

Evolution of Pseudo-PDFs and Quasi-PDFs

Parton Densities Transverse Momentum Cut-off Pseudo-distributions qPDF7 MD relation Hard tail Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building MS ITT

Summary

Evolution of Pseudo-PDFs and Quasi-PDFs A.V. Radyushkin (ODU/Jlab)

QCD Evolution 2018 May 22, 2018

イロト イポト イヨト イヨト

= 900

Parton Densities

Evolution of Pseudo-PDFs and Quasi-PDFs

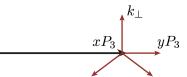
Parton Densities

Transverse Momentum Cut-off

qPDFs qPDF/TMD relati Hard tail

Renormalizatio

Reduced


pseudo-II D

Evolution in lattice data _{Data} Building <u>MS</u> ITD

Summary

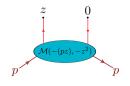
May 11, 1918 – R.P. Feynman's birthday

- Feynman diagrams, propagator, path integrals, parton model ...
- Original Feynman approach to PDFs f(x): infinite momentum P₃ → ∞ limit of k₃ = xP₃ momentum distributions (~ quasi-PDFs Q(x, P₃))
- f(x) were treated as k_{\perp} -integrals of more detailed $f(x, k_{\perp})$ distributions
- From the start it was understood that $Q(x, P_3 \to \infty) \to f(x)$ limit exists only if $f(x, k_{\perp})$ rapidly decreases with k_{\perp}
- "Transverse momentum cut-off", $\langle k_{\perp}^2 \rangle \sim 1/R_{\rm hadr}^2$
- Question 1: why $Q(x, P_3)$ differs from f(x)?
- Question 2: how does $Q(x, P_3)$ convert into f(x) when $P_3 \to \infty$?
- Qualitative answer: yP_3 comes from two sources: from the motion of the hadron as a whole (xP_3) and from Fermi motion of quarks inside the hadron $(y - x)P_3 \sim 1/R_{hadr}$

(y − x)P₃ ~ 1/R_{hadr} part has the same origin as transverse momentum
 ⇒ One should be able to relate quasi-PDFs to TMDs

Pseudo-distributions and PDFs

Parton Densities Transverse


Iransverse Momentum Cut-off Pseudo-distributions

qPDFs qPDF/TMD relation Hard tail Gauge link Renormalization Reduced

pseudo-ITD

Evolution in lattice data Data Building MS ITI

Summary

Basic matrix element (ignoring spin)

 $\langle p | \phi(0) \phi(z) | p \rangle = \mathcal{M}(-(pz), -z^2)$

- Lorentz invariance: $\mathcal M$ depends on z through $(pz) \equiv -\nu$ and z^2
- Inffectime ν : $\mathcal{M}(\nu, -z^2) =$ Inffectime pseudo-distribution (pseudo-ITD)
- Pseudo = off the light cone
- For any Feynman diagram, for arbitrary z^2 and arbitrary p^2

$$\mathcal{M}(\nu, -z^2) = \int_{-1}^1 dx \, e^{ix\nu} \, \mathcal{P}(x, -z^2)$$

- Limits $-1 \le x \le 1$, negative x correspond to anti-particles
- On the light cone: usual ITD and usual PDF $\mathcal{P}(x, 0) = f(x)$
- If $z^2 \rightarrow 0$ limit is singular, regularization (like $\overline{\text{MS}}$) is needed, $f(x) \rightarrow f(x, \mu^2)$ and we have $\overline{\text{MS}}$ ITD

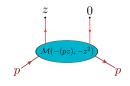
$$\mathcal{M}(\nu,0)|_{\mu^2} \equiv \mathcal{I}(\nu,\mu^2) = \int_{-1}^1 dx \, e^{ix\nu} \, f(x,\mu^2)$$

• Pseudo-PDF $\mathcal{P}(x, -z^2)$: Fourier transform of pseudo-ITD with respect to ν for fixed z^2

Quasi-PDFs

Evolution of Pseudo-PDFs and Quasi-PDFs

Parton Densities Transverse Momentum Cut Pseudo-distribu


qPDFs

Hard tail Gauge link Renormalizatio

pseudo-ITD

Evolution in lattice data Data Building MS ITD

Summary

Basic matrix element (ignoring spin)

