Lattice Calculation of PDF from LaMET at Physical Pion Mass and Large Nucleon Momentum

Yong Zhao Massachusetts Institute of Technology

QCD Evolution Workshop Santa Fe, New Mexico, 05/20-24, 2018

Talk based on:

X. Ji, J.-H. Zhang, and Y.Z., Phys. Rev. Lett. 120, 112001 (2018), arXiv: 1706.08962

J.-W. Chen, T. Ishikawa, L. Jin, H.-W. Lin, Y.-B. Yang, J.-H. Zhang, and Y.Z., Phys. Rev. D 97, 014505 (2018), arXiv:1706.01295

I. Stewart and Y.Z., Phys. Rev. D 97, 054512 (2018), arXiv:1709.04933

T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., arXiv:1801.03917

J.-W. Chen, L. Jin, H.-W. Lin, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, and Y.Z., arXiv: 1803.04393

Outline

- ✤ Large momentum effective theory
 - Formalism
 - Procedure of a systematic calculation
- ✤ Lattice results

Outline

- ✤ Large momentum effective theory
 - Formalism
 - Procedure of a systematic calculation
- ✤ Lattice results

Motivation for a first-principle calculation of PDFs

Currently our best knowledge of the PDFs comes from the global analysis of high-energy scattering data

1. Extensive experimental analysis motivates a first principle calculation for comparison;

2. First principle calculation might be able to shed light on kinematic regions and flavor structures where experiments cannot constrain so well;

3. The cost of improving calculations seems to be much smaller than building more expensive experiments.

Operator definition of PDF

Definition of PDFs in QCD factorization theorems:

$$q(x,\mu) = \int \frac{d\xi^{-}}{4\pi} e^{-ixP^{+}\xi^{-}} \left\langle P \left| \overline{\psi}(\xi^{-})\gamma^{+}U(\xi^{-},0)\psi(0) \right| P \right\rangle \quad \sigma = \sum_{a,b} f_{a}(x_{1}) \otimes f_{b}(x_{2}) \otimes \sigma_{ab}$$

$$\xi^{\pm} = (t \pm z) / \sqrt{2} \quad U(\xi^{-}, 0) = P \exp \left[-ig \int_{0}^{\xi^{-}} d\eta^{-} A^{+}(\eta^{-}) \right]$$

- Gauge-invariant light-cone correlation;
- Boost invariant distribution, independent of *P*;
- In the light-cone gauge A⁺=0, has a clear interpretation as parton number density, $q(x) \sim \int dk^+ d^2k_\perp \delta(k^+ - xP^+) \langle P | \hat{n}(k^+, k_\perp) | P \rangle$

Lattice QCD is the only practical method to solve QCD nonperturbatively so far

Parton model:

- Minkowski space, real time
- Emerges in the IMF, or equivalently, the proton as seen by an observer moving at the speed of light (on $\xi^+ = (t+z)/\sqrt{2} = 0$

the light-cone)

PDF not directly accessible from the lattice!

Lattice QCD:

 $\langle O \rangle = \int D\psi D\overline{\psi} DA O(x) e^{-S}$

 $e^{iS} \rightarrow e^{-S}$

- Euclidean space, imaginary time ($t=i \tau$)
- Cannot calculate time-dependent quantities generally due to difficulty in analytical continuation in time
- Nucleon static or at finite momentum

X. Ji, PRL 2013; Sci.China Phys.Mech.Astron. 2014. Hatta, Ji, Zhao, 2013.

$$\tilde{q}(x,P^{z},\Lambda=a^{-1})=\int\frac{dz}{4\pi}e^{ixP^{z}z}\left\langle P\left|\overline{\psi}(z)\Gamma U(z,0)\psi(0)\right|P\right\rangle$$

$$z^{\mu} = (0,0,0,z), \qquad \Gamma = \gamma^{z} \text{ or } \gamma^{0}$$
$$U(z,0) = P \exp\left[-ig \int_{0}^{z} dz' A^{z}(z')\right]$$

 Equal-time correlation along the z direction, calculable in lattice QCD when *P*^z << *A*, and depend on *P*^z;

Quasi-PDF:

 Under an infinite Lorentz boost along the *z* direction (*P^z*>>*A*), the spatial gauge link approaches the light-cone direction, and the quasi-PDF reduces to the (light-cone) PDF.

