Hankel Transforms for TMDs QCD Evolution, 2018 20 / 26



Outline

1 Motivation

Why do we need Hankel Transforms in the CSS Formalism

Numerical Difficulties

2 What do we do?

Use Ogata’s Method

Optimizing Ogata Parameters for TMDs

3 Comparison with other Numerical Methods

4 Preliminary Fits Using Ogata Algorithm

J.D. Terry (UCLA) Numerical Hankel Transforms for TMDs QCD Evolution, 2018 21 / 26



CSS Fitting Scheme

F
SIDIS
UU (x, z, q⊥, Q) ≡

x

z2
H(Q)

∫
bdb

2π
J0(

Ph⊥b

z
)
∑
q

e
2
q(Cq

D
⊗Dq(z))(Cq

F
⊗ Fq(x))e−Spert−SNP

We compute the operator coefficient expansions and the hard coefficients order αS and precalculate them.

We use

Spert = ln(
Q2

µ2
b∗

)K̃(b∗(b), µb∗ ) +

∫ µQ

µb∗

dµ′

µ
[2γ(αs(µ′))− ln

Q2

µ′2
γK(αS(µ′))]

Where we use the perturbative Sudakovs a NLL.

SNP = gq,ib
2 + gh,i

b2

z2
+ g2 ln(

b

b∗
) ln(

Q

Q0
)

Here the i represents whether or not the quark is valence or sea. Which we fit to have different widths.
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Preliminary Fit

We fit the parameters

gq,val gq,sea gh,val gh,sea g2 bmax C2 Q0

Here µQ = C2Q. We choose the cuts by Anselmino, Boglione, Gonzalez, Melis,and Prokudin (2013)

Q
2
> 1.69 z < 0.6 Ph,⊥/z <

Q

2

and fit to Hermes multiplicities.
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This is not a fit!

J.D. Terry (UCLA) Numerical Hankel Transforms for TMDs QCD Evolution, 2018 24 / 26



This is the fit!

This gives a χ2/dof ≈ 2.5. Fit ran in 70 mins. I did the same fit with adaptive quadrature and it took 48

hours. This method is roughly a factor of 50 times faster.
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Summary/Closing Remarks

Our Ogata algorithm avoids noise and performs efficient sampling.

Remark: This has been tested for other ν 6= 0 and showed similar efficiency.

Future Work

Fit to Drell-Yan.

Application to W + Y for SIDIS.

Thank you for your time!

J.D. Terry (UCLA) Numerical Hankel Transforms for TMDs QCD Evolution, 2018 26 / 26


	Motivation
	Why do we need Hankel Transforms in the CSS Formalism
	Numerical Difficulties

	What do we do?
	Use Ogata's Method
	Optimizing Ogata Parameters for TMDs

	Comparison with other Numerical Methods
	Preliminary Fits Using Ogata Algorithm