 $\langle p | \phi(0) \phi(z) | p \rangle = \mathcal{M}(-(pz), -z^2)$

- Lorentz invariance: \mathcal{M} depends on z through $(pz) \equiv -\nu$ and z^2
- Take $z = (0, 0, 0, z_3)$, then $-(pz) \equiv \nu = Pz_3$ and $-z^2 = z_3^2$ • Introduce guasi-PDF (Ji,2013)

$$Q(y,P) = \frac{P}{2\pi} \int_{-\infty}^{\infty} dz_3 \, e^{-iyPz_3} \, \mathcal{M}(Pz_3, z_3^2)$$

• Write $\mathcal{M}(Pz_3, z_3^2)$ through pseudo-PDF

$$Q(y,P) = \frac{P}{2\pi} \int_{-1}^{1} dx \int_{-\infty}^{\infty} dz_3 \, e^{-i(y-x)Pz_3} \, \mathcal{P}(x,z_3^2)$$

Quasi-PDFs Q(y, P) are defined for all -∞ < y < ∞
If P(x, z₃²) = f(x), then Q(y, P) = f(y)

qPDF/TMD relation

Evolution of Pseudo-PDFs and Quasi-PDFs

Parton Densities Transverse Momentum Cut-off Pseudo-distributions qPDFs **qPDF/TMD relation** Hard tail Gauge link Renormalization Reduced

Evolution in lattice data Data Building MS IT

Summary

• Using $z_3 = \nu/P$ as integration variable

$$Q(y,P) = \int_{-\infty}^{\infty} \frac{d\nu}{2\pi} \ e^{-iy\nu} \ \mathcal{M}(\nu,\nu^2/P^2)$$

• Take $z = (z_+ = 0, z_-, z_1, z_2)$. Then $\nu = -p^+z^-$ and $-z^2 = z_1^2 + z_2^2$ • Introduce TMD $\mathcal{F}(x, k_1^2 + k_2^2)$):

$$\mathcal{M}(\nu, z_1^2 + z_2^2) = \int_{-1}^1 dx \ e^{ix\nu} \int_{-\infty}^\infty dk_1 dk_2 e^{i(k_1 z_1 + k_2 z_2)} \mathcal{F}(x, k_1^2 + k_2^2)$$

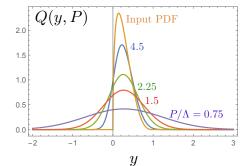
• Combining with Eq. for Q(y, P) in terms of $\mathcal{M}(\nu, \nu^2/P^2)$

$$Q(y,P) = P \int_{-1}^{1} dx \int_{-\infty}^{\infty} dk_1 \mathcal{F}(x,k_1^2 + (y-x)^2 P^2)$$

- Is it possible to study the approach of Q(y, P) to f(y)?
- Try factorized model $\mathcal{F}^{fact}(x, k_{\perp}^2) = f(x)K(k_{\perp}^2)$
- Popular idea: Gaussian dependence $K_G(k_{\perp}^2) = e^{-k_{\perp}^2/\Lambda^2}/\pi\Lambda^2$

$$Q_G^{\text{fact}}(y,P) = \frac{P}{\Lambda\sqrt{\pi}} \int_{-1}^1 dx \, f(x) \, e^{-(y-x)P^2/\Lambda^2}$$

Nonperturbative evolution in Gaussian model


Evolution of Pseudo-PDFs and Quasi-PDFs

Parton Densities Transverse Momentum Cut-off Pseudo-distributions qPDFs **qPDF/TMD relation** Hard tail Gauge link Renormalization Reduced

Evolution in lattice data Data Building MS ITT

Summary

• Take PDF $f(x) = u_v(x) - d_v(x) = \frac{315}{32}\sqrt{x}(1-x)^3\theta(0 \le x \le 1)$ obtained by pseudo-PDF method (Orginos et al. 2017)

- Curves for $P/\Lambda = 0.75, 1.5, 2.25$ are close to qPDFs obtained by Lin et al (2016), upper momentum P = 1.3 GeV, effective $\Lambda \approx 600$ MeV
- Need $P \sim 4.5 \Lambda \approx 2.7 \text{ GeV}$ to get reasonably close to input PDF
- Note a lot of dirt for negative y, even for $P/\Lambda = 4.5$

