

Twist-2 transverse momentum dependent distributions at NNLO in QCD

QCD Evolution 2018, Santa Fe, NM, US, May 20-24

Daniel Gutiérrez Reyes (UCM)(speaker) Ignazio Scimemi (UCM) Alexey A. Vladimirov (Regensburg U.)

Based on: arXiv: 1702.06558 arXiv: 1805.07243 New!

* Introduction

- * Factorization theorems with TMPs
- * Small-b operator product expansion
- * Transversity and Pretzelosity at NLO
- * Transversity and Pretzelosity at NNLO
- * Conclusions

Factorization theorems with TMDs Definition of Operators

<u>TMP factorization theorems</u> Consistent treatment of rapidity divergences in Spin (in)dependent TMPs

Self contained definition of TMD operators

Without referring to a scattering process

Quark and gluon components of the generic TMPs

$$\Phi_{ij}(x, \boldsymbol{b}) = \int \frac{d\lambda}{2\pi} e^{-ixp^+\lambda} \bar{q}_i \left(\lambda n + \boldsymbol{b}\right) \mathcal{W}(\lambda, \boldsymbol{b}) q_j(0)$$

$$\Phi_{\mu\nu}(x,\boldsymbol{b}) = \frac{1}{xp^+} \int \frac{d\lambda}{2\pi} e^{-ixp^+\lambda} F_{+\mu} \left(\lambda n + \boldsymbol{b}\right) \mathcal{W}(\lambda,\boldsymbol{b}) F_{+\nu} \left(0\right)$$

• The soft function renormalizes the rapidity divergences

R-factor

$$S(\boldsymbol{b}) = \frac{\mathrm{Tr}_{\mathrm{color}}}{N_c} \langle 0 | \left[S_n^T \,^{\dagger} \, \tilde{S}_n^T \right] (\boldsymbol{b}) \left[\tilde{S}_n^T \,^{\dagger} \, S_n^T \right] (0) | 0 \rangle \longrightarrow R_{\delta\text{-reg.}} = \frac{1}{\sqrt{S(\boldsymbol{b})}}$$
$$S(\boldsymbol{b}) = \exp\left(A(\boldsymbol{b}, \epsilon) \ln(\delta^+ \delta^-) + B(\boldsymbol{b}, \epsilon) \right) \qquad \text{Its logs are linear in } \ln(\delta^+ \delta^-) + B(\boldsymbol{b}, \epsilon) \right)$$

Factorization theorems with TMDs Drell-Yan cross section

Small-b operator product expansion

Small-b OPE => Relation between TMP operators and lightcone operators

$$\Phi_{ij}(x, \boldsymbol{b}) = \left[(C_{q \leftarrow q}(\boldsymbol{b}))_{ij}^{ab} \otimes \phi_{ab} \right] (x) + \left[(C_{q \leftarrow g}(\boldsymbol{b}))_{ij}^{\alpha\beta} \otimes \phi_{\alpha\beta} \right] (x) + \dots,$$

$$\Phi_{\mu\nu}(x, \boldsymbol{b}) = \left[(C_{g \leftarrow q}(\boldsymbol{b}))_{\mu\nu}^{ab} \otimes \phi_{ab} \right] (x) + \left[(C_{g \leftarrow g}(\boldsymbol{b}))_{\mu\nu}^{\alpha\beta} \otimes \phi_{\alpha\beta} \right] (x) + \dots \right]$$

$\begin{array}{l} \mbox{Projectors over polarizations} \\ \Phi_q^{[\Gamma]} = \frac{{\rm Tr}(\Gamma \Phi)}{2} & \Phi_g^{[\Gamma]} = \Gamma^{\mu\nu} \Phi_{\mu\nu} \end{array}$

Small-b OPE: Cancellation of rapidity divergences

• Small-b OPE for a generic TMD quark operator

$$\Phi_q^{[\Gamma]} = \Gamma^{ab}\phi_{ab} + a_s C_F \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon) \left| \dots \right|$$

$$+\left(\frac{1}{(1-x)_{+}}-\ln\left(\frac{\delta}{p^{+}}\right)\right)\left(\gamma^{+}\gamma^{-}\Gamma+\Gamma\gamma^{-}\gamma^{+}+\frac{i\epsilon\gamma^{+}\beta\Gamma}{2B}+\frac{i\epsilon\Gamma\beta\gamma^{+}}{2B}\right)^{ab}+\dots\right]\otimes\phi_{ab}+\mathcal{O}(a_{s}^{2})$$