The quasi PDF is related to the PDF through a factorization formula:

$$\tilde{q}(x,P^{z},\Lambda) = \int_{-1}^{1} \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\Lambda}{\mu},\frac{\mu}{yP^{z}}\right) q(y,\mu) + O\left(\frac{M^{2}}{P_{z}^{2}},\frac{\Lambda_{\text{QCD}}^{2}}{P_{z}^{2}}\right)$$

They have the same IR divergences;

Ma and Qiu, 2014; See also Qiu's talk

- C factor matches their UV difference, and can be calculated in perturbative QCD;
- + Power corrections suppressed by large P^{z} .

Necessity of a lattice renormalization:

$$\tilde{q}(x,P^{z},\Lambda) = \int_{-1}^{1} \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\Lambda}{\mu},\frac{\mu}{yP^{z}}\right) q(y,\mu) + O\left(\frac{M^{2}}{P_{z}^{2}},\frac{\Lambda_{\text{QCD}}^{2}}{P_{z}^{2}}\right)$$

- Not necessary as long as one can absorb the UV divergence into the matching coefficient *C*; Xiong, Ji, Zhang, Zhao, 2013
- However, linear divergence in the quasi-PDF makes a fixed order calculation of *C* not sufficient. Therefore, we need a nonperturbative renormalization of the power divergence.

Other proposals

Pseudo-PDF approach:

Radyushkin, 2017;

 $\langle P | \overline{\psi}(z) \gamma^0 U(z,0) \psi(0) | P \rangle = 2P^0 \widetilde{Q}(zP^z,z^2)$

Karpie, Orginos, Radyushkin, Zafeiropoulos, 2017

• Formally, pseudo-PDF is defined from the same equal-time correlation as quasi-PDF, and satisfies an equivalent factorization theorem at small |z|;

Ji, Zhang, Zhao, 2017; T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., 2018

• The nontrivial part is that Radyushkin defined a "reduced Ioffe-time distribution" by forming the ratio of two **nucleon matrix elements**;

A rigorous relation to the PDF can only be established at small |z| as before; A parametrized form of the PDF to fit all the data points with 1-loop corrections. See A. Radyushkin and J. Karpie's talks

Higher Moments: Z. Davoudi and M. Savage, PRD 2012; OPE of current-current correlator: D. Lin and W. Detmold, PRD 2006; A. J. Chambers et al. (QCDSF), PRL 2017;

Hadronic tensor: K.F. Liu (et al.), 1994, 1999, 1998, 2000, 2017.

Lattice cross section: Y.-Q. Ma and J. Qiu, 2014, 2017. See Qiu's talk

Factorization of Euclidean Correlations in Coordinate Space: V. M. Braun and

D. Mueller, EPJ C 2008; G. S. Bali, V. M. Braun, A. Schaefer, et al., 2017.

QCD Evolution 2018

Procedure of Systematic Calculation

Renormalization

For an open smooth Wilson line W(z,0), its self energy includes a linear divergence:

$$\frac{z}{\varepsilon_{eee}} = \frac{\alpha_s}{2\pi} c_1 \Lambda |z|$$

$$\underbrace{\epsilon_{wv}}_{\epsilon_{wv}} \underbrace{\epsilon_{wv}}_{\epsilon_{wv}} + \dots = e^{\delta m^* |z|}, \quad \delta m \sim \Lambda$$

In coordinate space, it can be multiplicatively renormalized as:

$$W^B(z,0) = Z_z e^{\delta m|z|} W^R(z,0)$$

- $e^{\delta m^*|z|}$ introduces counterterms that cancel the linear divergences in the Wilson line self energy;
- Z_z depends on the end points and only includes logarithmic divergences.

