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Motivation for a first-principle 
calculation of  PDFs 

ò  Currently our best knowledge of  the PDFs comes from 
the global analysis of  high-energy scattering data 
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1. Extensive experimental analysis motivates a first principle 
calculation for comparison; 
 
2. First principle calculation might be able to shed light on 
kinematic regions and flavor structures where experiments cannot 
constrain so well; 
 
3. The cost of  improving calculations seems to be much smaller 
than building more expensive experiments. 
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Operator definition of  PDF 

ò  Definition of  PDFs in QCD factorization theorems: 

 

•  Gauge-invariant light-cone correlation; 

•  Boost invariant distribution, independent of  P; 

•  In the light-cone gauge A+=0, has a clear interpretation as parton 
number density, 
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q(x ,µ)= dξ−

4π∫ e-ixP
+ξ−

Pψ (ξ− )γ +U(ξ− ,0)ψ (0) P

		
U(ξ− ,0)= Pexp −ig dη−A+(η− )

0

ξ−

∫⎡
⎣⎢

⎤
⎦⎥		ξ

± = (t ± z)/ 2

		
σ = fa(x1)⊗ fb(x2)⊗σ ab

a ,b
∑

		q(x)~ dk+d2k⊥∫ δ(k+ − xP+ ) P n̂(k+ ,k⊥ ) P
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Lattice QCD is the only practical method to 
solve QCD nonperturbatively so far 
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Parton model: 
•  Minkowski space, real time 
•  Emerges in the IMF, or equivalently, the proton as 

seen by an observer moving at the speed of  light (on 
the light-cone) 

Lattice QCD: 
•  Euclidean space, imaginary time (t=iτ) 
•  Cannot calculate time-dependent 

quantities generally due to difficulty in 
analytical continuation in time 

•  Nucleon static or at finite momentum 
PDF not directly accessible 

from the lattice! 
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		ξ
+ = (t + z)/ 2 =0

		

eiS → e−S

O = DψDψDA	O(x)e−S∫



Large momentum effective theory 

ò  Quasi-PDF: 
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ξ− 

ξ3 = z l -l 

√2γl 

−√2γl 

ξ+ 
ξ0 = t •  Equal-time correlation along the z 

direction, calculable in lattice QCD 
when Pz<<Λ, and depend on Pz; 

•  Under an infinite Lorentz boost along 
the z direction (Pz>>Λ), the spatial 
gauge link approaches the light-cone 
direction, and the quasi-PDF reduces 
to the (light-cone) PDF. 

		 
!q(x ,Pz ,Λ = a−1)= dz

4π∫ eixP
zz Pψ (z)ΓU(z ,0)ψ (0) P

		
U(z ,0)= Pexp −ig dz 'Az(z ')

0

z

∫⎡
⎣⎢

⎤
⎦⎥

		z
µ = (0,0,0,z),								Γ = γ z 	or	γ 0

X. Ji, PRL 2013; Sci.China Phys.Mech.Astron. 2014.
Hatta, Ji, Zhao, 2013.
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Large momentum effective theory 

ò  The quasi PDF is related to the PDF through a 
factorization formula: 

 

ò  They have the same IR divergences; 

ò  C factor matches their UV difference, and can be 
calculated in perturbative QCD; 

ò  Power corrections suppressed by large Pz. 
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!q(x ,Pz ,Λ)= dy

| y |C
x
y
,Λ
µ
, µ
yPz

⎛
⎝⎜

⎞
⎠⎟
q( y ,µ)

−1

1

∫ +O(M
2

Pz
2 ,

ΛQCD
2

Pz
2 )

Ma and Qiu, 2014;  
See also Qiu’s talk 



Large momentum effective theory 

Necessity of  a lattice renormalization: 

•  Not necessary as long as one can absorb the UV divergence into 
the matching coefficient C; 

•  However, linear divergence in the quasi-PDF makes a fixed 
order calculation of  C not sufficient. Therefore, we need a 
nonperturbative renormalization of  the power divergence. 
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!q(x ,Pz ,Λ)= dy

| y |C
x
y
,Λ
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yPz

⎛
⎝⎜

⎞
⎠⎟
q( y ,µ)

−1

1
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Other proposals 
Pseudo-PDF approach: 

•  Formally, pseudo-PDF is defined from the same equal-time correlation as 
quasi-PDF, and satisfies an equivalent factorization theorem at small |z|; 

•  The nontrivial part is that Radyushkin defined a “reduced Ioffe-time 
distribution” by forming the ratio of  two nucleon matrix elements; 
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		 Pψ (z)γ
0U(z ,0)ψ (0) P =2P0 !Q(zPz ,z2)

Ji, Zhang, Zhao, 2017; T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., 2018 

		 

!Q(zPz ,z2)
!Q(0,z2)

Radyushkin, 2017;  
Karpie, Orginos, Radyushkin, Zafeiropoulos, 2017 

A rigorous relation to the PDF can only be established at small |z| as before; 
A parametrized form of  the PDF to fit all the data points with 1-loop corrections. 

See A. Radyushkin and J. Karpie’s talks 
Higher Moments: Z. Davoudi and M. Savage, PRD 2012;
OPE of current-current correlator: D. Lin and W. Detmold, PRD 2006; A. J. Chambers 
et al. (QCDSF), PRL 2017;
Hadronic tensor: K.F. Liu (et al.), 1994, 1999, 1998, 2000, 2017. 

Lattice cross section: Y.-Q. Ma and J. Qiu, 2014, 2017.
Factorization of Euclidean Correlations in Coordinate Space: V. M. Braun and 
D. Mueller,  EPJ C 2008; G. S. Bali, V. M. Braun, A. Schaefer, et al., 2017.

See Qiu’s talk 



Procedure of  Systematic Calculation 
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2

on the scheme). Fourier transforming to momentum space as in Eq. (3), the renormalization for the quasi-PDF
involves a convolution in the momentum fraction,

q̃
B
i (x, P z

, ✏) =
X

j

P
z

Z
+1

�1
dx

0
Z̃ij (x� x

0
, ✏, µ̃) q̃j(x

0
, P

z
, µ̃) . (5)

The structure of the renormalization of the quasi-PDF in Eqs. (4) and (5) is similar to that of the quark beam-
function [11, 12], which is a proton distribution with separations along both the plus and minus light-cone directions.
Ref. [12] gives an all orders proof of the position space multiplicative renormalization of the beam function, and this
proof also implied that there is never parton mixing in this case. Since this lack of mixing has not yet been explored
for the quasi-PDF’s renormalization, we included a

P
j in our Eqs. (4) and (5), where j sums over quarks and gluons.

For a nucleon moving with finite but large momentum P
z
� ⇤QCD, the quasi PDF can be matched onto the PDF

through a momentum space factorization formula [10, 13]:

q̃i(x, P
z
, µ̃) =

Z
+1

�1

dy

|y|
Cij

✓
x

y
,
µ̃

P z
,
µ

P z

◆
qj(y, µ) +O

✓
M

2

P 2
z

,
⇤2

QCD

P 2
z

◆
, (6)

where Cij is the matching coe�cient, and the O(M2
/P

2
z ,⇤

2

QCD
/P

2
z ) terms are higher-twist corrections suppressed

by the nucleon momentum (M is the nucleon mass). Here qj(y, µ) for negative y corresponds to the anti-quark
contribution. The power corrections are related to higher-twist contributions in the quasi PDF. Note that it is
important to distinguish between the renormalization of the PDF and quasi-PDF given by the Zijs and the matching
given by the Cijs. The renormalization constants occur in a relation between bare and renormalized matrix elements
for the same operators. On the other hand the matching coe�cients occur in a relation between renormalized matrix
elements of di↵erent operators. The q̃ and q have the same collinear and infrared (IR) divergences, so at perturbative
scales µ and µ̃ the Cijs can be calculated order by order in ↵s.

Based on Ji’s proposal, the procedure of calculating PDF from lattice QCD can be summarized as:

1. Lattice simulation of the quasi PDF;

2. Renormalization of the quasi PDF in a particular scheme on the lattice;

3. Subtraction of higher-twist corrections;

4. Matching quasi PDF in the particular scheme to PDF in the MS scheme.

E↵orts have been made to calculate the iso-vector quark distributions fu�d, including unpolarized, polarized, and
transversity distributions, from lattice QCD [14–17]. The one-loop matching coe�cients was first calculated in the
continuum theory [18] and confirmed in Refs. [15, 19]. The nucleon-mass corrections of O(M2

/P
2
z ) have already

been included in the lattice calculations [14–17], and the O(⇤2

QCD
/P

2
z ) correction was numerically fit in Ref. [16]. (A

direct lattice calculation of the O(⇤2

QCD
/P

2
z ) correction is still desired from the theoretical point of view). So far the

renormalization of the lattice matrix element of quasi PDF, i.e., Step 2, is absent in the analyses of Refs [14–17]. With
increasing nucleon momentum P

z, the latter will be the most important factor that limits the precision of lattice
calculation of PDFs.

One of the standard methods to renormalize operators in lattice QCD is the lattice perturbation theory [20]. In
practice, it requires a tedious amount of work to compute lattice Feynman diagrams for quasi PDF and limits our
ability to go to higher loop orders. An alternative is nonperturbative methods, such as the regularization-invariant
momentum subtraction (RI/MOM) scheme, that has been widely used to renormalize local operators on the lattice [21].
Work in progress to calculate the lattice quasi-PDFs in the RI/MOM scheme has been reported in [22], and appears
to be the most promising route for future higher precision quasi-PDF determinations.

In this paper we focus on the implementation of Step 4 when the lattice quasi PDF is defined in the RI/MOM
scheme. In particular we carry out a perturbative calculation of the matching coe�cient C that directly enables
this lattice quasi PDF to be directly matched onto the MS PDF. The renormalized matrix elements in the RI/MOM
scheme are independent of the UV regularization, so we carry out this matching perturbatively with dimensional
regularization.

An alternative to the approach we take here would be to convert the lattice quasi PDF defined with nonperturbative
renormalization in the RI/MOM scheme back to the MS scheme perturbatively. This would then allow the MS
matching result for C in Ref. [18] to be used. Our approach is simpler and more direct, with only a single step
involving a perturbative calculation. Nevertheless it would be interesting to compare both approaches. is

(I still need to edit this paragraph: –is) In Section II we elaborate on the procedure of implementing the
RI/MOM scheme for quasi PDF; In Section III we provide result of one-loop matching coe�cient between quasi PDF
in the RI/MOM scheme and PDF in the MS scheme; We conclude in Section V.

1. Simulation of the quasi 
PDF in lattice QCD 

2. Renormalization of the 
lattice quasi PDF, and then 
taking the continuum limit 

3. Subtraction of higher 
twist corrections 

4. Matching to the MSbar PDF. 
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Renormalization 
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FIG. 1: One-loop Feynman diagrams for the nonlocal quark bilinear operator. The quark self energy diagram is also
implied.
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The second term in the bracket of Eq. (13) which is proportional z does not contribute to the loop integral as it is
odd under the exchange of pz � k

z
! �(pz � k

z).
The quark self-energy correction is the tree level matrix element times the renormalization factor defined in the

on-shell scheme,
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However, for our purpose here, it will be expressed in an integral form in Eq. (17) to make sure that vector current
conservation is satisfied.

