Lattice Calculation of PDF from LaMET at Physical Pion Mass and Large Nucleon Momentum

Yong Zhao
Massachusetts Institute of Technology

QCD Evolution Workshop
Santa Fe, New Mexico, 05/20-24, 2018

Talk based on:

X. Ji, J.-H. Zhang, and Y.Z., Phys. Rev. Lett. 120, 112001 (2018), arXiv: 1706.08962
J.-W. Chen, T. Ishikawa, L. Jin, H.-W. Lin, Y.-B. Yang, J.-H. Zhang, and Y.Z., Phys. Rev. D 97, 014505 (2018), arXiv:1706.01295
I. Stewart and Y.Z., Phys. Rev. D 97, 054512 (2018), arXiv:1709.04933
T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., arXiv:1801.03917
J.-W. Chen, L. Jin, H.-W. Lin, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, and Y.Z., arXiv: 1803.04393

Outline

* Large momentum effective theory
- Formalism
- Procedure of a systematic calculation
* Lattice results

Outline

* Large momentum effective theory
- Formalism
- Procedure of a systematic calculation
* Lattice results

Motivation for a first-principle calculation of PDFs

* Currently our best knowledge of the PDFs comes from the global analysis of high-energy scattering data

1. Extensive experimental analysis motivates a first principle calculation for comparison;
2. First principle calculation might be able to shed light on kinematic regions and flavor structures where experiments cannot constrain so well;
3. The cost of improving calculations seems to be much smaller than building more expensive experiments.

Operator definition of PDF

* Definition of PDFs in QCD factorization theorems:

$$
q(x, \mu)=\int \frac{d \xi^{-}}{4 \pi} e^{-i x^{+}+\xi^{-}}\langle P| \bar{\psi}\left(\xi^{-}\right) \gamma^{+} U\left(\xi^{-}, 0\right) \psi(0)|P\rangle \quad \sigma=\sum_{a, b} f_{a}\left(x_{1}\right) \otimes f_{b}\left(x_{2}\right) \otimes \sigma_{a b}
$$

$$
\xi^{ \pm}=(t \pm z) / \sqrt{2} \quad U\left(\xi^{-}, 0\right)=P \exp \left[-i g \int_{0}^{\xi^{\zeta}} d \eta^{-} A^{+}\left(\eta^{-}\right)\right]
$$

- Gauge-invariant light-cone correlation;
- Boost invariant distribution, independent of P;
- In the light-cone gauge $\mathrm{A}^{+}=0$, has a clear interpretation as parton number density,

$$
q(x) \sim \int d k^{+} d^{2} k_{\perp} \delta\left(k^{+}-x P^{+}\right)\langle P| \hat{n}\left(k^{+}, k_{\perp}\right)|P\rangle
$$

Lattice QCD is the only practical method to solve QCD nonperturbatively so far

Parton model:

- Minkowski space, real time
- Emerges in the IMF, or equivalently, the proton as seen by an observer moving at the speed of light (on the light-cone)

$$
\xi^{+}=(t+z) / \sqrt{2}=0
$$

PDF not directly accessible from the lattice!

$$
\begin{aligned}
& e^{i s} \rightarrow e^{-s} \\
& \langle O\rangle=\int D \psi D \bar{\psi} D A O(x) e^{-s}
\end{aligned}
$$

Lattice QCD:

- Euclidean space, imaginary time $(t=i \tau)$
- Cannot calculate time-dependent quantities generally due to difficulty in analytical continuation in time
- Nucleon static or at finite momentum

Large momentum effective theory

\& Quasi-PDF:
X. Ji, PRL 2013; Sci.China Phys.Mech.Astron. 2014.
$\tilde{q}\left(x, P^{z}, \Lambda=a^{-1}\right)=\int \frac{d z}{4 \pi} e^{e^{k p^{z} z}}\langle P| \bar{\psi}(z) \Gamma U(z, 0) \psi(0)|P\rangle$

$$
\begin{aligned}
& z^{\mu}=(0,0,0, z), \quad \Gamma=\gamma^{z} \text { or } \gamma^{0} \\
& U(z, 0)=P \exp \left[-i g \int_{0}^{z} d z^{\prime} A^{z}\left(z^{\prime}\right)\right]
\end{aligned}
$$

- Equal-time correlation along the z direction, calculable in lattice QCD when $P^{z} \ll \Lambda$, and depend on P^{z};
- Under an infinite Lorentz boost along the z direction ($P^{z} \gg \Lambda$), the spatial gauge link approaches the light-cone direction, and the quasi-PDF reduces to the (light-cone) PDF.

