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Introduction

Jets at the LHC

CMS Experiment at the LHC, CERN
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* Jets are produced copiously * At the LHC, 60 - 70 % of ATLAS & CMS
at the LHC papers use jets in their analysis!



Introduction

Application of jet studies at the LHC
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* Probe of quark gluon plasma




Jets at the EIC

Polarized

V' Se1c < VSune < /pr, EIC < /DT, LHC
L < Lower P, for EIC

e Nyprc < Njruc
Smaller jet multiplicity for EIC
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e [.ess contamination from
underlying events and pileups

Electron Source
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* Different circumstances compared with the LHC and New opportunities




Introduction

Processes of Interest

> We want to study semi-inclusive jet production event:
p + p — Jet((with/without) substructure) + X

photoproduction in the EIC
e + p —> e + Jet((with/without) substructure) + X



Plans of this talk

® Inclusive jet production at the LHC

® Substructure measurements at the LHC
® Role of non-perturbative effects

® Extension to the EIC case

® (Conclusions



Inclusive Jets

Factorization of Inclusive Jet Production

— — from

D =

C

* Simple replacement of the fragmentation function by “semi-inclusive jet function”
from semi-inclusive hadron production case.

Kang, Ringer,Vitev "1 6



Inclusive Jets

Comparison with the inclusive hadron production case

Factorization Evolution
Inclusive Jet do?? . Hj J, +O(R?) iy, Z? J
dprd %:cf o & Ha A
Hadron do?P R _ Y |fa® fy @ Hy® D uiDh = |Pji|@ D!
dPTdU — a ab c d,u { ; J j
» v k ) v

Kang, Ringer,Vitev "1 6



Inclusive Jets

Factorization

Jet

Example of NLO diagrams

e Relevant scales :

1.Hard scale: g ~|pr 2. Jet scale: g ~prR

* For small-R jet, we have hlerarchy between the two different scales and jet cross-section

is factorized, do¢ et Z , glving

d%fp afa)/dxbfb (%)/dzcdff

Ty 22

dO.pp—>jetX

o dngyPr,; > Z/

o(z)

Kang, Ringer,Vitev "1 6




Inclusive Jets

Factorization

Jet

Example of NLO diagrams

* Evolution from (J to Wy gives
(g In R)™ resummations.

Uy ~ Pt

DGLAP

e See Liu Moch, Ringer 18 for joint resummation
of threshold log and jet radius i ~prR
and phenomenology.

* Inclusive jet measurements are only sensitive to hard and collinear radiations!
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Substructure Measurements

Jet Substructure Measurements

X
%%/ * How do we measure substructure U) inside the jet?
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Substructure Measurements

Jet angularity

* Thrust was defined as an event shape parameter to understand radiation pattern

1
T:—maxt2|t-pi|:1—7'o
¢ ieX

* 7o — 0 is equivalent to dijet limit

* A generalized class of IR safe observables, angularity (applied to jet):

eTe™ L 1 2—a
Ta — E_J ; EZ@ZJ

1
9_
™ = — pri(ARiy)* "
PT e7
e a=0 related to thrust (jet mass)

* a=1 related to jet broadening (sensitive to rapidity divergence)

* Many studies done for exclusive case : Sterman et al. "03, 08,
Hornig, C. Lee, Ovanesyan 09, Ellis,Vermilion,Walsh, Hornig, C.Lee " 10,
Chien, Hornig, C. Lee " 15, Hornig, Makris, Mehen " 16
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Substructure Measurements

Jet angularity

* Replace Jc(zapTRa :u) — gC(ZapTRa Tas :u)

* Refactorize gc as

QC(Z, pTR7 Ta, ,U,) — Z Hc—)i (27 pTR7 :u)

. /dTaCi dTéLSi(S(Ta _ TaCi o TSi)Ci (ToiapTTaQ_a ’ :UJ)SZ (TSi Pra :U’)

a a a ’ pl-a’
* Hach pieces describe physics at different scales. 1% step 2 step A
hard-collinear soft-collinear
| |
e g — UH evolution follows Hgy(pr) )T
DGLAP evolution equation again |EG I})Azpz
— J ~PT
AA
n 2 R n
() RCSllmS (O{S ln R) aﬁd (CMS ln m)
Ta | e~ pr(re) 7
PrTa
Si(T) — 1S ™ pica

13 Kang, KL, Ringer " 18



d

Substructure Measurements

* Replace Jc(zapTRa :u) — gC(ZapTRa Tas :u)

* Refactorize gc as

gc(za pTR7 Ta s :U’)

Jet angularity

— Z Hc—ﬂ' (27 pTRa ,u)

X /de"deié(Ta —Tf’i —Tf’é)C’Z( f . DTTa

1

*H._.; ,C; and S; have double poles, which cancel once evolved to ..