6/15

Renormalizable theories and hard term

7/15

Evolution of Pseudo-PDFs and Quasi-PDFs

Parton Densities Transverse Momentum Cut-off Pseudo-distribution qPDFs qPDF/TMD relation Hard tail Gauge link Renormalization Partured

pseudo-ITD Evolution

lattice data Data Building $\overline{\mathrm{MS}}$ ITD

Summary

$$Q(y,P) = \int_{-\infty}^{\infty} \frac{d\nu}{2\pi} \ e^{-iy\nu} \ \mathcal{M}(\nu,\nu^2/P^2)$$

• In QCD $\mathcal{M}(\nu, z_3^2)$ has logarithmic singularity in z_3^2 . At one loop,

$$\mathcal{M}^{\text{hard}}(\nu, z_3^2) = -\frac{\alpha_s}{2\pi} C_F \ln(z_3^2) \int_0^1 du \, B(u) \, \mathcal{M}^{\text{soft}}(u\nu, 0)$$

Generates perturbative evolution. Altarelli-Parisi (AP) evolution kernel

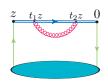
$$B(u) = \left[\frac{1+u^2}{1-u}\right]_+$$

• The function $\mathcal{M}(\nu, \nu^2/P^2)$ that generates the quasi-PDF gets

$$\mathcal{M}^{\text{hard}}(\nu,\nu^2/P^2) = -\frac{\alpha_s}{2\pi} C_F \ln(\nu^2/P^2) \int_0^1 du \, B(u) \, \int_{-1}^1 dx \, e^{-iux\nu} \, f^{\text{soft}}(x)$$

- Hard part of the quasi-PDF Q(y,P) has a $\ln P^2$ term $Q^{\rm hard}(y,P) = \ln(P^2)\,\Delta(y) + \dots$
- It is nonzero in the $-1 \le y \le 1$ region only

$$\Delta(y) = \frac{\alpha_s}{2\pi} C_F \int_0^1 \frac{du}{u} B(u) f^{\text{soft}}(y/u)$$



Gauge link complications

Evolution of Pseudo-PDFs and Quasi-PDFs

Parton Densities Transwerse Momentum Cut-off Pseudo-distributions aPDF/s aPDF/TMD relation Hard tail Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building MS ITT

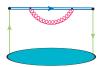
- In QCD, there is one more source of the z²-dependence of pseudo-ITD: gauge link Ê(0, z; A)
- It has specific ultraviolet divergences
- Use Polyakov regularization $1/\delta z^2 \rightarrow 1/(\delta z^2 a^2)$ for gluon propagator in coordinate space
- Effect of the UV cut-off a is similar to that of the lattice spacing
- At one loop, link-related UV singular terms have the structure

$$\Gamma_{\rm UV}(z_3, a) \sim -\frac{\alpha_s}{2\pi} C_F \left[2 \frac{|z_3|}{a} \tan^{-1} \left(\frac{|z_3|}{a} \right) - 2 \ln \left(1 + \frac{z_3^2}{a^2} \right) \right]$$

- For fixed a, these terms vanish when $z_3 \rightarrow 0$
- No violation of quark number conservation
- Because of UV singularities, there is large activity to renormalize out link-related factor


Renormalize or exterminate?

Evolution of Pseudo-PDFs and Quasi-PDFs


Parton Densities Transverse Momentum Cut-off Pseudo-distributions qPDF/s qPDF/TMD relation Hard tail Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building MS IT

Summary

- Structure of factorization for DIS in Feynman gauge
- Sum of gluon insertions gives $\langle P|\bar{\psi}(0) \gamma S^{c}(z)\gamma \hat{E}(0,z;A)\psi(z)|P\rangle$ + higher twists
- But: quark self-energy diagram is not factorized as $S^c(z) \times \langle AA \rangle$
- Operator ψ

 (0) Ê(0, z; A)ψ(z) should be accompanied by "no AA contractions"
- Link self-energy diagrams and UV-singular parts of vertex diagrams should be excluded together with associated z₃²-dependence
- It is not sufficient just to subtract UV divergences
- Easy way out: consider reduced pseudo-ITD

$$\mathfrak{M}(\nu, z_3^2) \equiv \frac{\mathcal{M}(\nu, z_3^2)}{\mathcal{M}(0, z_3^2)}$$

• $\mathfrak{M}(\nu, z_3^2)$ has finite $a \to 0$ limit

Reduced loffe-time pseudo-distribution

10/15

Evolution of Pseudo-PDFs and Quasi-PDFs

Parton Densities Transverse Momentum Cut-off Pseudo-distribution: qPDFs qPDF/TMD relation Hard tail Gauge link Poescerelination