Large momentum effective theory

* The quasi PDF is related to the PDF through a factorization formula:

$$
\tilde{q}\left(x, P^{z}, \Lambda\right)=\int_{-1}^{1} \frac{d y}{|y|} C\left(\frac{x}{y}, \frac{\Lambda}{\mu}, \frac{\mu}{y P^{2}}\right) q(y, \mu)+O\left(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{P_{z}^{2}}\right)
$$

$*$ They have the same IR divergences; $\begin{aligned} & \text { Ma and Qiu, 2014; } \\ & \text { See also Qiu's talk }\end{aligned}$

* C factor matches their UV difference, and can be calculated in perturbative QCD;
$\$$ Power corrections suppressed by large P^{z}.

Large momentum effective theory

Necessity of a lattice renormalization:

$$
\tilde{q}\left(x, P^{z}, \Lambda\right)=\int_{-1}^{1} \frac{d y}{|y|} C\left(\frac{x}{y}, \frac{\Lambda}{\mu}, \frac{\mu}{y P^{z}}\right) q(y, \mu)+O\left(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{P_{z}^{2}}\right)
$$

- Not necessary as long as one can absorb the UV divergence into the matching coefficient C;

Xiong, Ji, Zhang, Zhao, 2013

- However, linear divergence in the quasi-PDF makes a fixed order calculation of C not sufficient. Therefore, we need a nonperturbative renormalization of the power divergence.

Other proposals

Pseudo-PDF approach:

Radyushkin, 2017;
$\langle P| \bar{\psi}(z) \gamma^{0} U(z, 0) \psi(0)|P\rangle=2 P^{0} \tilde{Q}\left(z P^{z}, z^{2}\right)$
Karpie, Orginos, Radyushkin, Zafeiropoulos, 2017

- Formally, pseudo-PDF is defined from the same equal-time correlation as quasi-PDF, and satisfies an equivalent factorization theorem at small $|z|$;

Ji, Zhang, Zhao, 2017; T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., 2018

- The nontrivial part is that Radyushkin defined a "reduced Ioffe-time distribution" by forming the ratio of two nucleon matrix elements;
$\underline{\tilde{Q}\left(z P^{z}, z^{2}\right)}$ A rigorous relation to the PDF can only be established at small $|z|$ as before; $\tilde{Q}\left(0, z^{2}\right)$ A parametrized form of the PDF to fit all the data points with 1-loop corrections. See A. Radyushkin and J. Karpie's talks
Higher Moments: Z. Davoudi and M. Savage, PRD 2012;
OPE of current-current correlator: D. Lin and W. Detmold, PRD 2006; A. J. Chambers et al. (QCDSF), PRL 2017;
Hadronic tensor: K.F. Liu (et al.), 1994, 1999, 1998, 2000, 2017.
Lattice cross section: Y.-Q. Ma and J. Qiu, 2014, 2017. See Qiu's talk
Factorization of Euclidean Correlations in Coordinate Space: V. M. Braun and
D. Mueller, EPJ C 2008; G. S. Bali, V. M. Braun, A. Schaefer, et al., 2017.