V. S. Dotsenko and S. N. Vergeles, 1980 N. S. Craigie and H. Dorn, 1981 H. Dorn, 1986

Renormalization

The gauge-invariant quark Wilson line operator can be renormalized multiplicatively in the coordinate space:

 $\tilde{O}_{\Gamma}(z) = \overline{\psi}(z) \Gamma W(z,0) \psi(0) = Z_{\psi,z} e^{-\delta m|z|} \left(\overline{\psi}(z) \Gamma W(z,0) \psi(0) \right)^{R}$

X. Ji, J.-H. Zhang, and Y.Z., 2017; J. Green et al., 2017 T. Ishikawa, Y.-Q. Ma, J. Qiu, S. Yoshida, 2017.

- No mixing with different flavors (J. Green et al., 2017; T. Ishikawa, Y.-Q. Ma, J. Qiu, S. Yoshida, 2017.);
- Different renormalization schemes can be converted to each other in coordinate space;

Renormalization

On the lattice, there is operator mixing due to broken Lorentz and chiral symmetries:

- * For $\Gamma = \gamma^{z}$, the quark bilinear O_{Γ} mixes with $\Gamma = 1$ at $O(a^{0})$, and mixes with higher dimensional operators starting at $O(a^{1})$;
- * For $\Gamma = \gamma^0$, the quark bilinear O_{Γ} does no mix with $\Gamma = 1$ at $O(a^0)$, but mixes with higher dimensional operators starting at $O(a^1)$;

M. Constantinou and H. Panagopoulos, 2017; J. Green et al., 2017; T. Ishikawa et al. (LP3), 2017.

* In either case, there is no power divergent mixing which goes like $1/a^n$ (n>0), unlike the moments (Rossi and Testa, 2017).

Regularization-independent momentum subtraction (RI/MOM) scheme

A regularization-independent momentum subtraction scheme (RI/MOM): Martinelli et al., 1994

$$Z_{OM}^{-1}(z,a^{-1},p_{z}^{R},\mu_{R})\left\langle p\middle|\tilde{O}_{\Gamma}(z)\middle|p\right\rangle\Big|_{p^{2}=\mu_{R}^{2}}=\left\langle p\middle|\tilde{O}_{\Gamma}(z)\middle|p\right\rangle_{\text{tree}}$$
$$\frac{\left\langle p\middle|\tilde{O}_{\Gamma}(z)\middle|p\right\rangle\Big|_{p^{2}=\mu_{R}^{2}}}{\left\langle p\middle|\tilde{O}_{\Gamma}(z)\middle|p\right\rangle\Big|_{p^{2}=\mu_{R}^{2}}}=\frac{\left\langle p\middle|\tilde{O}_{\Gamma}(z)\middle|p\right\rangle_{\text{tree}}}{\left\langle p\middle|\tilde{O}_{\Gamma}(z)\middle|p\right\rangle_{\text{tree}}}$$

- ✤ Can be implemented nonperturbatively on the lattice.
- ✤ Introduce two intermediate scales μ_R and P_z^R , whose dependence shall be cancelled in the matching.

Power corrections

♦ Consider an operator product expansion as |z|->0 for the isovector case (in the MSbar scheme): $n^{\mu} = (0,0,0,1), \mu_{0} = z$

$$\tilde{O}_{\gamma^{z}}(z^{2}\mu^{2}) = \sum_{n=0}^{\infty} C_{n}(\mu^{2}z^{2}) \frac{(-iz)^{n}}{n!} n_{\mu_{1}} \cdots n_{\mu_{n}} O^{\mu_{0}\mu_{1}\cdots\mu_{n}} + \text{higher-twist}$$

$$O^{\mu_0\mu_1\cdots\mu_n} = \overline{\psi}(0)\gamma^{(\mu_0}iD^{\mu_1}\cdots iD^{\mu_n)}\psi(0) - \text{trace}$$