• General R-factor

$$R = 1 + 2a_s C_F \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon) \left(\mathbf{L}_{\sqrt{\zeta}} + 2\ln\left(\frac{\delta}{p^+}\right) - \psi(-\epsilon) - \gamma_E \right) + \mathcal{O}(a_s^2)$$

Cancellation of rapidity divergences in

$$R\Phi \longrightarrow \begin{array}{l} \gamma^{+}\Gamma = \Gamma\gamma^{+} = 0\\ \Gamma^{+\mu} = \Gamma^{-\mu} = \Gamma^{\mu+} = \Gamma^{\mu-} = 0 \end{array}$$

$$\Gamma^{q} = \{\gamma^{+}, \gamma^{+}\gamma^{5}, \sigma^{+\mu}\} \quad \Gamma^{g} = \{g_{T}^{\mu\nu}, \epsilon_{T}^{\mu\nu}, b^{\mu}b^{\nu}/b^{2}\} \quad \begin{array}{l} \text{Lorentz structures of}\\ \text{"leading dynamical twist" TMPs} \end{array}$$

Spin dependent TMP decomposition

Hadron matrix elements of TMD decomposed over all posible Lorentz variants Polarized TMDPDFs

Transversity and Pretzelosity at NLO

Lorentz structure and matching

Matching coefficients up to NLO $H_1^q(z, \boldsymbol{b}) = \int_z^1 \frac{dy}{y^{3-2\epsilon}} \sum_{f=q,\bar{q}} \delta \mathbb{C}_{q \to f} \left(\frac{z}{y}, \mathbf{L}_{\mu}\right) H_1^f(y) + \mathcal{O}(\boldsymbol{b}^2)$ TMD FF Let us solve it recursively! $\tau \tau [0] (\tau)$ color

$$\delta C_{q \to q}^{[0]} = H_1^{[1]}(z, b)$$

$$\delta C_{q \to q}^{[1]} = H_1^{[1]}(z, b) - \frac{H_1^{[1]}(z)}{z^{2-2\epsilon}}$$

Renormalized TMPs up to NLO

$$\Phi(x, \boldsymbol{b}; \boldsymbol{\mu}, \boldsymbol{\zeta}) = Z(\boldsymbol{\mu}, \boldsymbol{\zeta}|\boldsymbol{\epsilon}) R(\boldsymbol{b}, \boldsymbol{\mu}, \boldsymbol{\zeta}|\boldsymbol{\epsilon}, \boldsymbol{\delta}) \Phi^{\text{unsub.}}(x, \boldsymbol{b}|\boldsymbol{\epsilon}, \boldsymbol{\delta})$$

$$Z = Z_2^{-1} Z_q$$
Expansion up to NLO

$$Rapidity divergences \qquad \Phi_{f \leftarrow f'}^{[0]} = \Phi_{f \leftarrow f'}^{[0]\text{unsub.}}$$

$$\Phi_{f \leftarrow f'}^{[1]} = \Phi_{f \leftarrow f'}^{[1]\text{unsub.}} - \frac{S^{[1]} \Phi_{f \leftarrow f'}^{[0]\text{unsub.}}}{2} + \left(Z_q^{[1]} - Z_2^{[1]}\right) \Phi_{f \leftarrow f'}^{[0]\text{unsub.}}$$

Diagrams contributing to TMDS at NLO

//

Matching coefficients up to NLO

Transversity - Transversity small-b expressionAgrees with
Bacchetta,
Prokudin
1303.2129! $h_1(x, b) = \left[\delta C_{q \leftarrow q}(b) \otimes \delta f_q\right](x) + \mathcal{O}(b^2)$ Agrees with
Bacchetta,
Prokudin
1303.2129!NLO matching coefficient \bullet

$$\delta C_{q\leftarrow q} = \delta(\bar{x}) + a_s C_F \left(-2\mathbf{L}_\mu \delta p_{qq} + \delta(\bar{x}) \left(-\mathbf{L}_\mu^2 + 2\mathbf{L}_\mu \mathbf{l}_\zeta - \zeta_2 \right) \right) + \mathcal{O}(a_s^2)$$

Pretzelosity - Transversity small-b expression

 $h_{1T}^{\perp}(x, \boldsymbol{b}) = \left[\delta^{\perp} C_{q \leftarrow q}(\boldsymbol{b}) \otimes \delta f_q\right](x) + \mathcal{O}(\boldsymbol{b}^2) = \left[\left(0 + \mathcal{O}(a_s^2)\right) \otimes \delta f_q\right](x) + \mathcal{O}(\boldsymbol{b}^2)$