Since there is an exponential of exp(�ik
z
z) in the integrand of each Feynman diagram, the result will be a compli-

cated functional form of z that does not serve to our purpose of matching. Instead, we use the identity

f(z) = p
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Z 1
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dx

2⇡
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Z 1
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f(z0) (15)

to express each Feynman diagram as the inverse Fourier transform of the variable x = k
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By directly evaluating the loop integrals in Eqs. (11–13), we find that they are all UV finite and regular at ✏ = 0.
The result is summarized as:

��(z) = ��vertex(z) + ��sail(z) + ��tadpole(z) + quark self-energy correction
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For an open smooth Wilson line W(z,0), its self  energy includes a linear 
divergence: 

=
αS

2π
c1Λ | z |
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FIG. 1: One-loop Feynman diagrams for the nonlocal quark bilinear operator. The quark self energy diagram is also
implied.
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FIG. 1: One-loop Feynman diagrams for the nonlocal quark bilinear operator. The quark self energy diagram is also
implied.
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The second term in the bracket of Eq. (13) which is proportional z does not contribute to the loop integral as it is
odd under the exchange of pz � k

z
! �(pz � k

z).
The quark self-energy correction is the tree level matrix element times the renormalization factor defined in the

on-shell scheme,
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+O(g4) . (14)

However, for our purpose here, it will be expressed in an integral form in Eq. (17) to make sure that vector current
conservation is satisfied.

Since there is an exponential of exp(�ik
z
z) in the integrand of each Feynman diagram, the result will be a compli-

cated functional form of z that does not serve to our purpose of matching. Instead, we use the identity

f(z) = p
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dx
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f(z0) (15)

to express each Feynman diagram as the inverse Fourier transform of the variable x = k
z
/p

z. For example,

��vertex(z) =
1

4

Z 1

�1

dx

2⇡
e
�ixpzzTr


/p

Z
d
d
k

(2⇡)d
(�ig⌧

a
�
µ)

i

/k
�
z i

/k
(�i⌧

a
�
⌫)

�igµ⌫

(p� k)2

�
(2⇡)�(kz � xp

z) . (16)

By directly evaluating the loop integrals in Eqs. (11–13), we find that they are all UV finite and regular at ✏ = 0.
The result is summarized as:
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+….. 		+.....= eδm*|z| , 						δm~Λ
In coordinate space, it can be multiplicatively renormalized as: 

2

3. Subtraction of the power corrections;

4. Matching quasi PDF to PDF in the MS scheme.

E↵orts have been made to calculate the iso-vector quark distributions fu�d, including unpolarized, polarized, and
transversity distributions, from lattice QCD [4–7]. The one-loop matching coe�cients was first calculated in the
continuum theory [8], and the nucleon-mass corrections of all orders of M2

/P
2
z have already been included in these

works. The O(⇤2
QCD/P

2
z ) correction was derived and numerically fitted in Ref. [6]. While a lattice calculation of

O(⇤2
QCD/P

2
z ) correction is still expected from the theoretical point of view, a renormalization of the lattice matrix

element of quasi PDF, i.e., Step 2, is absent in the analyses of Refs [4–7]. With increasing nucleon momentum P
z,

the latter will be the most important factor that limits the precision of lattice calculation of PDFs.
One of the standard methods to renormalize operators in lattice QCD is the lattice perturbation theory [9]. In

practice, it requires a tedious amount of work to compute lattice Feynman diagrams for quasi PDF and limits
our ability to go to higher loop orders. Therefore, in this manuscript we focus on a nonperturbative method, the
regularization-invariant momentum subtraction (RI/MOM) scheme, that has been widely used to renormalize local
operators on the lattice [10]. The renormalized matrix elements in the RI/MOM scheme is independent of the
UV regularization, so we just need to do the perturbative matching in the continuum theory with dimensional
regularization. In Section II we elaborate on the procedure of implementing the RI/MOM scheme for quasi PDF; In
Section III we provide result of one-loop matching coe�cient between quasi PDF in the RI/MOM scheme and PDF
in the MS scheme; We conclude in Section IV.

II. RENORMALIZATION OF QUASI PDF IN THE RI/MOM SCHEME

As has been shown in Ref. [8], the quasi PDF has a linear divergence in theories with an ultraviolet (UV) cut-
o↵. In dimensional regularization, the linear divergence vanishes, and it is demonstrated that the quasi PDF is
multiplicatively renormalizable to two loops [11]. This indicates that the linear divergence can be systematically
subtracted from the quasi PDF to make the latter multiplicatively renormalizable in a UV cut-o↵ regularization
scheme. Indeed, the linear divergence arises from the self energy of the Wilson line W (z, 0) in the quasi PDF, which
can be renormalized as [12–14]

W
B(z, 0) = Zze

�m|z|
W

R(z, 0) , (4)

where “B” and “R” stand for the bare and renormalized quantities respectively. The exponential factor e
�m|z|

introduces counterterms that cancel the linear divergences in the bare quasi PDF, whereas the renormalization factor
Zz depends on the end points of the Wilson line and includes only logarithmic divergences. The subscript “z” in Zz

denotes the auxiliary field that represents a Wilson line [14].
It is intuitive to generalize this renormalization relation to gauge-invariant nonlocal quark bilinear operators, as

was used in [15, 16]. For the iso-vector (non-singlet) case, we do not have to consider operator mixing, so

 ̄B(z)�
z
W

B(z, 0) B(0) = Z ,ze
�m|z|

 ̄R(z)�
z
W

R(z, 0) R(0) , (5)

where Z ,z only depends on the end points and include logarithmic divergences. Through power counting of all the
Feynman diagrams, it is argued in Ref. [17] that the exponential factor is su�cient to remove all the linear divergences.
A rigorous proof of the renormalization relation in Eq. (5) is expected from [18] in the future.

In perturbation theory, one can determine �m order by order to remove the linear divergences [17]. On the lattice
with spacing a, the linear divergence is proportional to 1/a and has to be removed at all orders, or, nonperturbatively,
to have a well-defined continuum limit. One strategy is to determine �m from the renormalization of Wilson loop
that corresponds to the static quark-antiquark potential [15, 16]. When the separation of the quark-antiquark is small
compared to 1/⇤QCD, the static potential can have a perturbative expression, which is used to demonstrate that �m
defined this way does really cancel the linear divergence of quasi PDF [16]. However, it should be noted that this is
not the only strategy to subtract the linear divergence from quasi PDF. As pointed out in [15], a remaining challenge
within this procedure is to associate a renormalization scale with the renormalization condition for the Wilson loop.
This is an important issue because we have explicitly set the renormalization scale µR for quasi PDF in Eq. (6). For
our purpose, it would be more useful if we can redefine the quasi PDF to make it free of linear divergence [19, 20],
though a practical solution has not been proposed yet.

After the nonperturbative subtraction of linear divergences, we are still left to determine the renormalization factor
Z ,z. To obtain Z ,z perturbatively, we need the perturbative expression of �m which is not applicable for large
separations. Besides, calculating Z ,z in lattice perturbation theory is cumbersome, and numerical techniques are

V. S. Dotsenko and S. N. Vergeles, 1980
N. S. Craigie and H. Dorn, 1981
H. Dorn, 1986

•  eδm*|z| introduces counterterms that cancel 
the linear divergences in the Wilson line 
self  energy; 

•  Zz depends on the end points and only 
includes logarithmic divergences. 
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Renormalization 

ò  The gauge-invariant quark Wilson line operator can be 
renormalized multiplicatively in the coordinate space: 

ò  No mixing with different flavors (J. Green et al., 2017; T. Ishikawa, 

Y.-Q. Ma, J. Qiu, S. Yoshida, 2017.); 

ò  Different renormalization schemes can be converted to 
each other in coordinate space; 

		 
!OΓ(z)=ψ (z)ΓW(z ,0)ψ (0)= Zψ ,ze

−δm|z| ψ (z)ΓW(z ,0)ψ (0)( )R
X. Ji, J.-H. Zhang, and Y.Z., 2017; J. Green et al., 2017 
T. Ishikawa, Y.-Q. Ma, J. Qiu, S. Yoshida, 2017. 
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Renormalization 

On the lattice, there is operator mixing due to broken Lorentz and 
chiral symmetries: 

ò  For Γ=γz, the quark bilinear OΓ mixes with Γ=1 at O(a0), 
and mixes with higher dimensional operators starting at O(a1); 

ò  For Γ=γ0, the quark bilinear OΓ  does no mix with Γ=1 at 
O(a0), but mixes with higher dimensional operators starting at 
O(a1); 

ò  In either case, there is no power divergent mixing which goes 
like 1/an (n>0), unlike the moments (Rossi and Testa, 2017). 
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M. Constantinou and H. Panagopoulos, 2017; J. Green et al., 
2017; T. Ishikawa et al. (LP3), 2017. 



Regularization-independent momentum 
subtraction (RI/MOM) scheme 

A regularization-independent momentum subtraction 
scheme (RI/MOM): 

 

 

ò  Can be implemented nonperturbatively on the lattice. 

ò  Introduce two intermediate scales μR and Pz
R, whose 

dependence shall be cancelled in the matching. 
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ZOM
−1 (z ,a−1 ,pzR ,µR ) p !OΓ(z) p p2=µR

2

pz=pz
R

= p !OΓ(z) p tree

ZOM(z ,a−1 ,pzR ,µR )=
p !OΓ(z) p p2=µR

2

pz=pz
R

p !OΓ(z) p tree

Martinelli et al., 1994 



Power corrections 

ò  Consider an operator product expansion as |z|->0 for the iso-
vector case (in the MSbar scheme): 

ò  At large Pz, the nucleon contracts in the longitudinal direction. 
Equal-time correlation dominant within z~1/Pz,  
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!O
γ z
(z2µ2)= Cn(µ2z2)(−iz)

n

n! nµ1"nµnO
µ0µ1"µn

n=0
∑ +higher-twist

		 O
µ0µ1!µn =ψ (0)γ (µ0iDµ1!iDµn )ψ (0)− trace

		 P higher-twist	 P =O(z2ΛQCD
2 )~O(ΛQCD

2 /Pz2)

		 P O
µ0µ1!µn P =2an+1(µ) P

µ0Pµ1!Pµn −trace⎡
⎣

⎤
⎦ , 				trace~O(M

2 /Pz2)

		n
µ = (0,0,0,1),	µ0 = z

		an+1(µ)= dy 	ynq( y ,µ)∫



Power corrections 

ò  O((M/Pz)2) corrections, or target-mass corrections (O 
Nachtmann, NPB 1973); 

ò  Expressions derived for all orders of  (M/Pz)2 (J.W. Chen et 
al., NPB, 2016; Also in A. Radyushkin, 2017): 

!!q(x) = 1+ 4c f−
n

f+
n+1 (1+ (−1)n ) !q( f

n+1
+   x

2 f n−
)+ (1+ (−1)n !q(− f

n+1
+   x

2 f n−
)

⎡

⎣
⎢

⎤

⎦
⎥

n=0

∞

∑ ,

c = M 2

4Pz
2 ,      f± = 1+ 4c ±1.

5/22/18 18 QCD Evolution 2018 



Higher-twist corrections 

ò  O((ΛQCD/Pz)2) corrections 

•  Need to simulate and renormalize matrix elements of  
higher-twist operators; 

•  We can postpone it, and in the end extrapolate to IMF 
limit after completing all the other corrections. 
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7

C. ⇤2
QCD/P 2

z Correction

This correction comes from the trace part on the left-hand side of Eq. 7, which is a twist-4 e↵ect and can be
implemented by adding a q̃twist-4 contribution to q̃, such that

q̃(x,⇤, Pz) ! q̃(x,⇤, Pz) + q̃twist-4(x,⇤, Pz). (25)

As derived in Appendix C,

q̃twist-4(x,⇤, Pz) =
1

8⇡

Z 1

�1
dz �0 (�ixzPz) hP |Otr(z)|P i , (26)

where �0 is the incomplete Gamma function and

Otr(z) =

Z z

0
dz1  ̄(0)

h
�
⌫� (0, z1)D⌫� (z1, z)

+

Z z1

0
dz2 � · �� (0, z2)D

⌫� (z2, z1)D⌫� (z1, z)
i
 (z�). (27)

Instead of computing these corrections directly on the lattice, we only parametrize and fit them as a 1/P 2
z correction

after we have removed other leading-Pz corrections.

