
Jet substructure measurements 
at the LHC and EIC 

Kyle Lee
Stony Brook University

1

QCD Evolution 2018
05/20/18 - 05/24/18

https://www.jlab.org/indico/event/266/session/10/contribution/32
https://www.jlab.org/indico/event/266/session/10/contribution/32


   Introduction        

Jets at the LHC
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• Jets are produced copiously  
at the LHC

• At the LHC, 60 - 70 % of  ATLAS & CMS  
papers use jets in their analysis!



   Introduction        

Application of  jet studies at the LHC
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• Precision probe of  QCD 

• Constrain BSM Models 

• Probe of  quark gluon plasma

Fat jet from BSM signal
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Jets at the EIC
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• Different circumstances compared with the LHC and New opportunities 

•         
    Lower            for EIC  
       
•              
    Smaller jet multiplicity for EIC 

• Less contamination from 
underlying events and pileups

p
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   Introduction        

Processes of  Interest

5

‣ We want to study semi-inclusive jet production event:  
p + p        Jet((with/without) substructure) + X 

 
photoproduction in the EIC  

e + p        e + Jet((with/without) substructure) + X

!

!
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   Introduction        

Plans of  this talk
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• Inclusive jet production at the LHC 

• Substructure measurements at the LHC 

• Role of  non-perturbative effects 

• Extension to the EIC case 

• Conclusions



  Inclusive Jets  

Factorization of  Inclusive Jet Production
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Kang, Ringer, Vitev `16
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from!

Dh
c ! Jc

• Simple replacement of  the fragmentation function by “semi-inclusive jet function”  
from semi-inclusive hadron production case. 



  Inclusive Jets  

Comparison with the inclusive hadron production case
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  Inclusive Jets  

Factorization
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• Relevant scales : 
1.Hard scale:                              2. Jet scale: 

• For small-R jet, we have hierarchy between the two different scales and jet cross-section  
is factorized,                                             , giving

µH ⇠ pT µJ ⇠ pTR

d�̂jet
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X
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Example of  NLO diagrams

Kang, Ringer, Vitev `16



  Inclusive Jets  

Factorization
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cc

Example of  NLO diagrams

• Evolution from        to        gives  
                  resummations.(↵s lnR)n

µJ µH
 

 

DGLAP• See                              for joint resummation  
of  threshold log and jet radius  
and phenomenology.

Liu, Moch, Ringer `18

• Inclusive jet measurements are only sensitive to hard and collinear radiations!



Substructure Measurements           

Jet Substructure Measurements
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v
• How do we measure substructure     inside the jet?v



Substructure Measurements           

Jet angularity
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• Thrust was defined as an event shape parameter to understand radiation pattern

T =
1

Q
maxt

X

i2X

|t · pi| = 1� ⌧0

•             is equivalent to dijet limit⌧0 ! 0

• A generalized class of  IR safe observables, angularity (applied to jet):

⌧e
+e�

a =
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EJ

X

i2J

Ei✓
2�a
iJ

⌧ppa =
1

pT

X

i2J

pT,i(�RiJ)
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• a=0 related to thrust (jet mass) 
• a=1 related to jet broadening (sensitive to rapidity divergence) 
• Many studies done for exclusive case : Sterman et al. `03, `08,  

Hornig, C. Lee, Ovanesyan `09,  Ellis, Vermilion, Walsh, Hornig, C.Lee `10,  
Chien, Hornig, C. Lee `15,  Hornig, Makris, Mehen `16



Substructure Measurements           

• Replace  
           

• Refactorize        as   
 
 
 

Jet angularity
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Jc(z, pTR,µ) ! Gc(z, pTR, ⌧a, µ)

Gc(z, pTR, ⌧a, µ) =
X

i

Hc!i(z, pTR,µ)

⇥

Z
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a , pT ⌧

1
2�a
a , µ)Si(⌧

Si
a ,

pT ⌧a
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, µ)

• Each pieces describe physics at different scales.