Procedure of Systematic Calculation

1. Simulation of the quasi PDF in lattice QCD

$$
\tilde{q}_{i}\left(x, P^{z}, \tilde{\mu}\right)=\int_{-1}^{+1} \frac{d y}{|y|} C_{i j}\left(\frac{x}{y}, \frac{\tilde{\mu}}{P^{z}}, \frac{\mu}{y P^{z}}\right) q_{j}(y, \mu)+\mathcal{O}\left(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{P_{z}^{2}}\right)
$$

2. Renormalization of the lattice quasi PDF, and then taking the continuum limit
3. Matching to the MSbar PDF.

Renormalization

For an open smooth Wilson line $W(z, 0)$, its self energy includes a linear divergence:

In coordinate space, it can be multiplicatively renormalized as:

$$
W^{B}(z, 0)=Z_{z} e^{\delta m|z|} W^{R}(z, 0)
$$

- $e^{\delta m *|z|}$ introduces counterterms that cancel the linear divergences in the Wilson line self energy;
- Z_{z} depends on the end points and only
V. S. Dotsenko and S. N. Vergeles, 1980
N. S. Craigie and H. Dorn, 1981
H. Dorn, 1986 includes logarithmic divergences.

Renormalization

* The gauge-invariant quark Wilson line operator can be renormalized multiplicatively in the coordinate space:

$$
\tilde{O}_{\Gamma}(z)=\bar{\psi}(z) \Gamma W(z, 0) \psi(0)=Z_{\psi, z} e^{-\delta m|z|}(\bar{\psi}(z) \Gamma W(z, 0) \psi(0))^{R}
$$

```
X. Ji, J.-H. Zhang, and Y.Z., 2017; J. Green et al., 2017
T. Ishikawa, Y.-Q. Ma, J. Qiu, S. Yoshida, 2017.
```

* No mixing with different flavors (J. Green et al., 2017; T. Ishikawa, Y.-Q. Ma, J. Qiu, S. Yoshida, 2017.);
* Different renormalization schemes can be converted to each other in coordinate space;

Renormalization

On the lattice, there is operator mixing due to broken Lorentz and chiral symmetries:
\nrightarrow For $\Gamma=r^{z}$, the quark bilinear O_{Γ} mixes with $\Gamma=1$ at $O\left(a^{0}\right)$, and mixes with higher dimensional operators starting at $O\left(a^{1}\right)$;

* For $\Gamma=r^{0}$, the quark bilinear O_{Γ} does no mix with $\Gamma=1$ at $O\left(a^{0}\right)$, but mixes with higher dimensional operators starting at $O\left(a^{l}\right)$;

> M. Constantinou and H. Panagopoulos, 2017; J. Green et al., 2017; T. Ishikawa et al. (LP3), 2017.

* In either case, there is no power divergent mixing which goes like $1 / a^{n}(n>0)$, unlike the moments (Rossi and Testa, 2017).

Regularization-independent momentum subtraction (RI/MOM) scheme

A regularization-independent momentum subtraction scheme (RI/MOM):

Martinelli et al., 1994

$$
\begin{aligned}
& \left.Z_{\text {OM }}^{-1}\left(z, a^{-1}, p_{z}^{R}, \mu_{R}\right)\langle p| \tilde{O}_{\Gamma}(z)|p\rangle\right|_{\substack{p^{2}=\mu_{R}^{2} \\
p_{z}=p_{z}^{R}}}=\langle p| \tilde{O}_{\Gamma}(z)|p\rangle_{\text {tree }} \\
& Z_{\text {OM }}\left(z, a^{-1}, p_{z}^{R}, \mu_{R}\right)=\frac{\left.\langle p| \tilde{O}_{\Gamma}(z)|p\rangle\right|_{\substack{p^{2}=\mu_{R}^{2} \\
p_{z}=p_{z}^{R}}} ^{\langle p| \tilde{O}_{\Gamma}(z)|p\rangle_{\text {tree }}}}{}
\end{aligned}
$$

* Can be implemented nonperturbatively on the lattice.
* Introduce two intermediate scales μ_{R} and $P_{z}{ }^{R}$, whose dependence shall be cancelled in the matching.