D. Summary of the Finite Pz Corrections

Here we summarize the procedure needed to implement finite-Pz corrections, and use the unpolarized u(x)� d(x)
PDF as an example. We focus on the flavor-nonsinglet PDF such that there is no mixing with the gluon PDF. The
generalization to the polarized case will be shown in the next section.

We start with the computation of the equal-time correlator on a Euclidean lattice:

hlat (z, Pz,⇤) =
1

2Pz

*
P

����� ̄(0)�z

 
Y

n

Uz(nẑ)

!
 (z)

�����P
+
, (28)

which is the lattice version of Eq. 1 with �µ = (0, 0, 0,�1) and Uµ is a discrete gauge link in the µ direction. hlat (0)
is the total quark number of the hadronic state. The quasi-PDF is the Fourier transform of hlat:

eq(x, Pz,⇤) ⌘

Z 1

�1

dz Pz

2⇡
e
ixzPzhlat. (29)

The second step is to implement the one-loop matching to convert eq(x, Pz,⇤) in the lattice scheme to qI(x, Pz, µ)
in the MS scheme:

qI(x) ' eq(x)�
↵s

2⇡

Z 1

�1
dy


Z

(1)

✓
x

y

◆
eq(y)
|y|

� Z
(1)
⇣
y

x

⌘ eq(x)
|x|

�
. (30)

We will use the Z
(1) factor derived in Ref. [16] (also listed in Appendix A for completeness), which matches the

momentum cuto↵ scheme with the MS scheme. This Z
(1) factor is accurate up to the leading logarithm but not

for the numerical constant. One should replace the momentum cuto↵ calculation with a lattice perturbation theory
calculation to get the correct numerical constant in the future.

The third step is to remove the O(M2n
/P

2n
z ) correction from qI(x, Pz, µ):

qII(x) =
p
1 + 4c

1X

n=0

f
n
�

f
n+1
+

h
(1 + (�1)n)qI

⇣
f
n+1
+ x

2fn
�

⌘
+ (1� (�1)n)qI

⇣
�f

n+1
+ x

2fn
�

⌘i

=
p
1 + 4c

1X

n=0

(4c)n

f
2n+1
+

h
(1 + (�1)n)qI

⇣
f
2n+1
+ x

2(4c)n

⌘
+ (1� (�1)n)qI

⇣
�f

2n+1
+ x

2(4c)n

⌘i
. (31)



Matching 

ò  Renormalization on the lattice in a particular scheme 
“X”: 

ò  Regularization-invariance: 

ò  Matching only needs to be performed in the dimensional 
regularization scheme in the continuum theory! 
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		 ZX
−1(a−1 , !µ)!qB(z ,Pz ,a−1)= lim

a→0
ZX

−1(a−1 , !µ)!qB(z ,Pz ,a−1)+O(a)

		 lima→0
ZX

−1(a−1 , !µ)!qB(z ,Pz ,a−1)= ZX−1(ε , !µ)!qB(z ,Pz ,ε ),				d = 4−2ε



Matching Coefficient 

ò  One-loop matching coefficient: 
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where ⌘ ⌘ p
z
/p

z
R. For the momentum space one-loop quasi-PDF q̃

(1)

OM
(x, pz, µR) the di↵erence

⇥
�(y � x) � �(1 � x)

⇤

gives a plus-function. We therefore define the following plus functions with subtractions at y = 1

Z 1

1

dy
⇥
g(y)

⇤
�f(y) =

Z 1

1

dy g(y)
⇥
f(y)� f(1)

⇤
,

Z
1

0

dy
⇥
g(y)

⇤
+
f(y) =

Z
1

0

dy g(y)
⇥
f(y)� f(1)

⇤
,

Z
0

�1
dy

⇥
g(y)

⇤
 f(y) =

Z
0

�1
dy g(y)

⇥
f(y)� f(1)

⇤
, (36)

for arbitrary functions g(y) and f(y). The renormalized momentum space quasi-PDF in the RI/MOM scheme in
Feynman gauge is therefore

q̃
(1)

OM
(x, pz, pzR, µR) (37)
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+
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h(x, rR)� |⌘|h

�
1 + ⌘(x� 1), rR

��
.

Note that the last term vanishes for ⌘ = 1.
Next we consider the PDF calculated with the same o↵-shellness regulator, once again using the same identity in

Eq. (12) to uniquely define our treatment of the spinors when working o↵-shell. With this definition the renormalized
one-loop matrix element of PDF in the MS scheme is given by

q
(1)(x, µ) =

↵sCF

2⇡
(4⇣)

8
>><

>>:

0 x > 1
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+
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0 x < 0

. (38)

Considering the factorization formula in Eq. (11), the matching coe�cient COM between the renormalized quasi-PDF
in the RI/MOM scheme and standard PDF in the MS scheme is then determined by the di↵erence between the
momentum space quasi-PDF and PDF results

C
OM
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s) , (39)

which gives the one-loop matching coe�cient
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where rR is given in Eq. (30) and h in Eq. (26). When this result is used in the matching formula Eq. (11) one
must take p

z = yP
z and hence ⌘ = yP

z
/p

z
R. This is the result for the matching between quasi-PDF in the RI/MOM

scheme and PDF in the MS scheme for the non-singlet case in Feynman gauge. As expected, COM is independent
of the IR regulator �p

2 since the logarithmic IR singularities cancel between the quasi-PDF and PDF. An alternate
derivation of Eq. (40) with a di↵erent choice for the IR regulator is given in App. B

The result in the RI/MOM scheme in Eq. (40) also exhibits convergent behavior as ⇠ ! ±1. In section III B below
we compare this behavior with the results obtained with the quasi-PDF in a MS and transverse cuto↵ schemes.

A. Landau and General Covariant Gauge

In lattice QCD, the RI/MOM scheme is most easily
implemented in the Landau gauge, so in this section we
extend our calculation to give the matching result for a
general covariant gauge where the gluon propagator is

iD
µ⌫
⌧ (k) = �

i

k2


g
µ⌫

� (1� ⌧)
k
µ
k
⌫

k2

�
. (41)

Here ⌧ = 0 corresponds to the Landau gauge. We write
the quasi-PDF in a general covariant gauge as the ⌧ = 1

Feynman gauge result plus a correction

q̃
OM

⌧ (x, pz, pzR, µR) = q̃
OM(x, pz, pzR, µR) (42)

+�q̃
OM

⌧ (x, pz, pzR, µR) .

The correction from the (1 � ⌧) term in Eq. (41) is at
one-loop given by

�q̃
OM

⌧ (x, pz, pzR, µR) = (1� ⌧)
↵sCF

2⇡
(4⇣)

8
>>>>><

>>>>>:

h
�h⌧ (x, rR)

i

�
x > 1

0 0 < x < 1
h
�h⌧ (x, rR)

i

 
x < 0

+ (1� ⌧)
↵sCF

2⇡
(4⇣)

h
��h⌧ (x, rR) + |⌘|�h⌧

�
1 + ⌘(x� 1), rR

�i
, (43)

where

�h⌧ (x, rR) ⌘

8
>>>>>>><

>>>>>>>:

(1� 2x) r2R
2(1� x) [rR + 4x(x� 1)]2

x > 1

1� 2x

2(1� x)
0 < x < 1

�(1� 2x) r2R
2(1� x) [rR + 4x(x� 1)]2

x < 0

. (44)

For the PDF with an o↵-shell momentum regulator, there is also an additional contribution,

q
(1)

⌧ (x, µ) = (1� ⌧)
↵sCF

2⇡
(4⇣)

8
>><

>>:

0 x > 1✓
1� 2x

2(1� x)

◆

+

0 < x < 1

0 x < 0

. (45)

As a result, the matching coe�cient for a general covariant gauge is given by the Feynman gauge result from Eq. (40)
plus an additional term

C
OM

⌧

⇣
⇠,

µR

pzR

,
µ

pz
,
p
z

pzR

⌘
= C

OM

⇣
⇠,

µR

pzR

,
µ

pz
,
p
z

pzR

⌘
+ (1� ⌧)

↵sCF

2⇡

8
>>>><

>>>>:

h
�h⌧ (⇠, rR)

i

�
⇠ > 1

✓
�
(1� 2⇠)

2(1� ⇠)

◆

+

0 < ⇠ < 1
h
�h⌧ (⇠, rR)

i

 
⇠ < 0

+ (1� ⌧)
↵sCF

2⇡
(4⇣)

h
��h⌧ (⇠, rR) + |⌘|�h⌧

�
1 + ⌘(⇠ � 1), rR

�i
. (46)

I. Stewart and Y. Z., 2017.
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Outline 

ò  Large momentum effective theory 

•  Formalism 

•  Procedure of  a systematic calculation 

ò  Lattice results 
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Lattice simulation 

Lattice setup: 

ò  Clover valence fermions 

ò  Nf=2+1+1 flavors of  HISQ ensemble generated by MILC 

ò  a=0.09fm, L=5.8fm, mπ~135MeV 

ò  Ncf=310 

ò  1-step HYP smeared gauge link, Gaussian momentum smearing 
for the quark field 

ò  Pz=2.2, 2.6, 3.0 GeV  

ò  Simultaneous fit of  correlators on 4 source-sink separations, 
0.72, 0.81, 0.90, 1.08 fm. 

5/22/18 QCD Evolution 2018 23 

J.-W. Chen, L. Jin, H.-W. Lin, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang,  
and Y.Z., arXiv: 1803.04393 



Matching 

ò  Fourier transform of  the spatial correlation: 

ò  Inversion of  the factorization formula: 
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!q(x)= dz
−zmax

zmax∫
eixzP

z

−ix
∂z !hR(z)

= Pz dz
−zmax

zmax∫ 	eixzPz !hR(z)−
1
−ix

[eixzmaxPz !hR(zmax )−e
− ixzmaxP

z !hR(−zmax )]

		 

!q=C⊗q, 										q=C −1⊗ !q,

C( x
y
)=δ( x

y
−1)+α SCF

2π C (1)( x
y
),										C −1( x

y
)≈δ( x

y
−1)−α SCF

2π C (1)( x
y
).

|zmax |Pz~15 

•  Remove the oscillatory behavior due to the truncation in the Fourier transform;  
•  Equivalent to assuming that the spatial correlation beyond |zmax| is flat; 
•  We can loosen the assumption by considering the Regge behavior of  the PDF at small x. 

Lin et al., 2017 
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nucleon boost momenta, Pz = 2.2 GeV, before and after
applying the matching formula of Eq. 5. The matching
raises the antiquark (i.e. negative-x region) asymmetry
for x < �0.05, and lowers the positive mid-x to large x

quark distribution, compared with our exploratory study
and heavier-pion PDF. After matching, we study the de-
pendence on the nucleon boost momentum, shown in
Fig. 3. Within the statistical errors, the distribution
seems to converge across the three momenta. However,
the central values shift noticeably from 2.2 to 3.0 GeV,
moving the antiquark distribution toward the asymmetry
measured in experiment: d̄(x) > ū(x).
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FIG. 2. The quasi-PDF and matched PDF with nucleon boost
momentum 2.2 GeV. The parameters of the central value of
matched PDF is (µR, p

R
z ) = (3.7, 2.2) GeV. The matching

process lowers the quasi-PDF at large positive x and enhances
the small-x region’s quark asymmetry. It significantly changes
the antiquark asymmetry at this nucleon momentum.

FIG. 3. Nucleon boost momentum dependence of the matched
unpolarized isovector PDFs. The parameters of the central
value of matched PDF is (µR, p

R
z ) = (3.7, 2.2) GeV. For quark

asymmetry, the shape is consistent throughout most x re-
gions. However, in the antiquark region, there is a significant
change in distribution as momentum increases.