* G(z,p1 R, T4, 1) follows DGLAP from [Jto WUH :

gz (Z pTR Tas W
du

dz

/

jZ

,mu)g]( 7pTR Tas )

14

15¢ step
hard-collinear

. Ta
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274 step
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Hg,(pr)

Si(7)

Kang, KL, Ringer " 18



Substructure Measurements

Patterns emerging

U - WH ~ DT

DGLAP

wy ~ pri
/ 4 I

DGILAP / Sudakov
do

dprdndv

o

* When we measure substructure v from the jet, once we evolve
to (4 the remaining evolution to M H 1s given by DGLAP evolution!

* 'Two step factorization:
a) production of a jet
b) probing the internal structure of the jet produced.
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Substructure Measurements

Quark and gluon discrimination

ROC curve 100%
(1,1) = Quark Jet,
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Bettty'
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>

1
Observable Quark Jet Efficiency

* We can study how well angularity discriminates between quark and gluon jet
as a continuous function of ‘a’.
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Substructure Measurements

Quark and gluon discrimination

ROC curve
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Quark Signal Efficiency

* We can study how well angularity discriminates between quark and gluon jet
as a continuous function of ‘a’.
* As'a’increases, better discrimination but more sensitive to non-perturbative effects.
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Non-perturbative Effects

Non-perturbative Model

* Non-perturbative effects:

= =
< < * Multi-Parton Interactions (MPI)

Figs from P. Bartalini et al.

18

‘II

(Undetrlying Events (UE))
Multiple secondary scatterings of
partons within the protons may enter
and contaminate jet.



Non-perturbative Effects

Non-perturbative Model

* Non-perturbative effects:

E

- * Multi-Parton Interactions (MPI)
(Undetrlying Events (UE))
Multiple secondary scatterings of
partons within the protons may enter
and contaminate jet.

Figs from P. Bartalini et al. | |

* Pileups
Secondary proton collisions in a
bunch may enter and contaminate jet.




Non-perturbative Effects

Non-perturbative Model

* Non-perturbative effects:

* Hadronization
Partons forming the jet eventually
hadronizes.




Non-perturbative Effects

Non-perturbative Model

* As 7, gets smaller, pus ~ pr

R1 ~ (smallest scale) can approach a non-perturbative scale.

We shift our perturbative results by convolving with non-perturbative shape function to

smear dO- do-pel"t Rl—a
— / dkF (k) To — k
dndprdr, dndprdr, T

* Single parameter NP soft function :

4k ) k Stewart, lackmann, Waalewijn "1 5
FI{,(k) <Q2)6Xp< Q >

* Both hadronization and MPI effects in jet mass is well-represented by just shifting first-moments.

. ! dk k F.(k) = Q.(R), represents the non-perturbative parameter and ~ 1 GeV ~ Apnadrons
orresponds to non-perturbative effects coming primarily from the hadronization alone.

21



Phenomenology

Phenomenology (a=0, jet mass)
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Phenomenology

Phenomenology (a=0, jet mass)

NLL ]

0.025 — ATLAS — single inclusive ungroomed jet
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Phenomenology
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Phenomenology (a=0, jet mass)

¢ NLL + NP(Q2 = 8)
< ATLAS —eo—

200 < pt < 300 GeV

400 < pr < 500 GeV

single inclusive ungroomed jet
Vs =7 TeV, anti-kT, R=1, |n| <2
300 < pr < 400 GeV

500 < pr < 600 GeV




Phenomenology

Phenomenology (a=0, jet mass)

0.025 single inclusive ungroomed jet
Vs =7 TeV, anti-kT, R=1, |n| <2
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Soft Drop Grooming
* Underlying Events (UE) are difficult to understand.

How do we get a better hold of these contaminations in the jet?

* Hint : contamination generally from soft radiations.

26



Grooming

Soft Drop Grooming

* Underlying Events (UE) are difficult to understand.
How do we get a better hold of these contaminations in the jet?

* Hint : contamination generally from soft radiations.

Groom jets to reduce sensitivity to wide-angle soft radiation.

Also see Varun’s talk

27



Grooming

Soft Drop Grooming

* Underlying Events (UE) are difficult to understand.
How do we get a better hold of these contaminations in the jet?

* Hint : contamination generally from soft radiations.

Groom jets to reduce sensitivity to wide-angle soft radiation.

* Also reduces sensitivities to the NGLs associated with the correlation
between in-jet and out-of-jet radiation. See Felix’s talk.

28



Grooming

Soft Drop Grooming

* Underlying Events (UE) are difficult to understand.
How do we get a better hold of these contaminations in the jet?

* Hint : contamination generally from soft radiations.

Groom jets to reduce sensitivity to wide-angle soft radiation.