* At large P^z , the nucleon contracts in the longitudinal direction. Equal-time correlation dominant within $z \sim 1/P^z$,

$$\langle P | \text{higher-twist} | P \rangle = O(z^2 \Lambda_{QCD}^2) \sim O(\Lambda_{QCD}^2 / P_z^2)$$

 $a_{n+1}(\mu) = \int dy \, y^n q(y,\mu)$

$$\langle P | O^{\mu_0 \mu_1 \cdots \mu_n} | P \rangle = 2a_{n+1}(\mu) \Big[P^{\mu_0} P^{\mu_1} \cdots P^{\mu_n} - trace \Big], \quad trace \sim O(M^2 / P_z^2)$$

Power corrections

- ♦ O((M/P^z)²) corrections, or target-mass corrections (0 Nachtmann, NPB 1973);
 - ✤ Expressions derived for all orders of (M/P^z)² (J.W. Chen et al., NPB, 2016; Also in A. Radyushkin, 2017):

$$\begin{split} \tilde{\tilde{q}}(x) &= \sqrt{1+4c} \sum_{n=0}^{\infty} \frac{f_{-}^{n}}{f_{+}^{n+1}} \bigg[(1+(-1)^{n}) \tilde{q}(\frac{f_{+}^{n+1}x}{2f_{-}^{n}}) + (1+(-1)^{n} \tilde{q}(-\frac{f_{+}^{n+1}x}{2f_{-}^{n}}) \bigg], \\ c &= \frac{M^{2}}{4P_{z}^{2}}, \quad f_{\pm} = \sqrt{1+4c} \pm 1. \end{split}$$

Higher-twist corrections

* $O((\Lambda_{QCD}/P^z)^2)$ corrections

$$\mathcal{O}_{\rm tr}(z) = \int_0^z dz_1 \,\bar{\psi}(0) \Big[\gamma^{\nu} \Gamma\left(0, z_1\right) D_{\nu} \Gamma\left(z_1, z\right) \\ + \int_0^{z_1} dz_2 \,\lambda \cdot \gamma \Gamma\left(0, z_2\right) D^{\nu} \Gamma\left(z_2, z_1\right) D_{\nu} \Gamma\left(z_1, z\right) \Big] \psi(z\lambda).$$

- Need to simulate and renormalize matrix elements of higher-twist operators;
- We can postpone it, and in the end extrapolate to IMF limit after completing all the other corrections.

Matching

Renormalization on the lattice in a particular scheme "X":

$$Z_X^{-1}(a^{-1},\tilde{\mu})\tilde{q}^B(z,P^z,a^{-1}) = \lim_{a\to 0} Z_X^{-1}(a^{-1},\tilde{\mu})\tilde{q}^B(z,P^z,a^{-1}) + O(a)$$

✤ Regularization-invariance:

$$\lim_{a\to 0} Z_X^{-1}(a^{-1},\tilde{\mu})\tilde{q}^B(z,P^z,a^{-1}) = Z_X^{-1}(\varepsilon,\tilde{\mu})\tilde{q}^B(z,P^z,\varepsilon), \quad d = 4 - 2\varepsilon$$

Matching only needs to be performed in the dimensional regularization scheme in the continuum theory!

Matching Coefficient

✤ One-loop matching coefficient:

$$\xi = \frac{x}{y} \qquad C^{OM}\left(\xi, \frac{\mu_R}{p_R^z}, \frac{\mu}{p^z}, \frac{p^z}{p_R^z}\right) - \delta(1-\xi) \qquad p^z = yP^z \qquad (40)$$