The final result from this paper, shown in Fig. 4, sig-
nificantly improves on our previous results at physical
pion mass [33]. We increase the nucleon momenta used
in the calculation from 0.4, 0.8, 1.3 GeV to 2.2, 2.6 and

3.0 GeV. We use O�t operator here rather than the O�z

used in Ref. [29]. (Though we showed in Ref. [29] that
the final PDF is consistent when including the scalar ma-
trix elements.) We extend our matrix element analysis
to include an extra term due to the excited states. We
increase at least a factor of 10 in statistics. We also in-
clude the complete matching needed from the RI/MOM
quasi-PDF to MS lightcone PDF.

While finalizing our analysis, another PDF result at
physical pion mass was reported by ETMC [49]. There
are several advantages to our work: LargerM⇡L (roughly
4 vs 3) to minimize the finite-volume e↵ects, larger nu-
cleon boost momentum to suppress the power correc-
tions, bigger zPz range to increase reliable x-regions,
multistate fitting to remove excited-state contamination.
It is notable that our results agree with the sea quark
asymmetry seen experimentally and agree with zero in
unphysical regions |x| > 1. ETMC’s results have os-
cillations that continue into the |x| > 1 regions, which
is possibly due to truncation of the Fourier transforma-
tion [33].

Other possible sources of systematic uncertainty in-
clude: 1) Higher-twist corrections: Taking Pz = 3.0 GeV,
we do not see significant di↵erence in the |x| > 0.2 re-
gions, indicating that the higher-twist correction is well-
controlled when x is not too small. 2) Truncation e↵ects:
At our largest nucleon boost momentum, our largest
zmaxPz is around 27.5. When we reconstruct a known
PDF, there is significant di�culty in reproducing the
small-x regions |x| < 0.15. Note that other lattice-PDF
calculations use smaller zmaxPz, yielding smaller reliable
regions in x-space. By extending to large displacement z
or large momentum Pz on finer lattice spacing in future
work, this can be improved straightforwardly. 3) O(↵2

s)
error in perturbation theory: we estimated the O(↵2

s) er-
ror by applying matching to experimental fitted PDF to
quasi-PDF using Eq. 5 and then do the inverse matching
back to PDF. We find that the error is about the same
size as the statistical error.

We have presented new lattice-QCD results for the
isovector unpolarized PDF (that is, the up-down quark
asymmetry in the proton), which has much potential im-
pact on current PDF estimates in the near future: 1)
The isovector PDF at large x can be used as a con-
straint in global PDF analysis. The large-x experimental
data are often contaminated by nuclear e↵ects, which
are hard to cleanly remove. Many current PDF analy-
ses (see references in Ref. [62]) rely on extrapolation in
these regions. There are ongoing LHCb measurements
that can potentially improve and constrain the PDF in
the large-x region, but the precision of these data are not
yet good enough to make a di↵erence. A recent commu-
nity whitepaper among lattice and global analysis prac-
titioners [62] predicted that a calculation of the large-x
isovector with 10% final error can improve on the current
PDF, especially in the antiquark regions where experi-
mental inputs are even scarcer. Currently, we are able to
reproduce the global PDF results; the next step will be
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FIG. 3. Nucleon boost momentum dependence of the matched
unpolarized isovector PDFs. The parameters of the central
value of matched PDF is (µR, p
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z ) = (3.7, 2.2) GeV. For quark

asymmetry, the shape is consistent throughout most x re-
gions. However, in the antiquark region, there is a significant
change in distribution as momentum increases.

The final result from this paper, shown in Fig. 4, sig-
nificantly improves on our previous results at physical
pion mass [33]. We increase the nucleon momenta used
in the calculation from 0.4, 0.8, 1.3 GeV to 2.2, 2.6 and

3.0 GeV. We use O�t operator here rather than the O�z

used in Ref. [29]. (Though we showed in Ref. [29] that
the final PDF is consistent when including the scalar ma-
trix elements.) We extend our matrix element analysis
to include an extra term due to the excited states. We
increase at least a factor of 10 in statistics. We also in-
clude the complete matching needed from the RI/MOM
quasi-PDF to MS lightcone PDF.

While finalizing our analysis, another PDF result at
physical pion mass was reported by ETMC [49]. There
are several advantages to our work: LargerM⇡L (roughly
4 vs 3) to minimize the finite-volume e↵ects, larger nu-
cleon boost momentum to suppress the power correc-
tions, bigger zPz range to increase reliable x-regions,
multistate fitting to remove excited-state contamination.
It is notable that our results agree with the sea quark
asymmetry seen experimentally and agree with zero in
unphysical regions |x| > 1. ETMC’s results have os-
cillations that continue into the |x| > 1 regions, which
is possibly due to truncation of the Fourier transforma-
tion [33].

Other possible sources of systematic uncertainty in-
clude: 1) Higher-twist corrections: Taking Pz = 3.0 GeV,
we do not see significant di↵erence in the |x| > 0.2 re-
gions, indicating that the higher-twist correction is well-
controlled when x is not too small. 2) Truncation e↵ects:
At our largest nucleon boost momentum, our largest
zmaxPz is around 27.5. When we reconstruct a known
PDF, there is significant di�culty in reproducing the
small-x regions |x| < 0.15. Note that other lattice-PDF
calculations use smaller zmaxPz, yielding smaller reliable
regions in x-space. By extending to large displacement z
or large momentum Pz on finer lattice spacing in future
work, this can be improved straightforwardly. 3) O(↵2

s)
error in perturbation theory: we estimated the O(↵2

s) er-
ror by applying matching to experimental fitted PDF to
quasi-PDF using Eq. 5 and then do the inverse matching
back to PDF. We find that the error is about the same
size as the statistical error.

We have presented new lattice-QCD results for the
isovector unpolarized PDF (that is, the up-down quark
asymmetry in the proton), which has much potential im-
pact on current PDF estimates in the near future: 1)
The isovector PDF at large x can be used as a con-
straint in global PDF analysis. The large-x experimental
data are often contaminated by nuclear e↵ects, which
are hard to cleanly remove. Many current PDF analy-
ses (see references in Ref. [62]) rely on extrapolation in
these regions. There are ongoing LHCb measurements
that can potentially improve and constrain the PDF in
the large-x region, but the precision of these data are not
yet good enough to make a di↵erence. A recent commu-
nity whitepaper among lattice and global analysis prac-
titioners [62] predicted that a calculation of the large-x
isovector with 10% final error can improve on the current
PDF, especially in the antiquark regions where experi-
mental inputs are even scarcer. Currently, we are able to
reproduce the global PDF results; the next step will be

Matched to Msbar PDF at μ=3GeV. 

Effect of  one-loop matching for the 
renormalized quasi-PDF at Pz=2.2 GeV 
and μR=3.7 GeV and Pz

R=2.2 GeV. 

Final result for different nucleon 
momentum with μR=3.7 GeV and 
Pz

R=2.2 GeV. 
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FIG. 2: The physical quark distribution u(x)�d(x) extracted
from Fig. 1 after making Mn

N/Pn
z corrections and one-loop

corrections. The red, green and cyan bands correspond to
Pz 2 {1, 2, 3} 2⇡

L . The two higher-momentum distributions
are now almost identical.

from the cuto↵ scheme is correct to the leading logarithm
but not for the numerical constant. This is a compromise
that we make at the moment and will be rectified in the
future.

At low nucleon momenta, the nucleon-mass correc-
tions are as important as the one-loop correction, if
not more. Using the operator product expansion,
the nonlocal operator in Eq. 1 can be expanded asP1

n=1 Cn(z)On(0), where the tree-level Wilson coe�-

cient Cn(z) = (iz)n�1
/ (n� 1)! + O(↵s) and On(0) =

 ̄(0)�z (iDz)n�1
 (0). The tensor On is symmetric but

not traceless, so it is a mixture of a twist-2 and higher-
twist operators with the matrix element

D
~P

���On(0)
���~P

E
= 2anP

n
z Kn +O(⇤2

QCD/P
2
z ) (4)

entirely expressible in terms of an =
R
dx x

n�1
q(x), the

n
th moment of the desired parton distribution, and Kn =

1+
Pimax

i=1 C
n�i
i (M2

N/4P 2
z )

i where C is the binomial func-

tion, and imax = n�(n mod 2)
2 . The O(⇤2

QCD/P
2
z ) term is

dynamical higher-twist correction. As one can see, the
actual nucleon-mass correction parameter is M2

N/4P 2
z .

After one-loop and nucleon-mass corrections, the re-
sulting distributions are shown in Fig. 2. For the nu-
clear momenta under consideration, both types of cor-
rection are important. As one can see, the corrected
distributions have much reduced Pz dependence, partic-
ularly for the two largest momenta. This suggests that

well known that this omits important tadpole contributions [15].
As a compromise, we take ↵s = 0.20±0.04, with the central value
determined by the prescription of Ref. [15] and the uncertainty
included as a part of the theoretical systematics.

MSTW
CJ12
Lattice
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FIG. 3: The unpolarized isovector quark distribution u(x)�
d(x) computed on the lattice after extrapolation in Pz is
shown as the purple band, compared with the global analyses
by MSTW [18] (brown dotted line), and CTEQ-JLab (CJ12,
green dashed line) [19] with medium nuclear correction near
(1.3 GeV)2. The negative x region is the sea quark distribu-
tion with q(x) = �q(�x). The lattice uncertainty band in
the plot reflects the 68% C.L. The global fit uncertainty is
not shown in the figure.

the corrections to the quasi-distributions will generate
a Pz-independent physical distribution. The remaining
small di↵erence between the two large-momenta results
could be due to the dynamical higher-twist corrections
O(⇤2

QCD/P
2
z ), which is expected to be smaller than the

nucleon-mass e↵ect. As for the lowest nucleon momen-
tum (430 MeV) result, the LaMET expansion might not
be very e↵ective, although the peak after corrections has
been shifted to near 0.8.

Finally, we find a Pz-independent distribution by tak-
ing into account the O(⇤2

QCD/P
2
z ) correction by extrap-

olating using the form a + b/P
2
z . The final unpolarized

distribution u(x)�d(x) is shown in Fig. 3. The distribu-
tion for the |x| > 1 region is within 2 sigma of zero; thus,
we recover the correct support for the physical distribu-
tion within error.

Our result cannot be directly compared with the ex-
perimental data because other lattice systematics are not
yet under control. To obtain the physical parton distri-
butions, we need to make a number of improvements,
including reducing the quark masses to physical ones,
increasing the number of configurations to reduce statis-
tical errors, using finer lattice spacing to accommodate
larger boosted momenta and improve the resolution, and
using larger lattice volumes to access smaller x. Nonethe-
less, we hope that the present results do provide some in-
sight into the qualitative features of the parton physics.

Also shown in Fig. 3 are the parton distributions from
the global analyses by CTEQ-JLab (CJ12) [19] and NLO
MSTW08 [18] at µ ⇡ 1.3 GeV. Note that the lattice re-

(L ¼ 2.9fm) has a narrower peak around zpz ¼ 0 and
differs significantly from the Fourier transform of the CJ15
result at large values of zpz. Further studies on removing
the higher-twist contribution at large z in the RI/MOM
renormalization will be carried out in the future.
Finally, we have several comments regarding ourRI/MOM

treatment. The first one is the possible gauge dependence
induced by taking the external quarks off-shell in the non-
perturbative renormalization. The gauge dependence should
be canceled by thematching kernel, but the cancellation is not
complete, since the kernel is only computed at one loop. It is
encouraging that the one-loop matching effect is numerically
small inLandaugauge thatwe employed.Whether the higher-
loop contributions will remain small requires further study.
The secondone is treatingpz of the off-shell quark the sameas
the proton Pz. Numerically, the renormalization factor is
rather insensitive to pz and μR, so we do not expect this
treatment to cause a big error.