NLO matching coefficient

At NLO the coefficient is $\sim \epsilon$

$$\delta^{\perp} C_{q \leftarrow q} = -4a_s C_F \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon) \bar{x} \epsilon^2 \boldsymbol{\swarrow}^2$$

This observation is supported by the measurement of $\sin(3\phi_h - \phi_s)$ asymmetries by HERMES and COMPASS! Lefky, Prokudin 1411.0580, Parsamyan PoS(QCDEV2017)042

Matching coefficients up to NLO

Transversity - Transversity Fragmentation small-b expression

$$H_1^q(z, \boldsymbol{b}) = \int_z^1 \frac{dy}{y^{3-2\epsilon}} \sum_{f=q,\bar{q}} \delta \mathbb{C}_{q \to f} \left(\frac{z}{y}, \mathbf{L}_{\mu}\right) H_1^f(y) + \mathcal{O}(\boldsymbol{b}^2)$$

NLO matching coefficient

$$z^{2}\delta\mathbb{C}_{q\to q} = \delta(\bar{z}) + a_{s}C_{F}\left(\left(4\ln z - 2\mathbf{L}_{\mu}\right)\delta p_{qq} + \delta(\bar{z})\left(-\mathbf{L}_{\mu}^{2} + 2\mathbf{L}_{\mu}\mathbf{l}_{\zeta} - \zeta_{2}\right)\right)$$

Pretzelosity - Transversity small-b expression

$$h_{1T}^{\perp}(x, \boldsymbol{b}) = \left[\delta^{\perp} C_{q \leftarrow q}(\boldsymbol{b}) \otimes \delta f_q\right](x) + \mathcal{O}(\boldsymbol{b}^2) = \left[\left(0 + \mathcal{O}(a_s^2)\right) \otimes \delta f_q\right](x) + \mathcal{O}(\boldsymbol{b}^2)$$

NLO matching coefficient

At NLO the coefficient is $\sim \epsilon$

$$\delta^{\perp} C_{q \leftarrow q} = -4a_s C_F \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon) \bar{x} \epsilon^2 \boldsymbol{\swarrow}^2$$

This observation is supported by the measurement of $\sin(3\phi_h - \phi_s)$ asymmetries by HERMES and COMPASS! Lefky, Prokudin 1411.0580, Parsamyan PoS(QCDEV2017)042

See Parsamyan's talk

Lefky, Prokudin 1411.0580

Transversity and Pretzelosity at NNLO

Transversity distribution

Virtual-Real diagrams

Pole $1/\epsilon^3$ Should be cancelled with vertex correction term in RR diagrams

> Pole $1/\epsilon^3$ Should be cancelled with single WL term in RR diagrams

These diagrams are exactly zero!

Quark self-energy + Gluon self-energy (TrNf)

Renormalization of TMD at NNLO Cancellation of rapidity divergences

Matching coefficients (PDF)

Matching coefficients (FF)

LO transversity DGLAP kernel

 $\delta p(x) =$

2x

The matching coefficients are written as

 $C^{(2;0,0)}(x) = P^{[1]}F_1(x) +$

$$\delta C_{f \leftarrow f'}(x, \mathbf{L}_{\mu}, \mathbf{l}_{\zeta}) = \sum_{n=0}^{\infty} a_s^n \sum_{k=0}^{n+1} \sum_{l=0}^{n} \mathbf{L}_{\mu}^k \, \mathbf{l}_{\zeta}^l \, \delta C_{f \leftarrow f'}^{(n;k,l)}(x)$$

Abelian part of the lowest order of matching coefficient for quark-to-quark case

 $\delta C_{q \leftarrow q}^{(2;0,0)}(x) = C_F^2 \left\{ \delta p(x) \left[4 \text{Li}_3(\bar{x}) - 20 \text{Li}_3(x) - 4 \ln \bar{x} \text{Li}_2(\bar{x}) + 12 \ln x \text{Li}_2(x) + 2 \ln^2 \bar{x} \ln x + 2 \ln \bar{x} \ln^2 x \right] \right\}$

$$+\frac{3}{2}\ln^2 x + 8\ln x + 20\zeta_3 - 2\ln \bar{x} + 4\bar{x} + \delta(\bar{x})\frac{5}{4}\zeta_4 + \dots$$

The part of the coefficient that is multiplied by the LO transversity DGLAP kernel literally coincides with the corresponding part in the unpolarized case

	Unpolarized	Transversity
	$P^{[1]} = \frac{1+x^2}{1-x}$	$P^{[1]} = \frac{2x}{1-x}$
$F_2(x) + \delta(\bar{x})F_3$	F_1	$=$ F_1
	F_2	\neq F_2
	F_3^2	$\stackrel{\prime}{=}$ F_3