$$= \frac{\alpha_s C_F}{2\pi} \left\{ \begin{array}{l} \left[\frac{1+\xi^2}{1-\xi} \ln \frac{\xi}{\xi-1} - \frac{2(1+\xi^2) - r_R}{(1-\xi)\sqrt{r_R-1}} \arctan \frac{\sqrt{r_R-1}}{2\xi-1} + \frac{r_R}{4\xi(\xi-1) + r_R}\right]_{\oplus} \qquad \xi > 1 \\ \left[\frac{1+\xi^2}{1-\xi} \ln \frac{4(p^z)^2}{\mu^2} + \frac{1+\xi^2}{1-\xi} \ln [\xi(1-\xi)] + (2-\xi) - \frac{2\arctan \sqrt{r_R-1}}{\sqrt{r_R-1}} \left\{\frac{1+\xi^2}{1-\xi} - \frac{r_R}{2(1-\xi)}\right\}\right]_+ 0 < \xi < 1 \\ \left[\frac{1+\xi^2}{1-\xi} \ln \frac{\xi-1}{\xi} + \frac{2}{\sqrt{r_R-1}} \left[\frac{1+\xi^2}{1-\xi} - \frac{r_R}{2(1-\xi)}\right] \arctan \frac{\sqrt{r_R-1}}{2\xi-1} - \frac{r_R}{4\xi(\xi-1) + r_R}\right]_{\oplus} \qquad \xi < 0 \\ + \frac{\alpha_s C_F}{2\pi} \left\{h(\xi, r_R) - |\eta| h(1+\eta(\xi-1), r_R)\right\}, \end{array} \right\}$$

I. Stewart and Y. Z., 2017.

Outline

- ✤ Large momentum effective theory
 - Formalism
 - Procedure of a systematic calculation
- ✤ Lattice results

Lattice simulation

J.-W. Chen, L. Jin, H.-W. Lin, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, and Y.Z., arXiv: 1803.04393

Lattice setup:

- Clover valence fermions
- * $N_f=2+1+1$ flavors of HISQ ensemble generated by MILC
- + a=0.09fm, L=5.8fm, m_π~135MeV
- $N_{cf}=310$
- I-step HYP smeared gauge link, Gaussian momentum smearing for the quark field
- Simultaneous fit of correlators on 4 source-sink separations, 0.72, 0.81, 0.90, 1.08 fm.

Matching

✤ Fourier transform of the spatial correlation:

$$\tilde{q}(x) = \int_{-z_{\text{max}}}^{z_{\text{max}}} dz \frac{e^{ixzP^z}}{-ix} \partial_z \tilde{h}_R(z) \qquad |z_{\text{max}}| P^z \sim 15$$

Lin et al., 2017 $= P^{z} \int_{-z_{\text{max}}}^{z_{\text{max}}} dz \ e^{ixzP^{z}} \tilde{h}_{R}(z) - \frac{1}{-ix} \left[e^{ixz_{\text{max}}P^{z}} \tilde{h}_{R}(z_{\text{max}}) - e^{-ixz_{\text{max}}P^{z}} \tilde{h}_{R}(-z_{\text{max}}) \right]$

- Remove the oscillatory behavior due to the truncation in the Fourier transform;
- Equivalent to assuming that the spatial correlation beyond $|z_{max}|$ is flat;
- We can loosen the assumption by considering the Regge behavior of the PDF at small *x*.
 - ✤ Inversion of the factorization formula:

$$\tilde{q} = C \otimes q, \qquad q = C^{-1} \otimes \tilde{q},$$

$$C(\frac{x}{y}) = \delta(\frac{x}{y} - 1) + \frac{\alpha_s C_F}{2\pi} C^{(1)}(\frac{x}{y}), \qquad C^{-1}(\frac{x}{y}) \approx \delta(\frac{x}{y} - 1) - \frac{\alpha_s C_F}{2\pi} C^{(1)}(\frac{x}{y}).$$

Final result

Matched to Msbar PDF at $\mu = 3$ GeV.

 $P_{z} = 3.0 \text{ GeV}$ $P_{z} = 3.0 \text{ GeV}$ $P_{z} = -3.0 \text{ GeV}$

Effect of one-loop matching for the renormalized quasi-PDF at $P^z=2.2$ GeV and $\mu_R=3.7$ GeV and $P_z^R=2.2$ GeV.