IV. SUMMARY

We have carried out a nonperturbative renormalization of
the quasi-PDF in the RI/MOM scheme in lattice QCD.
Based on the renormalized quasi-PDF, we have updated the
lattice result of the unpolarized isovector quark distri-
bution from previous studies by some of the authors.
The RI/MOM renormalization of the quasi-PDF is per-
formed for each individual z, where it has been shown to be
multiplicatively renormalizable. All the UV divergences,
including the linear and logarithmic divergences, are
subtracted nonperturbatively by the renormalization con-
stant. Meanwhile, due to chiral symmetry breaking from
the lattice fermion action we used, there is a mixing
between the isovector quasi-PDF and a scalar operator.
The mixing is estimated to be a ∼10% effect and is left for
future investigation.
It is possible that an alternative process is needed in the

large z region. But the errors there are still too large to
conclude. Nevertheless, there is an alternative renormali-
zation method used in Refs. [41,61] which is worth

FIG. 4. The renormalized unpolarized isovector quark distri-
bution after one-loop matching and mass correction at the
renormalization scale μ2¼ 5.76GeV2 in the MS scheme, with
Pz ¼ 6π=L and three different RI/MOM renormalization scales
μR. Three distributions agree with each other within the statistical
uncertainties, it shows the μR dependence is almost cancelled
numerically. The negative-x part is related to the antiquark
distribution via ūðxÞ − d̄ðxÞ ¼ −uð−xÞ þ dð−xÞ for x > 0.

FIG. 5. The renormalized unpolarized isovector quark distri-
bution after one-loop matching and mass correction at the
renormalization scale μ2¼ 5.76GeV2 in the MS scheme. The
negative-x part is related to the antiquark distribution via ūðxÞ −
d̄ðxÞ ¼ −uð−xÞ þ dð−xÞ for x > 0.

FIG. 6. Comparison of the renormalized function ~hRðzÞ of this work (dashed lines) and from a Fourier transform of phenomenological
PDFs into the function of the Ioffe time zPz. All the values are converted to μ2¼ 5.76GeV2in the MS scheme. The solid lines are the
Fourier transform of the corresponding CJ15 PDF (blue), after matching and mass corrections (green and red). The left and right panels
show the real and imaginary parts, respectively.
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Evolution of calculation on the 
lattice: 
clover valence fermions on Nf=2+1+1 
flavors of  HISQ generated by MILC, 
243×64. (Unpolarized isovector PDF) 

Γ=γz.  No lattice renormalization. Pz=1.29 
GeV, a=0.12fm, mπ~310MeV (Lin et al., 2014) 

Γ=γz. Lattice renormalization. Pz=1.29 GeV, 
a=0.12fm, mπ~310MeV (Chen et al. (LP3), 2017) 

Γ=γt. Lattice renormalization. a=0.09fm, 
L=5.8fm, Pz=3.0 GeV, mπ~135MeV (Chen 
et al. (LP3), 2018) 
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to plan improved calculations with total uncertainty less
than 10%. 2) With the promising results shown here, we
can proceed with similar analyses for the less known po-
larized PDFs, such as helicity and transversity (the lon-
gitudinal and transversely polarized PDFs), where the
isovector PDFs needed to make impacts for global anal-
ysis are less demanding than the unpolarized ones.
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FIG. 4. Our final PDF renormalized at 3 GeV and compared
with CT14 [63] at (µR, p

R
z ) = (3.7, 2.2) GeV. It is consistent

with NNPDF3.1 distribution [64] and CJ15 [65]. Our results
agree nicely with the global-analysis PDF.

Summary and Outlook: In this work, we report the
state-of-the-art isovector unpolarized quark distribution
using lattice QCD directly at physical pion mass. We
use nucleon boosted momenta as large as 3 GeV with
high-statistics analysis. We carefully study excited-state
systematics whose error is reflected in our final distribu-
tion uncertainty. We renormalize our nucleon matrix el-
ement using the nonperturbative RI/MOM renormaliza-
tion, and perform the LaMET one-loop finite-momentum
matching and conversion to MS-scheme to connect lattice
quasi-distribution to lightcone distribution. We found
our final distribution agree well with the global analysis
distribution. We carefully examine all possible system-
atics which will give us better guideline to improve our

future calculations and provide better precision distribu-
tions. Future direction will be investigating smaller lat-
tice spacing ensembles for reaching even higher boosted
momentum such that we can push toward smaller-x re-
gion.
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Complete analysis at physical pion mass 
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J.W. Chen, L. Jin, H.-W. Lin, Y.-S. Liu,
Y.-B. Yang, J.-H. Zhang, and Y.Z., (LP3), 2018 

C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, 
A. Scapellato, and F. Steffens, (ETMC), 2018 

Γ=γt. Clover valence fermions on Nf=2+1+1 
flavors of  HISQ generated by MILC, a=0.09fm, 
L=5.8fm, mπ~135MeV, Pz=3 GeV. 
One-step matching from RI/MOM quasi-PDF 
to MSbar PDF at μ=3 GeV.  

Γ=γt. Dynamical Nf=2+1+1 twisted mass 
fermions by ETMC, a=0.09fm, L=4.8fm, 
mπ~130MeV, Pz=1.4 GeV. 
Two steps: matching from RI/MOM quasi-
PDF to MSbar quasi-PDF, then to MSbar PDF 
at μ=2 GeV. 
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FIG. 4: Comparison of unpolarized PDF at momenta 6⇡
L

(green band), 8⇡
L (orange band), 10⇡

L (blue band), and
ABMP16 [39] (NNLO), NNPDF [40] (NNLO) and CJ15 [38]
(NLO) phenomenological curves.

well as the phenomenological determinations CJ15 [38],
ABMP16 [39] and NNPDF31 [40]. We find that as the
momentum increases, the data approach phenomenolog-
ical results. In particular, increasing the nucleon mo-
mentum from 6⇡

L to 8⇡
L has a large e↵ect on the PDFs

shape, with the latter approaching the phenomenologi-
cal curve. Furthermore, we find a saturation of PDFs
for 8⇡

L and 10⇡
L , indicating that LaMET may be appli-

cable for P � 8⇡
L . The interplay of real and imaginary

parts of renormalized MEs leads to unphysical oscilla-
tions in quasi-PDFs, resulting from the periodicity of the
Fourier transform, and propagated through the match-
ing procedure to light-cone PDFs. The e↵ect is natu-
rally suppressed for large nucleon boosts, when MEs de-
cay to zero fast enough, before e�ixPz becomes negative.
For the currently attained momenta, the decay of renor-
malized ME is still relatively slow (cf. Fig. 3), which
manifests itself in distorted approach of the PDF to zero
for x & 0.5 and unphysical minimum in the antiquark
part, for x ⇡ �0.2. The oscillations, as expected, are
smoothened out as the momentum increases (which is vis-
ible particularly at the level of quasi-PDFs), and are more
severe in the negative region. Nevertheless, this is the
first time when clear convergence is demonstrated with
simulations using a physical pion mass value. Clearly,
momentum 6⇡

L is not high enough to reconstruct light-
cone PDFs. However, we observe a similar behavior of
the lattice data at momentum 10⇡

L as compared to phe-
nomenological results, with some overlap in the small-x
region. The slope of the two curves is compatible for the
positive-x region, and both curves go to zero for x . �0.3
and x & 1. Compatible results are extracted for h�3 , but
with increased uncertainties.

In Fig. 5, we present polarized PDFs for the three mo-
menta, together with DSSV08 [41] and JAM17 [42] phe-
nomenological data. We find a milder dependence on
the nucleon momentum, and 10⇡

L is much closer to phe-
nomenological curves with significant overlap with the
JAM17 data for 0 < x < 0.5. For the region 0.5 < x < 1,
the slope of the lattice data changes, possibly due to oscil-

lations mentioned above, but it approaches zero around
x = 1. For the negative-x region, the lattice data also
approach zero, with a dip at small-x and large uncertain-
ties, another consequence of oscillations.
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FIG. 5: Comparison of polarized PDF at momenta 6⇡
L (green

band), 8⇡
L (orange band), 10⇡

L (blue band), DSSV08 [41] and
JAM17 NLO phenomenological data [42].

Simulating at the physical point is crucial for obtain-
ing data that are close to the global analyses data. This
is demonstrated in Fig. 6. In the top panel, we compare
phenomenological estimates with results from Ref. [17] at
m⇡=375 MeV and volume 323⇥64 (B55). As the nucleon
momentum increases, one observes that the B55 data
saturate away from phenomenological curves, wrongfully
leading to discouraging conclusions for quasi-PDFs ap-
proach. In the lower panel of Fig. 6, we plot data from
this work with the B55 ensemble, both at momentum
⇠1.4 GeV. As can be seen, there is a clear pion mass
dependence and the B55 data are away from the global
analyses curves.
Conclusions:
We present the first ever lattice calculation of un-

polarized and helicity PDFs where long-standing ob-
stacles, such as large momenta, physical pion mass
and non-perturbative renormalization have been ad-
dressed. To investigate the nucleon momentum de-
pendence, we employed three values corresponding to
0.83, 1.11, 1.38 GeV, with appropriately increased num-
ber of measurements for the latter ones to keep statistical
uncertainties under control.
Lattice MEs are renormalized non-perturbatively in

the RI0 scheme and are converted to the MS-scheme
at µ=2 GeV. Light-cone PDFs are reconstructed upon
Fourier transform and matching with target mass cor-
rections. Our final results for PDFs are highlighted in
Figs. 4,5. We are able to compare with phenomenolog-
ical results for the first time, as all necessary steps of
extracting physical PDFs have been applied and no chi-
ral extrapolation is needed. As shown in Fig. 6, there
is strong pion mass dependence and a similar behavior
between lattice and phenomenology is only established
at the physical pion mass ensemble. A further investiga-
tion of possible discretization and volume e↵ects, as well
as an improved treatment of the unphysical oscillations,

5

to plan improved calculations with total uncertainty less
than 10%. 2) With the promising results shown here, we
can proceed with similar analyses for the less known po-
larized PDFs, such as helicity and transversity (the lon-
gitudinal and transversely polarized PDFs), where the
isovector PDFs needed to make impacts for global anal-
ysis are less demanding than the unpolarized ones.
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FIG. 4. Our final PDF renormalized at 3 GeV and compared
with CT14 [63] at (µR, p

R
z ) = (3.7, 2.2) GeV. It is consistent

with NNPDF3.1 distribution [64] and CJ15 [65]. Our results
agree nicely with the global-analysis PDF.

Summary and Outlook: In this work, we report the
state-of-the-art isovector unpolarized quark distribution
using lattice QCD directly at physical pion mass. We
use nucleon boosted momenta as large as 3 GeV with
high-statistics analysis. We carefully study excited-state
systematics whose error is reflected in our final distribu-
tion uncertainty. We renormalize our nucleon matrix el-
ement using the nonperturbative RI/MOM renormaliza-
tion, and perform the LaMET one-loop finite-momentum
matching and conversion to MS-scheme to connect lattice
quasi-distribution to lightcone distribution. We found
our final distribution agree well with the global analysis
distribution. We carefully examine all possible system-
atics which will give us better guideline to improve our

future calculations and provide better precision distribu-
tions. Future direction will be investigating smaller lat-
tice spacing ensembles for reaching even higher boosted
momentum such that we can push toward smaller-x re-
gion.
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Other distributions 

ò  Pion PDF, LP3 collaboration, arXiv:1804.01483; 

ò  Distribution amplitudes and GPD; 

ò  Transversity distributions; 

•  Pheno results still have fairly large uncertainties; 

•  Can also be calculated with the same procedure in 
LaMET, and free from operator mixing at O(a0) 
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See D. Richard’s talk on the progress of pion PDF from 
current-current correlator. 