Power corrections

\pm Consider an operator product expansion as $|z|->0$ for the isovector case (in the MSbar scheme):

$$
n^{\mu}=(0,0,0,1), \mu_{0}=z
$$

$$
\tilde{o}_{\gamma^{2}}\left(z^{2} \mu^{2}\right)=\sum_{n=0} C_{n}\left(\mu^{2} z^{2}\right) \frac{(-i z)^{n}}{n!} n_{\mu_{1}} \cdots n_{\mu_{n}} O^{\mu_{0} \mu_{1} \cdots \mu_{n}}+\text { higher-twist }
$$

$$
\left.O^{\mu_{0} \mu_{1} \cdots \mu_{n}}=\bar{\psi}(0) \gamma^{\left(\mu_{0}\right.} i D^{\mu_{1}} \cdots i D^{\mu_{n}}\right) \psi(0)-\text { trace }
$$

$\&$ At large P^{z}, the nucleon contracts in the longitudinal direction. Equal-time correlation dominant within $z \sim 1 / P^{z}$,

$$
\langle P| \text { higher-twist }|P\rangle=O\left(z^{2} \Lambda_{Q C D}^{2}\right) \sim O\left(\Lambda_{Q C D}^{2} / P_{z}^{2}\right)
$$

$$
\langle P| O^{\mu_{0} \mu_{1} \cdots \mu_{n}}|P\rangle=2 a_{n+1}(\mu)\left[P^{\mu_{0}} P^{\mu_{1}} \cdots P^{\mu_{n}}-\text { trace }\right], \quad \text { trace } \sim O\left(M^{2} / P_{z}^{2}\right)
$$

Power corrections

* $O\left(\left(M / P^{z}\right)^{2}\right)$ corrections, or target-mass corrections (o Nachtmann, NPB 1973);
* Expressions derived for all orders of $\left(M / P^{z}\right)^{2}$ (J.W. Chen et al., NPB, 2016; Also in A. Radyushkin, 2017):

$$
\begin{aligned}
\tilde{\tilde{q}}(x) & =\sqrt{1+4 c} \sum_{n=0}^{\infty} \frac{f_{-}^{n}}{f_{+}^{n+1}}\left[\left(1+(-1)^{n}\right) \tilde{q}\left(\frac{f_{+}^{n+1} x}{2 f_{-}^{n}}\right)+\left(1+(-1)^{n} \tilde{q}\left(-\frac{f_{+}^{n+1} x}{2 f_{-}^{n}}\right)\right],\right. \\
c & =\frac{M^{2}}{4 P_{z}^{2}}, \quad f_{ \pm}=\sqrt{1+4 c} \pm 1 .
\end{aligned}
$$

Higher-twist corrections

* $O\left(\left(\Lambda_{Q C D} / P^{z}\right)^{2}\right)$ corrections

$$
\begin{aligned}
\mathcal{O}_{\operatorname{tr}}(z) & =\int_{0}^{z} d z_{1} \bar{\psi}(0)\left[\gamma^{\nu} \Gamma\left(0, z_{1}\right) D_{\nu} \Gamma\left(z_{1}, z\right)\right. \\
& \left.+\int_{0}^{z_{1}} d z_{2} \lambda \cdot \gamma \Gamma\left(0, z_{2}\right) D^{\nu} \Gamma\left(z_{2}, z_{1}\right) D_{\nu} \Gamma\left(z_{1}, z\right)\right] \psi(z \lambda) .
\end{aligned}
$$

- Need to simulate and renormalize matrix elements of higher-twist operators;
- We can postpone it, and in the end extrapolate to IMF limit after completing all the other corrections.

Matching

* Renormalization on the lattice in a particular scheme "X":

$$
Z_{x}^{-1}\left(a^{-1}, \tilde{\mu}\right) \tilde{q}^{B}\left(z, P^{z}, a^{-1}\right)=\lim _{a \rightarrow 0} Z_{x}^{-1}\left(a^{-1}, \tilde{\mu}\right) \tilde{q}^{B}\left(z, P^{z}, a^{-1}\right)+O(a)
$$

\& Regularization-invariance:

$$
\lim _{a \rightarrow 0} Z_{x}^{-1}\left(a^{-1}, \tilde{\mu}\right) \tilde{q}^{B}\left(z, P^{z}, a^{-1}\right)=Z_{x}^{-1}(\varepsilon, \tilde{\mu}) \tilde{q}^{B}\left(z, P^{z}, \varepsilon\right), \quad d=4-2 \varepsilon
$$

$\&$ Matching only needs to be performed in the dimensional regularization scheme in the continuum theory!