Final result for different nucleon momentum with $\mu_R = 3.7$ GeV and $P_z^R = 2.2$ GeV. 1.0

 $P_z = 2.2 \text{ GeV}$

 $P_z = 2.6 \text{ GeV}$

 $\Gamma = \gamma^{z}$. No lattice renormalization. $P^{z}=1.29$ GeV, a=0.12fm, m_{π}~310MeV (Lin et al., 2014)

Evolution of calculation on the lattice:

clover valence fermions on $N_f=2+1+1$ flavors of HISQ generated by MILC, $24^3 \times 64$. (Unpolarized isovector PDF)

> $\Gamma = \gamma^{t}$. Lattice renormalization. a=0.09fm, L=5.8fm, P^{z} =3.0 GeV, m_{π}~135MeV (Chen et al. (LP3), 2018)

 $\Gamma = \gamma^{z}$. Lattice renormalization. $P^{z}=1.29$ GeV, a=0.12fm, m_{π}~310MeV (Chen et al. (LP3), 2017)

Complete analysis at physical pion mass

J.W. Chen, L. Jin, H.-W. Lin, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, and Y.Z., (LP3), 2018

 $\Gamma = \gamma^{t}$. Clover valence fermions on N_f=2+1+1 flavors of HISQ generated by MILC, a=0.09fm, L=5.8fm, m_{π}~135MeV, *P*^z=3 GeV. One-step matching from RI/MOM quasi-PDF to MSbar PDF at μ =3 GeV. C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens, (ETMC), 2018

 $\Gamma = \gamma^{t}$. Dynamical N_f=2+1+1 twisted mass fermions by ETMC, a=0.09fm, L=4.8fm, m_{π}~130MeV, *P*^z=1.4 GeV. Two steps: matching from RI/MOM quasi-

PDF to MSbar quasi-PDF, then to MSbar PDF at $\mu = 2$ GeV.

Other distributions

Pion PDF, LP3 collaboration, arXiv:1804.01483;

See D. Richard's talk on the progress of pion PDF from current-current correlator.

- Distribution amplitudes and GPD;
- Transversity distributions;
 - Pheno results still have fairly large uncertainties;

See M. Radici's talk on the progress from currentcurrent correlator.

• Can also be calculated with the same procedure in LaMET, and free from operator mixing at O(a⁰)

M. Constantinou and H. Panagopoulos, 2017; T. Ishikawa et al. (LP3), 2017.

Summary

- LaMET allows us to calculate the PDF from a Euclidean quasi-PDF on the lattice;
- A systematic procedure to calculate PDF from the lattice has been set up;
- A recent calculation at physical pion mass and large nucleon momentum has shown encouraging signs of getting closer to the phenomenological PDF.

Outlook:

- How to resum the large terms in the matching coefficient? 2-loop matching?
- Application to TMDs? Ji, Jin, Yuan, Zhang, and Y.Z., arXiv:1801.05930; M. Ebert, I. Stewart, and Y.Z., in preparation.

QCD Evolution 2018

Backup Slides

Matching Coefficient

$$\begin{split} & \text{Unrenormalized quasi-PDF at one-loop:} \qquad \tilde{q}^{(0)}(z,p^z) = 4p^z \zeta \ e^{-izp^z} \\ & \tilde{q}^{(1)}(z,p^z,0,-p^2) = \frac{\alpha_s C_F}{2\pi} (4p^z \zeta) \int_{-\infty}^{\infty} dx \ \left(e^{-ixp^z z} - e^{-ip^z z}\right) h(x,\rho), \qquad \rho \equiv \frac{(-p^2 - i\varepsilon)}{p_z^2} \\ & h(x,\rho) \equiv \begin{cases} \frac{1}{\sqrt{1-\rho}} \left[\frac{1+x^2}{1-x} - \frac{\rho}{2(1-x)}\right] \ln \frac{2x-1+\sqrt{1-\rho}}{2x-1-\sqrt{1-\rho}} - \frac{\rho}{4x(x-1)+\rho} + 1 & x > 1 \\ & \frac{1}{\sqrt{1-\rho}} \left[\frac{1+x^2}{1-x} - \frac{\rho}{2(1-x)}\right] \ln \frac{1+\sqrt{1-\rho}}{1-\sqrt{1-\rho}} - \frac{2x}{1-x} & 0 < x < 1 \\ & \frac{1}{\sqrt{1-\rho}} \left[\frac{1+x^2}{1-x} - \frac{\rho}{2(1-x)}\right] \ln \frac{2x-1-\sqrt{1-\rho}}{2x-1+\sqrt{1-\rho}} + \frac{\rho}{4x(x-1)+\rho} - 1 & x < 0 \end{cases} \end{split}$$