See M. Radici’s talk on the progress from current-
current correlator. 

M. Constantinou and H. Panagopoulos, 2017; T. Ishikawa et al. 
(LP3), 2017. 



Summary 
ò  LaMET allows us to calculate the PDF from a Euclidean quasi-PDF 

on the lattice; 

ò  A systematic procedure to calculate PDF from the lattice has been 
set up; 

ò  A recent calculation at physical pion mass and large nucleon 
momentum has shown encouraging signs of  getting closer to the 
phenomenological PDF. 

Outlook: 

•  How to resum the large terms in the matching coefficient? 2-loop 
matching? 

•  Application to TMDs? 

29 5/22/18 QCD Evolution 2018 

Ji, Jin, Yuan, Zhang, and Y.Z., arXiv:1801.05930; 
M. Ebert, I. Stewart, and Y.Z., in preparation. 



Backup Slides 
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Matching Coefficient 

Unrenormalized quasi-PDF at one-loop: 

ò  Collinear divergence regulated by –p2, which is not obvious 
unless one takes the onshell limit; 

ò  Renormalization constant determined in the Euclidean region 
where ρ>1, needs analytical continuation. 
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Here �µ[p, p] and S(p) are the dressed vertex function
and quark propagator, and ⌃(p) is the quark self energy.
For more details see App. A. Since we work with o↵-
shell quarks for an IR regulator, we will use the latter
approach. However, we note that since the �Z contri-
bution is the same for the PDF and quasi-PDF that we

will in the end obtain the same result for the matching
whether we use Eq. (19) or Eq. (20).
For the matching calculation it is convenient to use the
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and carry out the z0 integral to express each Feynman di-
agram as an inverse Fourier transform with respect to the
variable x. For the quasi-PDF the range of x is uncon-
strained and we obtain contributions over the full range
�1 < x < 1.

For example, carrying out the z
0 integral gives

q̃
(1)

vertex
(z, pz, ✏,�p

2) + q̃
(1)

w.fn.
(z, pz, ✏,�p

2) = ⇣ p
z

Z 1

�1
dx e

�ixpzz Tr


/p

Z
d
d
k

(2⇡)d
(�igT

a
�
µ)

i

/k
�
z i

/k
(�igT

a
�
⌫)

�igµ⌫

(p� k)2

�

⇥

h
�(kz � xp

z)� �(pz � xp
z)
i
, (22)

where the di↵erence of �-functions makes it clear that this contribution vanishes in the local limit z = 0. The
analogous results for q̃(1)

sail
(z, pz, ✏) and q̃
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and use the �(kz � xp
z) to perform the loop integral over kz. When evaluating the loop integrals in Eq. (18), we find

that for finite x they are all UV finite and regular as ✏ ! 0. Only the vertex plus wavefunction contribution is UV
divergent as x ! ±1, but for the RI/MOM scheme these divergences are removed by the counterterm contribution,
and hence we can still carry out the calculation with ✏ = 0. We denote the bare contributions in this limit by
q̃(z, pz, 0, p2) where the p

2 has been added to indicate the IR regulator. In carrying out the required integrals the
following results are useful
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where the �i" allows us to easily analytically continue
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and we have defined

⇢ ⌘
(�p

2
� i")

p2z

, (27)

where the �i" allows us to easily analytically continue

6

identity:

i�µ[p, p] =
@S

�1(p)

@pµ
, �Z =

1

4pz
Tr


/p
@⌃(p)

@pz

�
,

�Z = �
↵sCF

4⇡

✓
1

✏
+ ln

µ
2

�p2
� 1

◆
+O(↵2

s) . (20)

Here �µ[p, p] and S(p) are the dressed vertex function
and quark propagator, and ⌃(p) is the quark self energy.
For more details see App. A. Since we work with o↵-
shell quarks for an IR regulator, we will use the latter
approach. However, we note that since the �Z contri-
bution is the same for the PDF and quasi-PDF that we

will in the end obtain the same result for the matching
whether we use Eq. (19) or Eq. (20).
For the matching calculation it is convenient to use the

identity

f(z) = p
z

Z 1

�1
dx e

�ixpzz

 Z 1

�1

dz
0

2⇡
e
ixpzz0

f(z0)

�
, (21)

and carry out the z0 integral to express each Feynman di-
agram as an inverse Fourier transform with respect to the
variable x. For the quasi-PDF the range of x is uncon-
strained and we obtain contributions over the full range
�1 < x < 1.

For example, carrying out the z
0 integral gives

q̃
(1)

vertex
(z, pz, ✏,�p

2) + q̃
(1)

w.fn.
(z, pz, ✏,�p

2) = ⇣ p
z

Z 1

�1
dx e

�ixpzz Tr


/p

Z
d
d
k

(2⇡)d
(�igT

a
�
µ)

i

/k
�
z i

/k
(�igT

a
�
⌫)

�igµ⌫

(p� k)2

�

⇥

h
�(kz � xp

z)� �(pz � xp
z)
i
, (22)

where the di↵erence of �-functions makes it clear that this contribution vanishes in the local limit z = 0. The
analogous results for q̃(1)

sail
(z, pz, ✏) and q̃

(1)

tadpole
(z, pz, ✏) each also contain the same [�(kz � xp

z) � �(pz � xp
z)] factor.

For all contributions we therefore can write

p
z

Z
dk

z

Z 1

�1
dx e

�ixpzz
h
�(kz � xp

z)� �(pz � xp
z)
i
= p

z

Z 1

�1
dx

h
e
�ixpzz

� e
�ipzz

i Z
dk

z
�(kz � xp

z) , (23)

and use the �(kz � xp
z) to perform the loop integral over kz. When evaluating the loop integrals in Eq. (18), we find

that for finite x they are all UV finite and regular as ✏ ! 0. Only the vertex plus wavefunction contribution is UV
divergent as x ! ±1, but for the RI/MOM scheme these divergences are removed by the counterterm contribution,
and hence we can still carry out the calculation with ✏ = 0. We denote the bare contributions in this limit by
q̃(z, pz, 0, p2) where the p

2 has been added to indicate the IR regulator. In carrying out the required integrals the
following results are useful

Z
1

0

dy
1

[(x� y)2 + y(1� y)⇢]1/2
=

1
p
1� ⇢

ln

✓
1� x� ⇢/2 +

p
1� ⇢|1� x|

�x+ ⇢/2 +
p
1� ⇢|x|

◆
, (24)

Z
1

0

dy
(1� y)

[(x� y)2 + y(1� y)⇢]3/2
=

2

⇢|x|

(⇢� 2|x||1� x|� 2x(1� x)

⇢� 4x(1� x)
.

We find that the sum of one-loop contributions, q̃(1) = q̃
(1)

vertex
+ q̃

(1)

w.fn. + q̃
(1)

sail
+ q̃

(1)

tadpole
, for the bare quasi-PDF in

Feynman gauge is

q̃
(1)(z, pz, 0,�p

2) =
↵sCF

2⇡
(4pz⇣)

Z 1

�1
dx

⇣
e
�ixpzz

� e
�ipzz

⌘
h(x, ⇢) , (25)

where

h(x, ⇢) ⌘
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>>>>>>>:
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�
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p
1� ⇢

2x� 1 +
p
1� ⇢

+
⇢
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� 1 x < 0

, (26)

and we have defined

⇢ ⌘
(�p

2
� i")

p2z

, (27)

where the �i" allows us to easily analytically continue
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FIG. 1. One-loop Feynman diagrams for the quasi-PDF. The standard quark self energy wavefunction renormalization is also
included, and denoted q̃(1)

w.fn.(z).

ing the o↵-shellness as an IR regulator, the result for the
matching coe�cient is independent of the choice of IR
regulator. Therefore if we carry out the calculation with
an on-shell IR regulator like dimensional regularization
we will obtain the same matching coe�cient between the
RI/MOM quasi-PDF and MS PDF. To demonstrate this
explicitly in App. B we repeat the one-loop calculation
carried out in this section using dimensional regulariza-
tion as the IR regulator.

To define the o↵-shell quark matrix element we will use
the definition in Eq. (12) (the results obtained for the
alternate definition in Eq. (13) are given in App. C). For
the quasi-PDF, we use the momentum space Feynman
rules for the coordinate space q̃(z, pz, ✏) [28]. At tree
level we obtain

q̃
(0)(z, pz) = 4pz⇣ e�izpz

. (17)

The one-loop Feynman diagrams are shown in Fig. 1.

The displayed diagrams are given by

q̃
(1)

vertex
(z, pz, ✏,�p

2) = ⇣ Tr


/p

Z
d
d
k

(2⇡)d
(�igT

a
�
µ)

i

/k
�
z i

/k
(�igT

a
�
⌫)

�igµ⌫

(p� k)2

�
e
�ikzz

, (18)

q̃
(1)

sail
(z, pz, ✏,�p

2) = ⇣ Tr


/p

Z
d
d
k

(2⇡)d
(igT a

�
z)

1

i(pz � kz)

⇣
1� e

�i(kz�pz
)z
⌘
�
µz i

/k
(�igT

a
�
⌫)

�igµ⌫

(p� k)2

�
e
�ipzz

+ ⇣ Tr


/p

Z
d
d
k

(2⇡)d
(�igT

a
�
⌫)

i

/k
(igT a

�
z)

1

i(pz � kz)

⇣
1� e

�i(kz�pz
)z
⌘
�
µz �igµ⌫

(p� k)2

�
e
�ipzz

,

q̃
(1)

tadpole
(z, pz, ✏,�p

2) = ⇣ Tr


/p

Z
d
d
k

(2⇡)d
(�g

2)CF �
z
�
µz
�
⌫z

✓
1� e

�i(kz�pz
)z

(pz � kz)2
�

z

i(pz � kz)

◆
�igµ⌫

(p� k)2

�
e
�ipzz

,

where in addition we have a contribution from the standard one-loop quark wavefunction renormalization denoted

q̃
(1)

w.fn.(z, p
z
, ✏,�p

2).

Here CF = 4/3 and T
a is the SU(3) color matrix in

the fundamental representation. The second term in the
bracket in the last line of Eq. (18), which is proportional
z, does not contribute to the loop integral as it is odd
under the exchange of pz � k

z
! �(pz � k

z).

The quark self-energy correction is

q̃
(1)

w.fn.(z, p
z
, ✏,�p

2) = �Z q̃
(0)(z, pz) with the tree

level matrix element in Eq. (17) and �Z defined in
the on-shell scheme to avoid the need for including
residue factors when calculating S-matrix elements for
the matching. For an o↵-shell momentum regulator this
is

�Z = �
↵sCF

4⇡

✓
1

✏
+ ln

µ
2

�p2
+ 1

◆
+O(↵2

s) . (19)

However, if we follow the definition in Eq. (12) and in-
tegrate over the loop momentum with z = 0, then con-
tributions from Eq. (18) do not exactly cancel the quark
self-energy correction in Eq. (19), so the one-loop cor-
rection to the conserved local vector current is not zero.
This occurs due to the o↵-shell regulator p

2
6= 0, which

allows mixing with additional operators due to the o↵-
shellness of the external state.

When using Eq. (12), we can ensure that loop correc-
tions to the vector current cancel, by instead defining
�Z in the on-shell scheme using the Ward-Takahashi
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⇢ from ⇢ < 1 to ⇢ > 1. For x ! ±1 the integrand in
Eq. (25) is / 1/x and hence log-divergent (behavior that
is cured by the RI/MOM subtraction). On the other
hand, the x integral is convergent at x = 1. Here the
exp(�ip

z
z) term gives a “real” contribution with support

in �1 < x < 1, while the exp(�ip
z
z) gives a “virtual”

contribution proportional to �(1� x), and together they
provide a well defined result at x = 1. The one-loop
correction to the local vector current is exactly zero as
the above integral vanishes at z = 0.