Matching Coefficient

* One-loop matching coefficient:

$$
\begin{aligned}
& \xi=\frac{x}{y}
\end{aligned}
$$

I. Stewart and Y. Z., 2017.

Outline

* Large momentum effective theory
- Formalism
- Procedure of a systematic calculation
* Lattice results

Lattice simulation

J.-W. Chen, L. Jin, H.-W. Lin, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang,

Lattice setup: and Y.Z., arXiv: 1803.04393

+ Clover valence fermions
$\rightarrow \mathrm{N}_{\mathrm{f}}=2+1+1$ flavors of HISQ ensemble generated by MILC
$\rightarrow \mathrm{a}=0.09 \mathrm{fm}, \mathrm{L}=5.8 \mathrm{fm}, \mathrm{m}_{\pi} \sim 135 \mathrm{MeV}$
$\star \mathrm{N}_{\mathrm{cf}}=310$
* 1-step HYP smeared gauge link, Gaussian momentum smearing for the quark field
$+\quad P^{z}=2.2,2.6,3.0 \mathrm{GeV}$
* Simultaneous fit of correlators on 4 source-sink separations, $0.72,0.81,0.90,1.08 \mathrm{fm}$.

Matching

$*$ Fourier transform of the spatial correlation:

Lin et al., $2017=P^{z} \int_{-z_{\max }}^{z_{\max }} d z e^{i x P^{2} P^{2}} \tilde{h}_{R}(z)-\frac{1}{-i X}\left[e^{i k z_{\text {max }} p^{2}} \tilde{h}_{R}\left(z_{\max }\right)-e^{-i X z_{\text {max }} P^{z}} \tilde{h}_{R}\left(-z_{\max }\right)\right]$

- Remove the oscillatory behavior due to the truncation in the Fourier transform;
- Equivalent to assuming that the spatial correlation beyond $\left|z_{\max }\right|$ is flat;
- We can loosen the assumption by considering the Regge behavior of the PDF at small x.
* Inversion of the factorization formula:

$$
\begin{aligned}
\tilde{q} & =C \otimes q, \quad q=C^{-1} \otimes \tilde{q}, \\
C\left(\frac{x}{y}\right) & =\delta\left(\frac{x}{y}-1\right)+\frac{\alpha_{S} C_{F}}{2 \pi} C^{(1)}\left(\frac{x}{y}\right), \quad C^{-1}\left(\frac{x}{y}\right) \approx \delta\left(\frac{x}{y}-1\right)-\frac{\alpha_{S} C_{F}}{2 \pi} C^{(1)}\left(\frac{x}{y}\right) .
\end{aligned}
$$

Final result

Matched to Msbar PDF at $\mu=3 \mathrm{GeV}$.

Effect of one-loop matching for the renormalized quasi-PDF at $P^{z}=2.2 \mathrm{GeV}$ and $\mu_{R}=3.7 \mathrm{GeV}$ and $P_{z}^{R}=2.2 \mathrm{GeV}$.

Final result for different nucleon momentum with $\mu_{R}=3.7 \mathrm{GeV}$ and $P_{z}^{R}=2.2 \mathrm{GeV}$.

$\Gamma=\gamma^{\mathrm{z}}$. No lattice renormalization. $P^{z}=1.29$ $\mathrm{GeV}, \mathrm{a}=0.12 \mathrm{fm}, \mathrm{m}_{\pi} \sim 310 \mathrm{MeV}$ (Lin et al., 2014)

$\Gamma=\gamma^{z}$. Lattice renormalization. $P^{z}=1.29 \mathrm{GeV}$, $\mathrm{a}=0.12 \mathrm{fm}, \mathrm{m}_{\pi} \sim 310 \mathrm{MeV}$ (Chen et al. (LP3), 2017)

Evolution of calculation on the lattice:

clover valence fermions on $\mathrm{N}_{\mathrm{f}}=2+1+1$ flavors of HISQ generated by MILC, $24^{3} \times 64$. (Unpolarized isovector PDF)
$\Gamma=\gamma^{t}$. Lattice renormalization. $\mathrm{a}=0.09 \mathrm{fm}$, $\mathrm{L}=5.8 \mathrm{fm}, P^{z}=3.0 \mathrm{GeV}, \mathrm{m}_{\pi} \sim 135 \mathrm{MeV}$ (Chen et al. (LP3), 2018)