- * Collinear divergence regulated by $-p^2$, which is not obvious unless one takes the onshell limit;
- * Renormalization constant determined in the Euclidean region where $\rho > 1$, needs analytical continuation.

Matching Coefficient

Renormalized quasi-PDF in the RI/MOM scheme:

$$\begin{split} \tilde{q}_{\mathrm{OM}}^{(1)}(x,p^{z},p_{R}^{z},\mu_{R}) &= \int \frac{dz}{2\pi} e^{ixzp^{z}} \, \tilde{q}_{\mathrm{OM}}^{(1)}(z,p^{z},p_{R}^{z},\mu_{R}) & \eta \equiv p^{z}/p_{R}^{z} \\ &= \frac{\alpha_{s}C_{F}}{2\pi} \left(4\zeta\right) \left\{ \int dy \left[\delta(y-x) - \delta(1-x)\right] \left[h_{0}(y,\rho) - h(y,r_{R})\right] \right. \\ h_{0}(x,\rho) &= \left\{ \begin{array}{c} \frac{1+x^{2}}{1-x} \ln \frac{x}{x-1} + 1 & x > 1 \\ \frac{1+x^{2}}{1-x} \ln \frac{4}{\rho} - \frac{2x}{1-x} & 0 < x < 1 \\ \frac{1+x^{2}}{1-x} \ln \frac{x-1}{x} - 1 & x < 0 \end{array} \right\}, \\ \end{split}$$

I. Stewart and Y. Z., 2017.

$$q^{(1)}(x,\mu) = \frac{\alpha_s C_F}{2\pi} (4\zeta) \begin{cases} 1+x^2 \ln \frac{\mu^2}{-p^2} + \frac{1+x^2}{1-x} \ln [x(1-x)] - (2-x) \end{bmatrix}_+ & 0 < x < 1 \\ 0 & x < 0 \end{cases}$$

QCD Evolution 2018

 \Rightarrow

MSbar PDF:

Effect of matching on phenomenological PDF

✤ PDF: MSTW2008nlo

I. Stewart and Y. Z., 2017.

Large momentum effective theory (LaMET) is a theory that expands in powers of $1/P^z$, where P^z is the proton momentum (Ji, PRL 2013, Sci. China Phys. Mech. Astro., 2014):

- 1. Construct a Euclidean quasi-observable \tilde{O} which can be calculated in lattice QCD;
- 2. The IMF limit of \tilde{O} is constructed to be a parton observable O at the operator level;

$$|P \neq 0\rangle = U(\Lambda(P))|P_0 = 0\rangle, \quad U(\Lambda(P = \infty))^{-1}\tilde{O}U(\Lambda(P = \infty)) = O$$
$$\langle P = \infty |\tilde{O}|P = \infty\rangle = \langle P_0 = 0|O|P_0 = 0\rangle$$

One cannot calculate it from the lattice!