LO transversity DGLAP kernel

 $\delta p(z) = \frac{1}{1}$

2z

The matching coefficients are written as

 $C^{(2;0,0)}(z) = P^{[1]}$

$$\mathbb{C}_{f \to f'}(z, \mathbf{L}_{\mu}, \mathbf{l}_{\zeta}) = \sum_{n=0}^{\infty} a_s^n \sum_{k=0}^{n+1} \sum_{l=0}^{n} \mathbf{L}_{\mu}^k \mathbf{l}_{\zeta}^l \, \delta \mathbb{C}_{f \to f'}^{(n;k,l)}(z)$$

Abelian part of the lowest order of matching coefficient for quark-to-quark case

 $z^{2} \delta \mathbb{C}_{q \to q}^{(2;0,0)}(z) = C_{F}^{2} \left\{ \delta p(z) \left[40 \text{Li}_{3}(z) - 4 \text{Li}_{3}(\bar{z}) + 4 \ln \bar{z} \text{Li}_{2}(\bar{z}) - 16 \ln z \text{Li}_{2}(z) - \frac{40}{3} \ln^{3} z + 18 \ln^{2} z \ln \bar{z} - 2 \ln^{2} \bar{z} \ln z \right. \right. \\ \left. + \frac{15}{2} \ln^{2} z - 8 \left(1 + \zeta_{2}\right) \ln z - 40 \zeta_{3} \right] + 4 \bar{z} (1 + \ln z) + 2 z (\ln \bar{z} - \ln z) + \delta(\bar{z}) \frac{5}{4} \zeta_{4} \right\} + \dots$

The part of the coefficient that are multiplied by the LO transversity DGLAP kernel literally coincides with the corresponding part in the unpolarized case

	Unpolarized	Transversity
	$P^{[1]} = \frac{1+z^2}{1-z}$	$P^{[1]} = \frac{2z}{1-z}$
$F_1(z) + F_2(z) + \delta(\bar{z})F_3$	F_1	$=$ F_1
	F_2	$\neq F_2$
	ГЗ	= 13

Pretzelosity distribution

Reduction of the number of diagrams

Diagrams with a non-interacting quark are exactly zero

As in the transversity case —> Odd number of gamma matrices in each trace in $q \leftarrow q'$ —> It is zero!

At NNLO we have the same two cases that in transversity

1-loop result is ϵ -suppressed Two loop diagrams are less divergent than in another TMPs All the diagrams have no poles in ϵ

Non-zero Virtual-Real diagrams

Cancellation of Rapidity Divergences

Expression for renormalized TMD

First two diagrams are finite Third is zero Sum of the diagrams is $\mathcal{O}(\epsilon)$!

 $\delta^{\perp} C_{q \leftarrow q'}^{[2]} = 0$

Zero from the beginning Odd number of gamma matrices

$$\delta^{\perp} C^{[2]}_{q \leftarrow q} = 0$$

This cancelation is highly non-trivial!

4

$$\delta^{\perp} \Phi_{f \leftarrow f'}^{[2]} = C_F^2 A_F + C_F \left(C_F - \frac{C_A}{2} \right) A_{FA} + \frac{C_A}{2} A_A + C_F N_f A_N \qquad A_{FA} = A_A + \mathcal{O}(\epsilon)$$
$$A_{FA} = \mathcal{O}(\epsilon)$$

There is an ϵ -suppression of the CA CF and Nf parts of the TMP!

$$\delta^{\perp} C_{q \leftarrow q}^{[2]}(x, \boldsymbol{b}) = h_{1T, q \leftarrow q}^{\perp [2]}(x, \boldsymbol{b}) - \left[\delta^{\perp} C_{q \leftarrow q}^{[1]}(\boldsymbol{b}) \otimes \delta f_{q \leftarrow q}^{[1]}\right](x)$$