Reduced pseudo-ITD

Evolution in lattice data Data Building MS ITC

Summary

- $\bullet~$ Reduced pseudo-ITD $\mathfrak{M}(\nu,z_3^2)$ is a physical observable (like, say, DIS structure functions)
- No need to specify renormalization scheme, scale, etc. for link-related terms
- Pseudo-ITD $\mathfrak{M}(\nu, z_3^2)$ is finite for fixed z_3 , but is singular in $z_3 \rightarrow 0$ limit
- In z₃² terms reflect perturbative evolution
- For light-cone PDF, one takes $z^2 = 0$ and uses some scheme for resulting UV divergence, say, $\overline{\rm MS}$
- Ioffe-time distribution $\mathcal{I}(\nu,\mu^2)$ is UV scheme and scale dependent

$$\mathcal{I}(\nu,\mu^2) = \int_{-1}^{1} dx \, e^{ix\nu} \, f(x,\mu^2)$$

• One-loop relation between $\overline{\mathrm{MS}}$ ITD and reduced pseudo-ITD

$$\begin{split} \mathcal{I}(\nu,\mu^2) &= \mathfrak{M}(\nu,z_3^2) + \frac{\alpha_s}{2\pi} C_F \int_0^1 dw \, \mathfrak{M}(w\nu,z_3^2) \\ &\times \left\{ \frac{1+w^2}{1-w} \left[\ln\left(z_3^2 \mu^2 \frac{e^{2\gamma_E}}{4}\right) + 1 \right] + \left[4 \frac{\ln(1-w)}{1-w} - 2(1-w) \right] \right\}_+ \end{split}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Evolution in lattice data

Re $\mathfrak{M}(\nu, z_3^2)$

ν

11/15

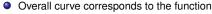
Evolution of Pseudo-PDFs and Quasi-PDFs

Parton Densities Transverse Momentum Cut-off Pseudo-distributions qPDFs qPDFs qPDF/TMD relation Hard tail Gauge link Renormalization Reduced pseudo-ITD

0.8 0.6 0.4

-0.2

Evolution in lattice data Data Building <u>MS</u> ITI


Summary

• Exploratory lattice study of reduced pseudo-ITD $\mathfrak{M}(\nu, z_3^2)$ for the valence $u_v - d_v$ parton distribution in the nucleon [Orginos et al. 2017]

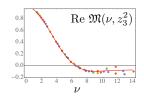
• Real part corresponds to the cosine Fourier transform of $q_v(x) = u_v(x) - d_v(x)$

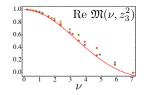
$$\Re(\nu) \equiv \operatorname{Re}\mathfrak{M}(\nu) = \int_0^1 dx \, \cos(\nu x) \, q_v(x)$$

 When plotted as function of ν, data both for real and imaginary parts lie close to respective universal curves

$$f(x) = \frac{315}{32}\sqrt{x}(1-x)^3$$

- Obtained by forming cosine Fourier transforms of $x^a(1-x)^b$ -type functions and fitting a, b
- Shape is dominated by points with smaller values of Re $\mathfrak{M}(\nu,z_3^2)$
- Data for $\mathfrak{M}(\nu, z_3^2) \equiv \mathcal{M}(\nu, z_3^2)/\mathcal{M}(0, z_3^2)$ show no polynomial z_3 -dependence for large z_3 though z_3^2/a^2 changes from 1 to ~ 200
- Apparently no higher-twist terms in the reduced pseudo-ITD
- Meaning: $\mathcal{M}(\nu, z_3^2)$ factorizes as $M(\nu)\mathcal{M}(0, z_3^2)$ for large z_3


Lattice data for small and large z_3


Evolution of Pseudo-PDFs and Quasi-PDFs

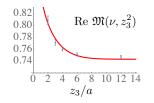
Parton Densities Transverse Momentum Cut-off Pseudo-distributior aPDFs aPDF/TMD relatior Hard tail Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building MS r