Complete analysis at physical pion mass

J.W. Chen, L. Jin, H.-W. Lin, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, and Y.Z., (LP3), 2018

$\Gamma=\gamma^{t}$. Clover valence fermions on $\mathrm{N}_{\mathrm{f}}=2+1+1$ flavors of HISQ generated by MILC, $a=0.09 \mathrm{fm}$, $\mathrm{L}=5.8 \mathrm{fm}, \mathrm{m}_{\pi} \sim 135 \mathrm{MeV}, P^{z}=3 \mathrm{GeV}$.
One-step matching from RI/MOM quasi-PDF to MSbar PDF at $\mu=3 \mathrm{GeV}$.
C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen,
A. Scapellato, and F. Steffens, (ETMC), 2018

$\Gamma=\gamma^{\mathrm{t}}$. Dynamical $\mathrm{N}_{\mathrm{f}}=2+1+1$ twisted mass fermions by ETMC, $\mathrm{a}=0.09 \mathrm{fm}, \mathrm{L}=4.8 \mathrm{fm}$, $\mathrm{m}_{\pi} \sim 130 \mathrm{MeV}, P^{z}=1.4 \mathrm{GeV}$.
Two steps: matching from RI/MOM quasiPDF to MSbar quasi-PDF, then to MSbar PDF at $\mu=2 \mathrm{GeV}$.

Other distributions

\& Pion PDF, LP3 collaboration, arXiv:1804.01483;
See D. Richard's talk on the progress of pion PDF from current-current correlator.

* Distribution amplitudes and GPD;
* Transversity distributions;
- Pheno results still have fairly large uncertainties;

See M. Radici's talk on the progress from currentcurrent correlator.

- Can also be calculated with the same procedure in LaMET, and free from operator mixing at $O\left(a^{0}\right)$

> M. Constantinou and H. Panagopoulos, 2017; T. Ishikawa et al. (LP3), 2017.

Summary

\star LaMET allows us to calculate the PDF from a Euclidean quasi-PDF on the lattice;

* A systematic procedure to calculate PDF from the lattice has been set up;
* A recent calculation at physical pion mass and large nucleon momentum has shown encouraging signs of getting closer to the phenomenological PDF.

Outlook:

- How to resum the large terms in the matching coefficient? 2-loop matching?
- Application to TMDs? Ji, Jin, Yuan, Zhang, and Y.Z., arXiv:1801.05930;

Backup Slides

Matching Coefficient

Unrenormalized quasi-PDF at one-loop:

$$
\tilde{q}^{(0)}\left(z, p^{z}\right)=4 p^{z} \zeta e^{-i z p^{z}}
$$

$$
\tilde{q}^{(1)}\left(z, p^{z}, 0,-p^{2}\right)=\frac{\alpha_{s} C_{F}}{2 \pi}\left(4 p^{z} \zeta\right) \int_{-\infty}^{\infty} d x\left(e^{-i x p^{z} z}-e^{-i p^{z} z}\right) h(x, \rho), \quad \rho \equiv \frac{\left(-p^{2}-i \varepsilon\right)}{p_{z}^{2}}
$$

$$
h(x, \rho) \equiv \begin{cases}\frac{1}{\sqrt{1-\rho}}\left[\frac{1+x^{2}}{1-x}-\frac{\rho}{2(1-x)}\right] \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}}-\frac{\rho}{4 x(x-1)+\rho}+1 & x>1 \\ \frac{1}{\sqrt{1-\rho}}\left[\frac{1+x^{2}}{1-x}-\frac{\rho}{2(1-x)}\right] \ln \frac{1+\sqrt{1-\rho}}{1-\sqrt{1-\rho}}-\frac{2 x}{1-x} & 0<x<1 \\ \frac{1}{\sqrt{1-\rho}}\left[\frac{1+x^{2}}{1-x}-\frac{\rho}{2(1-x)}\right] \ln \frac{2 x-1-\sqrt{1-\rho}}{2 x-1+\sqrt{1-\rho}}+\frac{\rho}{4 x(x-1)+\rho}-1 & x<0\end{cases}
$$

t Collinear divergence regulated by $-p^{2}$, which is not obvious unless one takes the onshell limit;
$\&$ Renormalization constant determined in the Euclidean region where $\rho>1$, needs analytical continuation.