µJ ! µH•                     evolution follows  
DGLAP evolution equation again

• Resums                and (↵s lnR)n (↵s ln
2 R

⌧1/(2�a)
a

)n

Kang, KL, Ringer `18

µC ⇠ pT (⌧a)
1

2�a

µS ⇠ pT ⌧a
R1�a

DGLAP

Gc



Substructure Measurements           

µC ⇠ pT (⌧a)
1

2�a

µS ⇠ pT ⌧a
R1�a

DGLAP

• Replace  
           

• Refactorize        as   
 
 
 

Gc

Jet angularity
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Jc(z, pTR,µ) ! Gc(z, pTR, ⌧a, µ)

Gc(z, pTR, ⌧a, µ) =
X

i
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•       ,      and      have double poles, which cancel once evolved to     . 

•                       follows DGLAP from        to        :    Gc(z, pTR, ⌧a, µ)

µJ
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Kang, KL, Ringer `18
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Patterns emerging
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DGLAP

µJ ⇠ pTR

µH ⇠ pT

DGLAP / Sudakov

µv

• When we measure substructure      from the jet, once we evolve  
to       the remaining evolution to       is given by DGLAP evolution!

v
µJ µH

v

d�

dpT d⌘dv

• Two step factorization:  
a) production of  a jet 
b) probing the internal structure of  the jet produced.
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Quark and gluon discrimination
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• We can study how well angularity discriminates between quark and gluon jet  
as a continuous function of  ‘a’. 
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Quark and gluon discrimination
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• We can study how well angularity discriminates between quark and gluon jet  
as a continuous function of  ‘a’.  

• As 'a’ increases, better discrimination but more sensitive to non-perturbative effects.



Non-perturbative Effects

Non-perturbative Model
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• Non-perturbative effects: 

Figs from P. Bartalini et al. `11 

soft

soft

• Multi-Parton Interactions (MPI) 
(Underlying Events (UE)) 
Multiple secondary scatterings of   
partons within the protons may enter  
and contaminate jet.



Non-perturbative Effects

Non-perturbative Model
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• Non-perturbative effects: 

soft

soft

soft

soft

Figs from P. Bartalini et al. `11 

• Pileups 
Secondary proton collisions in a  
bunch may enter and contaminate jet.

• Multi-Parton Interactions (MPI) 
(Underlying Events (UE)) 
Multiple secondary scatterings of   
partons within the protons may enter  
and contaminate jet.



Non-perturbative Effects

Non-perturbative Model

• Non-perturbative effects: 

Hadrons

• Hadronization 
Partons forming the jet eventually  
hadronizes.



Non-perturbative Effects

Non-perturbative Model

21

• As      gets smaller,                  (smallest scale) can approach a non-perturbative scale. 

We shift our perturbative results by convolving with non-perturbative shape function to  
smear  
 

  
 
 
 

⌧a µS ⇠ pT ⌧a
R1�a

• Single parameter NP soft function : 

d�

d⌘dpT d⌧a
=

Z
dkF (k)

d�pert

d⌘dpT d⌧a

✓
⌧a �

R1�a

pT
k

◆

• Both hadronization and MPI effects in jet mass is well-represented by just shifting first-moments.

Stewart, Tackmann, Waalewijn `15 

•                                   , represents the non-perturbative parameter and ~ 
corresponds to non-perturbative effects coming primarily from the hadronization alone.

Z
dk k F(k) = ⌦(R) 1 GeV ⇠ ⇤hadrons

F(k) =

✓
4k

⌦2


◆
exp

✓
� 2k

⌦

◆



Phenomenology

Phenomenology (a=0, jet mass)
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Phenomenology (a=0, jet mass)
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Phenomenology (a=0, jet mass)
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Phenomenology (a=0, jet mass)
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    Grooming

Soft Drop Grooming
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• Underlying Events (UE) are difficult to understand.  

How do we get a better hold of  these contaminations in the jet? 

• Hint : contamination generally from soft radiations.  

Hadrons



    Grooming

Soft Drop Grooming
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Groom jets to reduce sensitivity to wide-angle soft radiation.  

• Underlying Events (UE) are difficult to understand.  

How do we get a better hold of  these contaminations in the jet? 