By imposing the condition in Eq. (9), and writing

ZOM = 1 + Z
(1)

OM
we obtain

Z
(1)

OM
(z, pzR, 0, µR) =

q̃
(1)(z, pzR, 0,�p

2 = µ
2

R)

q̃(0)(z, pzR)
. (28)

and the additive counterterm contribution

q̃
(1)

CT
(z, pz, pzR, µR) = �Z

(1)

OM
(z, pzR, 0, µR) q̃

(0)(z, pz) .
(29)

To simplify the presentation of various formulae below
we define the dimensionless ratio

rR ⌘
µR

2

pz 2

R

. (30)

In Euclidean space, p2E = p
2
4
+ p

z 2

R � p
2
z, so the renor-

malization scale µR one can reach on the lattice by set-
ting p

2

E = µ
2

R always satisfies µ
2

R � p
z 2

R . Therefore, we

can consider q̃(1)
CT

after analytically continuing to the re-
gion rR > 1, which is easy to accomplish using the i" in
Eq. (27).
Together these results give the renormalized one-loop

quasi-PDF in the RI/MOM scheme

q̃
(1)

OM
(z, pz, pzR, µR) = q̃

(1)(z, pz, 0,�p
2
⌧ p

2

z)

+ q̃
(1)

CT
(z, pz, pzR, µR) . (31)

As indicated, to setup the matching of the quasi-PDF
to the PDF, we must keep our physical IR regulator p

2

small, i.e. ⇢ ⌧ 1. Thus we identify the logarithmic
IR divergences by Taylor expanding q̃

(1) in ⇢. At one-
loop order there will only be a ln ⇢ term, corresponding
to the leading logarithmic IR singularity which will also
appear in the PDF. Also, our notation in Eq. (31) makes
clear that the momentum p

z of the state for which we
are considering the quasi-PDF in general need not be
equal to the momentum p

z
R that we use for the RI/MOM

counterterm. Defining

h0(x, ⇢) ⌘

8
>>>>>>><

>>>>>>>:

1 + x
2

1� x
ln

x

x� 1
+ 1 x > 1

1 + x
2

1� x
ln

4

⇢
�

2x

1� x
0 < x < 1

1 + x
2

1� x
ln

x� 1

x
� 1 x < 0

, (32)

the components of the renormalized quasi-PDF in the
RI/MOM scheme are

q̃
(1)(z, pz, 0,�p

2
⌧ p

2

z) =
↵sCF

2⇡
(4pz⇣)

Z 1

�1
dx

⇣
e
�ixpzz

� e
�ipzz

⌘
h0(x, ⇢),

q̃
(1)

CT
(z, pz, pzR, µR) = �

↵sCF

2⇡
(4pz⇣)

Z 1

�1
dx

⇣
e
i(1�x)pz

Rz�ipzz
� e

�ipzz
⌘
h(x, rR) , (33)

where h(x, rR) is obtained from Eq. (26). Here the coupling ↵s = ↵s(µ) is taken to be in the standard MS scheme.
Note that the collinear divergence ln ⇢ only appears in the physical region of the PDF 0 < x < 1 through h0. The
sum can be written as

q̃
(1)

OM
(z, pz, pzR, µR) =

↵sCF

2⇡
(4pz⇣)e�izpz

Z
dx

n⇣
e
i(1�x)pzz

� 1
⌘ ⇥

h0(x, ⇢)� h(x, rR)
⇤

+
⇣
e
i(1�x)pzz

� e
i(1�x)pz

Rz
⌘
h(x, rR)

o
. (34)

For x ! ±1 the integrand for the renormalized quasi-PDF behaves as / 1/x2 and the integral converges.
The renormalized quasi-PDF in momentum space in the RI/MOM scheme is easily obtained using Eq. (34),

q̃
(1)

OM
(x, pz, pzR, µR) =

Z
dz

2⇡
e
ixzpz

q̃
(1)

OM
(z, pz, pzR, µR)

=
↵sCF

2⇡
(4⇣)

⇢Z
dy

⇥
�(y � x)� �(1� x)

⇤⇥
h0(y, ⇢)� h(y, rR)

⇤

+ h(x, rR)� |⌘|h
�
1 + ⌘(x� 1), rR

��
, (35)
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⇢ from ⇢ < 1 to ⇢ > 1. For x ! ±1 the integrand in
Eq. (25) is / 1/x and hence log-divergent (behavior that
is cured by the RI/MOM subtraction). On the other
hand, the x integral is convergent at x = 1. Here the
exp(�ip

z
z) term gives a “real” contribution with support

in �1 < x < 1, while the exp(�ip
z
z) gives a “virtual”

contribution proportional to �(1� x), and together they
provide a well defined result at x = 1. The one-loop
correction to the local vector current is exactly zero as
the above integral vanishes at z = 0.

By imposing the condition in Eq. (9), and writing

ZOM = 1 + Z
(1)

OM
we obtain

Z
(1)

OM
(z, pzR, 0, µR) =

q̃
(1)(z, pzR, 0,�p

2 = µ
2

R)

q̃(0)(z, pzR)
. (28)

and the additive counterterm contribution

q̃
(1)

CT
(z, pz, pzR, µR) = �Z

(1)

OM
(z, pzR, 0, µR) q̃

(0)(z, pz) .
(29)

To simplify the presentation of various formulae below
we define the dimensionless ratio

rR ⌘
µR

2

pz 2

R

. (30)

In Euclidean space, p2E = p
2
4
+ p

z 2

R � p
2
z, so the renor-

malization scale µR one can reach on the lattice by set-
ting p

2

E = µ
2

R always satisfies µ
2

R � p
z 2

R . Therefore, we

can consider q̃(1)
CT

after analytically continuing to the re-
gion rR > 1, which is easy to accomplish using the i" in
Eq. (27).
Together these results give the renormalized one-loop

quasi-PDF in the RI/MOM scheme

q̃
(1)

OM
(z, pz, pzR, µR) = q̃

(1)(z, pz, 0,�p
2
⌧ p

2

z)

+ q̃
(1)

CT
(z, pz, pzR, µR) . (31)

As indicated, to setup the matching of the quasi-PDF
to the PDF, we must keep our physical IR regulator p

2

small, i.e. ⇢ ⌧ 1. Thus we identify the logarithmic
IR divergences by Taylor expanding q̃

(1) in ⇢. At one-
loop order there will only be a ln ⇢ term, corresponding
to the leading logarithmic IR singularity which will also
appear in the PDF. Also, our notation in Eq. (31) makes
clear that the momentum p

z of the state for which we
are considering the quasi-PDF in general need not be
equal to the momentum p

z
R that we use for the RI/MOM

counterterm. Defining

h0(x, ⇢) ⌘

8
>>>>>>><

>>>>>>>:

1 + x
2

1� x
ln

x
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+ 1 x > 1

1 + x
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�

2x
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0 < x < 1

1 + x
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, (32)

the components of the renormalized quasi-PDF in the
RI/MOM scheme are

q̃
(1)(z, pz, 0,�p

2
⌧ p

2

z) =
↵sCF

2⇡
(4pz⇣)

Z 1

�1
dx

⇣
e
�ixpzz

� e
�ipzz

⌘
h0(x, ⇢),

q̃
(1)

CT
(z, pz, pzR, µR) = �

↵sCF

2⇡
(4pz⇣)

Z 1

�1
dx

⇣
e
i(1�x)pz

Rz�ipzz
� e

�ipzz
⌘
h(x, rR) , (33)

where h(x, rR) is obtained from Eq. (26). Here the coupling ↵s = ↵s(µ) is taken to be in the standard MS scheme.
Note that the collinear divergence ln ⇢ only appears in the physical region of the PDF 0 < x < 1 through h0. The
sum can be written as

q̃
(1)

OM
(z, pz, pzR, µR) =

↵sCF

2⇡
(4pz⇣)e�izpz

Z
dx

n⇣
e
i(1�x)pzz

� 1
⌘ ⇥

h0(x, ⇢)� h(x, rR)
⇤

+
⇣
e
i(1�x)pzz

� e
i(1�x)pz

Rz
⌘
h(x, rR)

o
. (34)

For x ! ±1 the integrand for the renormalized quasi-PDF behaves as / 1/x2 and the integral converges.
The renormalized quasi-PDF in momentum space in the RI/MOM scheme is easily obtained using Eq. (34),

q̃
(1)

OM
(x, pz, pzR, µR) =

Z
dz

2⇡
e
ixzpz

q̃
(1)

OM
(z, pz, pzR, µR)

=
↵sCF

2⇡
(4⇣)

⇢Z
dy

⇥
�(y � x)� �(1� x)

⇤⇥
h0(y, ⇢)� h(y, rR)

⇤

+ h(x, rR)� |⌘|h
�
1 + ⌘(x� 1), rR

��
, (35)
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where ⌘ ⌘ p
z
/p

z
R. For the momentum space one-loop quasi-PDF q̃

(1)

OM
(x, pz, µR) the di↵erence

⇥
�(y � x) � �(1 � x)

⇤

gives a plus-function. We therefore define the following plus functions with subtractions at y = 1

Z 1

1

dy
⇥
g(y)

⇤
�f(y) =

Z 1

1

dy g(y)
⇥
f(y)� f(1)

⇤
,

Z
1

0

dy
⇥
g(y)

⇤
+
f(y) =

Z
1

0

dy g(y)
⇥
f(y)� f(1)

⇤
,

Z
0

�1
dy

⇥
g(y)

⇤
 f(y) =

Z
0

�1
dy g(y)

⇥
f(y)� f(1)

⇤
, (36)

for arbitrary functions g(y) and f(y). The renormalized momentum space quasi-PDF in the RI/MOM scheme in
Feynman gauge is therefore

q̃
(1)

OM
(x, pz, pzR, µR) (37)

=
↵sCF

2⇡
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�
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�

+

0 < x < 1
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ln
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2(1� x)

�
arctan

p
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2x� 1
�
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4x(x� 1) + rR

�

 
x < 0

+
↵sCF

2⇡
(4⇣)

⇢
h(x, rR)� |⌘|h

�
1 + ⌘(x� 1), rR

��
.

Note that the last term vanishes for ⌘ = 1.
Next we consider the PDF calculated with the same o↵-shellness regulator, once again using the same identity in

Eq. (12) to uniquely define our treatment of the spinors when working o↵-shell. With this definition the renormalized
one-loop matrix element of PDF in the MS scheme is given by

q
(1)(x, µ) =

↵sCF

2⇡
(4⇣)

8
>><

>>:

0 x > 1
1 + x

2

1� x
ln

µ
2

�p2
�

1 + x
2

1� x
ln

⇥
x(1� x)

⇤
� (2� x)

�

+

0 < x < 1

0 x < 0

. (38)

Considering the factorization formula in Eq. (11), the matching coe�cient COM between the renormalized quasi-PDF
in the RI/MOM scheme and standard PDF in the MS scheme is then determined by the di↵erence between the
momentum space quasi-PDF and PDF results
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for arbitrary functions g(y) and f(y). The renormalized momentum space quasi-PDF in the RI/MOM scheme in
Feynman gauge is therefore
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Note that the last term vanishes for ⌘ = 1.
Next we consider the PDF calculated with the same o↵-shellness regulator, once again using the same identity in

Eq. (12) to uniquely define our treatment of the spinors when working o↵-shell. With this definition the renormalized
one-loop matrix element of PDF in the MS scheme is given by
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Considering the factorization formula in Eq. (11), the matching coe�cient COM between the renormalized quasi-PDF
in the RI/MOM scheme and standard PDF in the MS scheme is then determined by the di↵erence between the
momentum space quasi-PDF and PDF results
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Effect of  matching on 
phenomenological PDF 

ò  PDF: MSTW2008nlo 
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FIG. 2. Comparison between the PDF xfu�d and the quasi-PDF result obtained from x(COM ⌦ fu�d) in Feynman gauge. The
orange and blue bands indicate the results from varying the factorization scale µ by a factor of two. Left: x(COM ⌦ fu�d) and
xfu�d. Right: di↵erences when taking x(COM ⌦ fu�d) or xfu�d, and subtracting xfu�d(x, 3 GeV).

the last equality in Eq. (48) we changed variable back to
y = x/y

0 in the first term, and to y
0 = y/x in the second

term. We have checked that these two methods give the
same result.