QCD Evolution 2018

3. At finite P^z , the matrix element of \tilde{O} depends on the cut-off Λ of the theory (if not renormalized) and generally P^z , i.e., $\tilde{O}(P^z/\Lambda)$, while that of O depends on the renormalization scale μ (if in the MSbar scheme), i.e., $O(\mu)$;

$$\tilde{O}(P^{z} / \Lambda) = \left\langle P = P^{z} \middle| \tilde{O} \middle| P = P^{z} \right\rangle,$$
$$O(\mu) = \left\langle P = \operatorname{any} \middle| O \middle| P = \operatorname{any} \right\rangle$$

4. Taking the $P^z \longrightarrow (P^z >> \Lambda)$ limit of $\tilde{O}(P^z/\Lambda)$ is generally illdefined due to the singularities in quantum field theory,

$$\lim_{P^z \gg \Lambda} \tilde{O}(P^z / \Lambda) = ?$$

5. But it can be related to $O(\mu)$ through a factorization formula:

$$\tilde{O}(P^z / \Lambda) = Z(P^z / \Lambda, \mu / \Lambda) \otimes O(\mu) + \frac{c_2}{P_z^2} + \frac{c_4}{P_z^4} + \dots$$

- → P^z is much larger than Λ_{QCD} as well as the proton mass *M* to suppress the power corrections;
- ♦ One can regard $O(\mu)$ as the effective theory observable, and $\tilde{O}(P^z/\Lambda)$ as given by full QCD;
- * $O(\mu)$ and $\tilde{O}(P^z/\Lambda)$ have the same infrared (IR) physics, and thus can be perturbatively matched to each other through the leading term.

How matching works

Leading-twist approximation and factorization theorem

✤ Leading-twist approximation:

$$\frac{1}{2P^{z}} \langle P | \tilde{O}_{\gamma^{z}}(z^{2}\mu^{2}) | P \rangle = \sum_{n=0}^{\infty} C_{n}(\mu^{2}z^{2}) \frac{(-izP^{z})^{n}}{n!} a_{n+1}(\mu) + O(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{QCD}^{2}}{P_{z}^{2}})$$
$$= \int dy \sum_{n=0}^{\infty} C_{n}(\mu^{2}z^{2}) \frac{(-izP^{z} \cdot y)^{n}}{n!} q(y,\mu) + O(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{QCD}^{2}}{P_{z}^{2}})$$

★ If we define:
T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., 2018 $\tilde{q}(x,P^{z},\mu) = \int \frac{dz}{4\pi} \langle P | \tilde{O}_{\gamma^{z}}(z^{2}\mu^{2}) | P \rangle, \quad C(\frac{x}{y},\frac{\mu}{|y|P^{z}}) = \int \frac{d\zeta}{4\pi} e^{i\frac{x}{y}\zeta} \sum_{n=0}^{\infty} C_{n}(\frac{\mu^{2}\zeta^{2}}{(yP^{z})^{2}}) \frac{(-i\zeta)^{n}}{n!}$ then we prove $\tilde{q}(x,P^{z},\mu) = \int \frac{dy}{|y|} C(\frac{x}{y},\frac{\mu}{|y|P^{z}}) q(y,\mu)$

QCD Evolution 2018

Matching Coefficient

 The matching coefficient for different renormalization schemes on the lattice have been calculated at one-loop:

Transverse momentum cut-off scheme: Xiong, Ji, Zhang and Y.Z., 2014; Y. Ma and J. Qiu, 2014; MSbar and RI/MOM scheme: I. Stewart and Y.Z., 2017.

Since the matching does not depend on the IR regulator, one can obtain the matching by calculating the off-shell quark matrix elements of the quasi- and light-cone PDF:

Collaborations

Active collaborations working with the LaMET approach:

✤ Lattice Parton Physics Project (LP³) Collaboration (PDF):

J.W. Chen, T. Ishikawa, L. Jin, H.-W. Lin, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, R. Zhang, and Y.Z.

European Twisted Mass Collaboration (ETMC) (PDF):

C. Alexandrou, M. Constantinou, K.Cichy, V. Drach, E. Garcia-Ramos, K. Hadjiyiannakou, K. Jansen, F. Steffens, C. Wiese et al.

χ QCD Collaboration (Gluon polarization):

A. Alexandru, T. Drapper, M. Glatzmaier, K.F. Liu, R.S. Suffian, Y.-B. Yang, Y.Z., et al.

40