Summary

- Points corresponding to 7a ≤ z₃ ≤ 13a values
- Some scatter for points with $\nu \gtrsim 10$
- Otherwise, practically all the points lie on the universal curve based on f(x).
- No z₃-evolution visible in large-z₃ data
- Points in $a \le z_3 \le 6a$ region
- All points lie higher than the curve based on the z₃ ≥ 7a data
- Perturbative evolution increases real part of the pseudo-ITD when z_3 decreases
- Conjecture that the observed higher values of Re𝔐 for smaller-*z*₃ points may be a consequence of evolution

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト


Building $\overline{\mathrm{MS}}$ ITD

Evolution of Pseudo-PDFs and Quasi-PDFs

Parton Densities Transverse Momentum Cut-off Pseudo-distribution qPDFs qPDF/TMD relation Hard tail Gauge link Renormalization Reduced

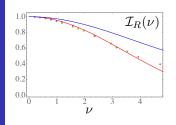
Evolution

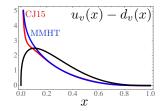
Data Building MS ITD

- z_3 -dependence of the lattice points for "magic" loffe-time value $\nu \equiv z_3 P_3 = 12\pi/16 = 3\pi/4$
- Eye-ball fit line has "Perturbative" $\ln(1/z_3^2)$ behavior for small z_3 , and rapidly tends to a constant for $z_3 \gtrsim 6a$
- $\Re(\nu, z_3^2)$ decreases when z_3 increases
- Starts to visibly deviate from a pure logarithmic $\ln z_3^2$ pattern for $z_3\gtrsim 5a$
- This sets the boundary $z_3 \leq 4a$ on the "logarithmic region"
- $\overline{\mathrm{MS}}$ ITD in terms of reduced pseudo-ITD

$$\begin{split} \mathcal{I}(\nu,\mu^2) &= \mathfrak{M}(\nu,z_3^2) + \frac{\alpha_s}{2\pi} C_F \int_0^1 dw \, \mathfrak{M}(w\nu,z_3^2) \\ &\times \left\{ \frac{1+w^2}{1-w} \left[\ln\left(z_3^2\mu^2 \frac{e^{2\gamma_E}}{4}\right) + 1 \right] + \left[4\frac{\ln(1-w)}{1-w} - 2(1-w) \right] \right\}_+ \end{split}$$

- $\mathcal{I}(\nu,\mu^2)$ should not depend on z_3
- This happens only if, for some α_s, the ln z₃²-dependence of the1-loop term cancels actual z₃²-dependence of the data, visible as scatter in the data


$\operatorname{Re} \mathfrak{M}(\nu, z_3^2)$


Numerical results for $\overline{\mathrm{MS}}$ ITD

Evolution of Pseudo-PDFs and Quasi-PDFs

Parton Densities Transverse Momentum Cut-off Pseudo-distributions aPDFs aPDF/TMD relation Hard tail Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data _{Data} Building <u>MS</u> ITD

- We choose $\mu = 1/a$ which, at lattice spacing of 0.093 fm is \approx 2.15 GeV
- Using $\alpha_s/\pi = 0.1$ and $z_3 \le 4a$ data, we generate the points for $\mathcal{I}_R(\nu, (1/a)^2)$
- Upper curve corresponds to the ITD of the CJ15 global fit PDF for μ =2.15 GeV
- Evolved points are close to some universal curve with a rather small scatter
- The curve itself corresponds to the cosine transform of a normalized $\sim x^a(1-x)^b$ distribution with a = 0.35 and b = 3
- $\sim x^{0.35}(1-x)^3$ PDF compared to CJ15 and MMHT global fits for $\mu = 2.15$ GeV
- Unable to reproduce $\sim x^{-0.5}$ Regge behavior
- Possible reasons: large pion mass, quenched approximation

Summary

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Evolution of Pseudo-PDFs and Quasi-PDFs

Parton Densities Transverse Momentum Cut-of Pseudo-distributio qPDFs qPDF/TMD relatio Hard tail

Benormalizatio

Reduced pseudo-ITD

Evolution in lattice data Data Building <u>MS</u> ITD

- Analyzed nonperturbative structure of quasi-PDFs Q(y, P) using their relation to pseudo-ITDs and TMDs
- Studied nonperturbative evolution of quasi-PDFs Q(y, P) with P using factorized models for TMDs
- Analyzed perturbative structure of quasi-PDFs using their relation to pseudo-ITDs and TMDs
- Argued that link-related terms should be "exterminated"
- Proposed to use reduced pseudo-ITD
- Studied evolution of exploratory lattice data for reduced pseudo-ITD