As an example we use for our analysis the unpolarized
iso-vector parton distribution,

fu�d(x, µ) = fu(x, µ)� fd(x, µ)� fū(�x, µ) + fd̄(�x, µ),
(49)

where we include fū(�x, µ) = �fū(x, µ) and fd̄(�x, µ) =
�fd̄(x, µ), the anti-parton distributions. We use the
next-to-leading-order iso-vector PDF fu�d from “MSTW
2008” [7] with the corresponding running coupling ↵s(µ).
For the numerical calculation we impose a UV cuto↵ on
the y-integral so that |y| < ycut = 10n for any x and
some n > 1. Results in the RI/MOM scheme are inde-
pendent of this cuto↵, whereas we will show below that
the transverse cuto↵ scheme exhibits sensitivity to ycut.
We also test soft cuto↵s |y| > 10�k and |x/y�1| > 10�m

with m � 3, but find that the results in all schemes are
independent of k and m.

As default values for our figures we take P
z = 3.0

GeV, use the Feynman gauge RI/MOM matching result
C

OM from Eq. (40) and the MS renormalization scale
µ = 3.0GeV. The RI/MOM matching coe�cient C

OM

is a function of µ and P
z, as well as the ratios P

z
/p

z
R

and rR = µ
2

R/(p
z
R)

2. The size of the correction induced
by the matching coe�cient does depend on the values of
P

z
/p

z
R and rR, and we will elaborate on this below. For

our study, we set the default values pzR = 0.4P z and µR =
2.0pzR and then consider variations of µ, P z, P z

/p
z
R, and

rR about these choices.
First consider Fig. 2 which shows a comparison of

the RI/MOM quasi-PDF q̃
OM(x, P z

, p
z
R, µR) = (COM

⌦

fu�d) (red solid line) and the MS PDF fu�d(x, µ) (blue
dashed line). In this figure and in others below we mul-
tiply by x in order to more easily observe the small

x region. The left panel shows the direct comparison,
and the right panel makes the comparison subtracting
xfu�d(x, µ). We see that the quasi-PDF and PDF are
close to one another, which is appealing for the conver-
gence of perturbation theory. In Fig. 2 we also vary the
factorization scale µ by a factor of two, from µ = 1.5GeV
to µ = 6GeV, showing the result by the blue and orange
bands about the PDF and quasi-PDF respectively. For
the quasi-PDF from Eq. (40) the dependence on µ cancels
out between C and q, order by order in perturbation the-
ory, whereas the PDF has a dependence on µ at leading-
logarithmic order, so in the figure a decrease in the µ de-
pendence is observed as expected. As shown in Fig. 2, the
C

OM
⌦fu�d has small non-zero values outside the region

�1 < x < 1. To examine these di↵erences more closely,
we subtract the central curve xfu�d(x, µ = 3 GeV) from
both xfu�d(x, µ) and x(COM

⌦ fu�d), and plot their dif-
ferences in the right panel of Fig. 2.

Next we examine the gauge dependence of the quasi-
PDF in the RI/MOM scheme. The result for Landau
gauge (⌧ = 0) is shown in the left panel of Fig. 3, which
is plotted in the same way as Fig. 2, and appears very
similar. To examine the change to the quasi-PDF we
therefore plot the di↵erence between the Landau gauge
and Feynman gauge result in the right panel of Fig. 3. We
see that the ⌧ -dependent contribution in the matching
coe�cient is a fairly small but noticeable correction in
the 0 < x < 1 region, but can be a larger correction for
negative x.

Our next step is to fix the factorization scale at µ = 3.0
GeV and vary the parameters rR and p

z
R in the quasi-

PDF. From Eq. (37) we see that the definition of the
RI/MOM quasi-PDF depends on the parameter rR, so
di↵erent rRs and p

z
Rs correspond to di↵erent quasi-PDfs.

For µR = {1.2, 2.0, 2.5}pzR, we plot in the left panel of
Fig. 4 a comparison between x(COM

⌦ fu�d)(x, µR) and
xfu�d(x, µ) with µ = 3.0GeV (blue dashed line). The
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FIG. 3. Comparison between the PDF xfu�d and the quasi-PDF obtained from x(COM ⌦ fu�d) in the Landau gauge. The
orange, blue, and green bands indicate the results from varying the factorization scale µ by a factor of two.

FIG. 4. Left panel: Comparison between the PDF xfu�d and the quasi-PDF from x(COM ⌦ fu�d) determined at di↵erent µRs.
Right panel: The pzR dependence of the quasi-PDF x(COM ⌦ fu�d), compared to the PDF xfu�d which is independent of pzR.
In both panels the blue band indicates the µ renormalization scale dependence of the PDF from variation by a factor of two.

blue band shows how the PDF changes when we vary
µ between µ = 1.5 and µ = 6.0GeV. We see that the
RI/MOM quasi-PDF is quite sensitive to the choice of
rR, exhibiting larger variations than that of varying the
renormalization scale µ in the PDF. We also observe that
the quasi-PDF moves away from the PDF as µR/p

z
R is

made larger. The quasi-PDF in the RI/MOM scheme
also satisfies a multiplicative renormalization group equa-
tion, derived in App. D, which can be analyzed with a
perturbative anomalous dimension for µR � ⇤QCD. In
the right panel of Fig. 4 we vary p

z
R = {0.2, 0.4, 1.0}P z

while holding fixed µR = 2.0pzR and P
z = µ = 3.0

GeV. We observe that there exists a range of values with
p
z
R/P

z
' 0.2� 0.4 which tend to minimize the impact of

the matching coe�cient in the 0 < x < 1 region.

In Fig. 5 we vary P
z = {1, 3, 6} GeV while holding

µR = 2.0pzR, p
z
R = 0.4P z fixed with µ = 3.0 GeV. We

observe that in the tails (x > 1 and x < �1) that the
RI/MOM quasi-PDF is not sensitive to P z . On the other
hand, in the central region �1 < x < 1 the matching
coe�cient gives non-trivial corrections in the P

z
! 1

limit, and hence there is always perturbative conversion
needed between the quasi-PDF and PDF.

Finally we consider the comparison between our
RI/MOM results and the matching results in the trans-
verse cut-o↵ scheme. At P z = µ = 3.0 GeV, pzR = 0.4P z,
µR = 2.0pzR, and ⇤T = 6.0GeV, we calculate C⇤T ⌦fu�d

with ycut = 101, 102, 104 and plot the results with com-
parison to fu�d in Fig. 6. Unlike for C

OM
⌦ fu�d, the

results for C
⇤T ⌦ fu�d su↵er from UV divergences in

the integration over y, and they di↵er significantly from
fu�d. This means that when one inverts the factorization
formula in Eq. (8) to determine the PDF from the quasi-
PDF, that there must be a large cancellation of UV diver-



Large momentum effective theory 

Large momentum effective theory (LaMET) is a theory 
that expands in powers of  1/Pz, where Pz is the proton 
momentum (Ji, PRL 2013, Sci. China Phys. Mech. Astro., 2014): 

1.  Construct a Euclidean quasi-observable Õ which can be 
calculated in lattice QCD; 

2.  The IMF limit of  Õ is constructed to be a parton observable 
O at the operator level; 
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P ≠0 =U(Λ(P)) P0 =0 ,						U(Λ(P =∞))−1 !OU(Λ(P =∞))=O
P =∞ !O P =∞ = P0 =0O P0 =0

One cannot calculate it from the lattice! 
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Large momentum effective theory 

3. At finite Pz, the matrix element of  Õ depends on the cut-off  Λ 
of  the theory (if  not renormalized) and generally Pz, i.e., Õ(Pz/Λ), 
while that of  O depends on the renormalization scale μ (if  in the 
MSbar scheme), i.e., O(μ); 

 

 

4. Taking the Pz—>∞ (Pz>>Λ) limit of  Õ(Pz/Λ) is generally ill-
defined due to the singularities in quantum field theory,  

35 

		 

!O(Pz /Λ)= P = Pz !O P = Pz ,
O(µ)= P = any O P = any

		 
lim
Pz≫Λ

"O(Pz /Λ)= ?
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Large momentum effective theory 

5. But it can be related to O(μ) through a factorization formula: 

 

 

ò  Pz is much larger than ΛQCD as well as the proton mass M to suppress 
the power corrections; 

ò  One can regard O(μ) as the effective theory observable, and Õ(Pz/Λ) 
as given by full QCD; 

ò  O(μ) and Õ(Pz/Λ) have the same infrared (IR) physics, and thus can 
be perturbatively matched to each other through the leading term. 

		 
!O(Pz /Λ)= Z(Pz /Λ,µ /Λ)⊗O(µ)+ c2

Pz
2 +

c4
Pz
4 +…
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How matching works 

37 

IR 

UV Perturbative QCD 

Non-perturbative QCD 

Matching 

Õ (full QCD) O (LaMET)
5/22/18 QCD Evolution 2018 

Λ >> Pz >>M,ΛQCD

Pz >> Λ >>M,ΛQCD

 !µ

µ



Leading-twist approximation and 
factorization theorem 

ò  Leading-twist approximation: 

 

 

 

ò  If  we define: 

 then we prove 
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Matching Coefficient 

ò  The matching coefficient for different renormalization 
schemes on the lattice have been calculated at one-loop: 

ò  Since the matching does not depend on the IR regulator, one 
can obtain the matching by calculating the off-shell quark 
matrix elements of  the quasi- and light-cone PDF: 
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Transverse momentum cut-off scheme: Xiong, Ji, Zhang and Y.Z., 2014; Y. Ma and J. 
Qiu, 2014;  
MSbar and RI/MOM scheme: I. Stewart and Y. Z., 2017.
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FIG. 1. One-loop Feynman diagrams for the nonlocal quark bilinear operator. The quark self energy diagram is also implied.

Since the external state is o↵-shell, the Feynman diagrams will lead to structures di↵erent from �
z, such as pz/p/p2.

Therefore, we project the result onto �
z as

Tr(/p��(z))

Tr(/p�z)
=

1

4pz
Tr(/p��(z)) . (7)

This projection should also be used to the define the quark matrix element of quasi PDF in lattice QCD.
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The quark self-energy correction is the tree level matrix element times the renormalization factor defined in the
on-shell scheme,
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However, for our purpose here, it will be expressed in an integral form to make sure that current conservation is
satisfied.

Since there is an exponential of exp(�ik
z
z) in the integrand of each Feynman diagram, the result will be a compli-

cated functional form of z that does not serve to our purpose of matching. Instead, we use the identity

f(z) = p
z

Z 1

�1

dx

2⇡
e
�ixpzz

Z 1

�1
dze

ixpzz0
f(z0) (12)

to express each Feynman diagram as the inverse Fourier transform of the variable x = k
z
/p

z.

By directly evaluating the loop integrals in Eqs. (8–10), we find that they are all UV finite and regular at ✏ = 0.
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