• Hint : contamination generally from soft radiations.  

Hadrons

Also see Varun’s talk



    Grooming

Soft Drop Grooming
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Groom jets to reduce sensitivity to wide-angle soft radiation.  

• Underlying Events (UE) are difficult to understand.  

How do we get a better hold of  these contaminations in the jet? 

• Hint : contamination generally from soft radiations.  

Hadrons

• Also reduces sensitivities to the NGLs associated with the correlation  
between in-jet and out-of-jet radiation. See Felix’s talk.
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Soft Drop Grooming
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• Soft drop grooming algorithms:   

1. Reorder emissions in the identified jet according to their  
relative angle using C/A jet algorithm. 

2. Recursively remove soft branches until soft drop condition is met:

• Underlying Events (UE) are difficult to understand.  

How do we get a better hold of  these contaminations in the jet? 

• Hint : contamination generally from soft radiations.  

Figure from Ian Moult’s slide from UCLA Nov, 2017

Larkoski, Marzani, Soyez, Thaler `14
Frye, Larkoski, Schwartz, Yan `16

min[pT,i, pT,j ]

pT,i + pT,j
> zcut

✓
Rij

R

◆�

Groom jets to reduce sensitivity to wide-angle soft radiation.  
z

1� z



    Grooming

Phenomenology (groomed jet mass)
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Kang, KL, Liu, Ringer `18
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• Developed the formalism for single inclusive groomed jet mass cross-section. 

• Shows very good agreement with the data. 

                             Reduced contamination as expected. 
                             NP effects mostly from hadronization.

See also
ATLAS, arXiv:1711.08341
Larkoski, Marzani, Soyez, Thaler `14
Frye, Larkoski, Schwartz, Yan `16⌦k = 1 GeV =)•  



 Electron-Ion Colliders

Photoproduction at the EIC
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hadron

See Jäger, Stratmann, Vogelsang `03

• Observe outgoing lepton to tag Q2

• Require high       and                          (near on-shell photon)Q2 < 0.1 GeV2pT
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X
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c
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h
c

Weizsäcker-Williams spectrum

fa/l = P�l ⌦ fa/�

fa/� = �(1� x�)• For the direct process,                           .
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 Fig from Jäger, Stratmann, Vogelsang `03
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Photoproduction at the EIC
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d�
ep!ejetX

dpT d⌘
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X

a,b,c

fa/l ⌦ fb/p ⌦H
c
ab ⌦ Jc +O(R2)

d�
ep!ejet(mJ )X

dpT d⌘dmJ
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X

a,b,c

fa/l ⌦ fb/p ⌦H
c
ab ⌦ Gc(mJ) +O(R2)

Inclusive Jet

Jet mass

hadron

• Sensitivity to the photon pdfs. Can be done for polarized and unpolarized case. 

• Quark and gluon discrimination with jet mass observed. 
• Role of  NP physics?

In collaboration with Elke Aschenauer and Brian Page

 Jäger, Stratmann, Vogelsang `03
 Chu, Aschenauer, Lee, Zheng `17
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 Electron-Ion Colliders

distribution for the jets in the EIC
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•                              for                  , contribution mostly from resolved.5 GeV < pT < 15 GeV Q2 < 1 GeV

pT

In collaboration with Elke Aschenauer and Brian Page
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Preliminary Plots
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• Fraction of  gluon contribution is reduced for the direct process  
relative to the resolved process.

PRELIMINARY
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Preliminary Plots
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• Monte Carlo

•                   , assumption that NP effects only come from the hadronization gives right  
peak value             less contamination from UE than LHC=)

PRELIMINARY

PRELIMINARY

In collaboration with Elke Aschenauer and Brian Page
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Conclusions
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• Formalism for studying semi-inclusive jet production with or without  
substructure measurements were introduced.  

• From       to      , the semi-inclusive jet production follows DGLAP evolution.  

• Discussed various non-perturbative effects and grooming which reduces 
contamination from the Underlying Events and Pileups.  

• Formalism was extended to the photoproduction case in the EIC and  
showed that EIC has cleaner environments than the LHC.

µHµJ