Matching Coefficient

* Renormalized quasi-PDF in the RI/MOM scheme:

$$
\begin{aligned}
& \tilde{q}_{\mathrm{OM}}^{(1)}\left(x, p^{z}, p_{R}^{z}, \mu_{R}\right)=\int \frac{d z}{2 \pi} e^{i x z p^{z}} \tilde{q}_{\mathrm{OM}}^{(1)}\left(z, p^{z}, p_{R}^{z}, \mu_{R}\right) \quad \eta \equiv p^{z} / p_{R}^{z} \\
& =\frac{\alpha_{s} C_{F}}{2 \pi}(4 \zeta)\left\{\int d y[\delta(y-x)-\delta(1-x)]\left[h_{0}(y, \rho)-h\left(y, r_{R}\right)\right]\right. \\
& h_{0}(x, \rho) \equiv\left\{\begin{array}{cc}
\frac{1+x^{2}}{1-x} \ln \frac{x}{x-1}+1 & x>1 \\
\frac{1+x^{2}}{1-x} \ln \frac{4}{\rho}-\frac{2 x}{1-x} & 0<x<1,
\end{array}, \quad+h\left(x, r_{R}\right)-|\eta| h\left(1+\eta(x-1), r_{R}\right)\right\}, ~ 子 r_{R}=\left(\mu_{R} / p_{R}^{z}\right)^{2}-1 .
\end{aligned}
$$

I. Stewart and Y. Z., 2017.

* MSbar PDF:

$$
q^{(1)}(x, \mu)=\frac{\alpha_{s} C_{F}}{2 \pi}(4 \zeta)\left\{\begin{array}{cc}
0 & x>1 \\
\left.\sqrt{\frac{1+x^{2}}{1-x} \ln \frac{\mu^{2}}{-p^{2}}}-\frac{1+x^{2}}{1-x} \ln [x(1-x)]-(2-x)\right]_{+} & 0<x<1 \\
0 & x<0
\end{array}\right.
$$

Effect of matching on phenomenological PDF

* PDF: MSTW2008nlo

I. Stewart and Y. Z., 2017.

Large momentum effective theory

Large momentum effective theory (LaMET) is a theory that expands in powers of $1 / P^{z}$, where P^{z} is the proton momentum (Ji, PRL 2013, Sci. China Phys. Mech. Astro., 2014):

1. Construct a Euclidean quasi-observable \tilde{O} which can be calculated in lattice QCD;
2. The IMF limit of \tilde{O} is constructed to be a parton observable O at the operator level;

$$
\begin{aligned}
& |P \neq 0\rangle=U(\Lambda(P))\left|P_{0}=0\right\rangle, \quad U(\Lambda(P=\infty))^{-1} \tilde{O} U(\Lambda(P=\infty))=0 \\
& \langle P=\infty| \tilde{O}|P=\infty\rangle=\left\langle P_{0}=0\right| O\left|P_{0}=0\right\rangle \\
& \text { One cannot calculate it from the lattice! }
\end{aligned}
$$

Large momentum effective theory

3. At finite P^{z}, the matrix element of \tilde{O} depends on the cut-off Λ of the theory (if not renormalized) and generally P^{z}, i.e., $\tilde{O}\left(P^{z} / \Lambda\right)$, while that of O depends on the renormalization scale μ (if in the MSbar scheme), i.e., $O(\mu)$;

$$
\begin{aligned}
\tilde{O}\left(P^{z} / \Lambda\right) & =\left\langle P=P^{z}\right| \tilde{O}\left|P=P^{z}\right\rangle, \\
O(\mu) & =\langle P=\text { any }| O \mid P=\text { any }\rangle
\end{aligned}
$$