N R

- 82, = = o= i ... o = ———

.. "’; = \ .o / : —

/ e 4 e

_ — ~ - F—
1—z

Figure from lan Moult’s slide from UCLA Nov, 2017
* Soft drop grooming algorithms:

1. Reorder emissions in the identified jet according to their
relative angle using C/ A jet algorithm.

2. Recursively remove soft branches until soft drop condition is met:

min[pr,;, pr.] (RM)B
> Zcut
pri + DT, R

Larkoski, Marzani, Soyez, Thaler " 14

Frye, Larkoski, Schwartz,Yan 16
29



Grooming

Phenomenology (groomed jet mass)

Kang, KL, Liu, Ringer 18

. 0.8 NLL [ | -
NE 0.7 F NLL + NP(©2=1) € Lk Groomed inclusive di-jet -
~ g ATLAS r——e— ¢ i
N':Q 0.6 - Vs =13 TeV, anti-kT, R=0.8 | -
Gl 05 [ pr > 600 GeV, |n| < 1.5 [ i
o - : ,
— B soft drop, zZcut = 0.1, 8 =0 | B=1 i B =2
D04 . .
— B ® B B
Z 03} ; : : - }
o : : . :
< 02| : 5 : :
™ a - - -~ <
201 F 3 g
0 2 \ \ \ \ C.8°7 | \ \ \
4 -3 -2 -1 -4 -3 -2
2 2 2 2 2 2
logl()(mJ,gr/pT) loglO(mJ,gr/pT) loglo(mJ,gr/pT)

* Developed the formalism for single inclusive groomed jet mass cross-section.

* Shows very good agreement with the data. See also
ATLAS, arXiv:1711.08341

_ . Larkoski, Marzani, Soyez, Thaler " | 4
e O, =1GeV — Reduced contamination as expected. Frye, Larkoski, Schwartz,Yan * 16

NP effects mostly from hadronization.
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Electron-Ion Colliders

Photoproduction at the EIC

p direct p resolved

D o
Jo/p Torp Fig from Jdger, Stratmann,Vogelsang "03

do.ep—)th

hadron = fan ® foy, ® Hy, @ D

a,b,c

dprdn
\Weizséicker-Williams spectrum
fajt = Py @ fa/q

* Por the direct process, f,/y = (1 —x,).

* Observe outgoing lepton to tag ()?

* Require high pr and Q? < 0.1 GeV? (near on-shell photon) See Jdger, Stratmann,Vogelsang *03
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Electron-Ion Colliders

Photoproduction at the EIC

p 1 |y
: direct , resolved
Jo/p Torp Fig from Jdger, Stratmann,Vogelsang "03
do.ep—)th
_ He¢ Dh
hadron dprdn %:Cf a/t @ fop @ Hopy @ D
I 1 ) ep—ejet X 5
nclusive |et — . H, ®J.+OR
J dprdn Cgcf/l@)fb/p@ ab & + ( )
do.ep—)ejet(mJ)X
— ; H¢ . O(R?
Jet mass dprdndm, Z Jap @ forp @ Hgyy @ Ge(my) + O(R7)

a,b,c

* Sensitivity to the photon pdfs. Can be done for polarized and unpolarized case.

* Quark and gluon discrimination with jet mass observed.
Jdger, Stratmann,Vogelsang "03

e Role of NP thSiCS? Chu,Aschenauer, Lee, Zheng "1 7
- In collaboration with Elke Aschenauer and Brian Page



Electron-Ion Colliders

pr distribution for the jets in the EIC

Jetp Vs Q?: Resolved

E. =20 GeV
E, = 250 GeV

30000

25000

20000

15000

do / dnlab

10000

5000

T T
NLO+NLLRr—0.8

Vs = 141 GeV, pr > 4 GeV

0.2 <y<0.8

Mab

® 5 GeV < pr < 15 GeV for Q° <1 GeV, contribution mostly from resolved.

33

In collaboration with Elke Aschenauer and Brian Page




Electron-Ion Colliders

Preliminary Plots

0.2
q i q
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0.15 - q+g B q+g
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resolved direct
5 g’ -
S5 0.1 |
—| b
0.05 +
0.0 — -
0 10
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* Fraction of gluon contribution is reduced for the direct process
relative to the resolved process.

In collaboration with Elke Aschenauer and Brian Page
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Electron-Ion Colliders

Preliminary Plots

Angularity
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e Monte Carlo

*Q,. = 0.5 GeV, assumption that NP effects only come from the hadronization gives right
peak value ——> less contamination from UE than LHC

In collaboration with Elke Aschenauer and Brian Page
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Conclusions

Conclusions

® Formalism for studying semi-inclusive jet production with or without
substructure measurements were introduced.

® From /s to iH ,the semi-inclusive jet production follows DGLAP evolution.

® Discussed various non-perturbative effects and grooming which reduces
contamination from the Underlying Events and Pileups.

®* Formalism was extended to the photoproduction case in the EIC and
showed that EIC has cleaner environments than the LHC.
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