4. Taking the $P^{z}->\infty\left(P^{z} \gg \Lambda\right)$ limit of $\tilde{O}\left(P^{z} / \Lambda\right)$ is generally illdefined due to the singularities in quantum field theory,

$$
\lim _{P^{2} \gg \Lambda} \tilde{O}\left(P^{z} / \Lambda\right)=?
$$

Large momentum effective theory

5. But it can be related to $O(\mu)$ through a factorization formula:

$$
\tilde{O}\left(P^{z} / \Lambda\right)=Z\left(P^{z} / \Lambda, \mu / \Lambda\right) \otimes O(\mu)+\frac{c_{2}}{P_{z}^{2}}+\frac{c_{4}}{P_{z}^{4}}+\ldots
$$

${ }^{*} \quad P^{z}$ is much larger than $\Lambda_{Q C D}$ as well as the proton mass M to suppress the power corrections;
t One can regard $O(\mu)$ as the effective theory observable, and $\tilde{O}\left(P^{z} / \Lambda\right)$ as given by full QCD;
$* \quad O(\mu)$ and $\tilde{O}\left(P^{z} / \Lambda\right)$ have the same infrared (IR) physics, and thus can be perturbatively matched to each other through the leading term.

How matching works

Leading-twist approximation and factorization theorem

+ Leading-twist approximation:

$$
\begin{aligned}
\frac{1}{2 P^{2}}\langle P| \tilde{O}_{\gamma^{2}}\left(z^{2} \mu^{2}\right)|P\rangle & =\sum_{n=0} C_{n}\left(\mu^{2} z^{2}\right) \frac{\left(-i z P^{2}\right)^{n}}{n!} a_{n+1}(\mu)+O\left(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{\varphi C D}^{2}}{P_{z}^{2}}\right) \\
& =\int d y \sum_{n=0} C_{n}\left(\mu^{2} z^{2}\right) \frac{\left(-i z P^{z} \cdot y\right)^{n}}{n!} q(y, \mu)+O\left(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{\varphi c D}^{2}}{P_{z}^{2}}\right)
\end{aligned}
$$

* If we define:
T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., 2018

$$
\tilde{q}\left(x, P^{z}, \mu\right)=\int \frac{d z}{4 \pi}\langle P| \tilde{o}_{\gamma^{2}}\left(z^{2} \mu^{2}\right)|P\rangle, \quad C\left(\frac{x}{y}, \frac{\mu}{|y| P^{z}}\right)=\int \frac{d \zeta}{4 \pi} e^{\frac{i}{i \frac{x}{y}}} \sum_{n=0} C_{n}\left(\frac{\mu^{2} \zeta^{2}}{\left(y P^{z}\right)^{2}}\right) \frac{(-i \zeta)^{n}}{n!}
$$

then we prove

$$
\tilde{q}\left(x, P^{z}, \mu\right)=\int \frac{d y}{|y|} C\left(\frac{x}{y}, \frac{\mu}{|y| P^{z}}\right) q(y, \mu)
$$

Matching Coefficient

ψ The matching coefficient for different renormalization schemes on the lattice have been calculated at one-loop:

Transverse momentum cut-off scheme: Xiong, Ji, Zhang and Y.Z., 2014; Y. Ma and J. Qiu, 2014;
MSbar and RI/MOM scheme: I. Stewart and Y. Z., 2017.
$*$ Since the matching does not depend on the IR regulator, one can obtain the matching by calculating the off-shell quark matrix elements of the quasi- and light-cone PDF:

Collaborations

Active collaborations working with the LaMET approach:
\& Lattice Parton Physics Project (LP^{3}) Collaboration (PDF):
J.W. Chen, T. Ishikawa, L. Jin, H.-W. Lin, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, R. Zhang, and Y.Z.

* European Twisted Mass Collaboration (ETMC) (PDF):
C. Alexandrou, M. Constantinou, K.Cichy, V. Drach, E. GarciaRamos, K. Hadjiyiannakou, K. Jansen, F. Steffens, C. Wiese et al.
$\rightarrow \chi$ QCD Collaboration (Gluon polarization):
A. Alexandru, T. Drapper, M. Glatzmaier, K.F. Liu, R.S. Suffian, Y.-B. Yang, Y.Z., et al.