So, after renormalization

$$h_{1T,q\leftarrow q}^{\perp[2]}(x,\boldsymbol{b}) = -4C_F^2 \left(\bar{x}(3+4\ln\bar{x}) + 4x\ln x \right)$$

$$\begin{bmatrix} \delta^{\perp} C_{q\leftarrow q}^{[1]}(\boldsymbol{b}) \otimes \delta f_{q\leftarrow q}^{[1]} \end{bmatrix} (x) = -4C_F^2 \left(\bar{x}(3+4\ln\bar{x}) + 4x\ln x \right)$$

$$\begin{bmatrix} \delta^{\perp} C_{q\leftarrow q}^{[1]}(\boldsymbol{b}) \otimes \delta f_{q\leftarrow q}^{[1]} \end{bmatrix} (x) = -4C_F^2 \left(\bar{x}(3+4\ln\bar{x}) + 4x\ln x \right)$$

$$\begin{bmatrix} \Delta C_{q\leftarrow q}^{[1]}(\boldsymbol{b}) \otimes \delta f_{q\leftarrow q}^{[1]} \end{bmatrix} (x) = -4C_F^2 \left(\bar{x}(3+4\ln\bar{x}) + 4x\ln x \right)$$

$$\begin{bmatrix} \Delta C_{q\leftarrow q}^{[1]}(\boldsymbol{b}) \otimes \delta f_{q\leftarrow q}^{[1]} \end{bmatrix} (x) = -4C_F^2 \left(\bar{x}(3+4\ln\bar{x}) + 4x\ln x \right)$$

ResultsConjecture:
$$\delta^{\perp}C_{q\leftarrow f}(x,b)=0$$
At all orders in Rf.!
Dof large-Nf matching is zero
Supports the conjecture! $\Phi^{\perp}C_{q\leftarrow f}(x,b)=0$ \mathbb{D} of large-Nf matching is zero
Supports the conjecture! $\Phi^{\perp}C_{q\leftarrow q}^{[2]}=0$ $\delta^{\perp}C_{q\leftarrow q}^{[2]}=0$ This cancelation is highly non-trivial! $\delta^{\perp}\Phi_{fc}^{[2]}_{f'}=C_{F}^{2}A_{F}+C_{F}\left(C_{F}-\frac{C_{A}}{2}\right)A_{FA}+\frac{C_{A}}{2}A_{A}+C_{F}N_{f}A_{N}$ $A_{FA}=A_{A}+O(\epsilon)$
 $A_{N}=O(\epsilon)$ There is an ϵ -suppression of the CA CF and Nf parts of the TMD! $\delta^{\perp}C_{q\leftarrow q}^{[2]}(x,b)=h_{1T,q\leftarrow q}^{\perp [2]}(x,b)=h_{1T,q\leftarrow q}^{\perp [2]}(x,b)=h_{2T,q\leftarrow q}^{\perp [2]}(x,b)=-4C_{F}^{2}(x(3+4\ln x)+4x\ln x)$ Actually the result is zero!
 $O(\epsilon)$ C(\epsilon)Lotally the result is zero!
 $O(\epsilon)$

Conclusions

- * We have a polarized TMP (transversity) calculated the at same order that the unpolarized one. This feature allows tests of independence of polarization of the TMP Evolution
- * For the transversity TMP we have information both for PDFs and FFs, which allows further tests of TMP evolution
- * It is welcome to know and to have grids of collinear transversity extracted at NNLO. See Radici's talk
- * Resume of our calculation:
 - * Transversity has a matching coefficient calculated in an analogous way of the unpolarized function.
 - * Rapidity divergences cancelled (Polarized Factorization theorems at NNLO)
 - * Z's do not depend on the polarization.
 - * Pretzelosity has a matching coefficient that
 - * Is ϵ -suppressed at NLO, explaining phenomenological analysis
 - * Zero (ϵ -suppressed) at NNLO for all the different channels. Conjecture: zero at all order in P.T.
 - * LO is twist-4 matching?

s-regularization

Pretzelosity distribution

Cuadrupole modulation of parton density in the distribution of transversely polarized quarks in a transversely polarized nucleon

A polarized proton might not be spherically symmetric

LEPTON SCATTERING PLANE

H.Avakian et al. 0805.3355

Pretzelosity distribution in convolution with the Collins FF generates $\sin(3\phi_h - \phi_S)$ asymmetry in SIDIS (HERMES & COMPASS) and future facilities (EIC, LHC-b)

$$F_{UT}^{\sin(3\phi_h - \phi_S)} = \mathcal{C} \left[w_{\min} h_{1T}^{\perp} H_1^{\perp} \right]$$

Experimentally measured: SSA $A_{UT}^{\sin(3\phi_h-\phi_S)} \propto F_{UT}^{\sin(3\phi_h-\phi_S)}$

$$\frac{d\sigma}{dxdyd\phi_S dP_{hT}} = \frac{\alpha^2 2P_{hT}}{xyQ^2} \left\{ \left(1 - y + \frac{1}{2}y^2\right) (F_{UU,T} + \varepsilon F_{UU,L}) + S_T(1 - y)\sin(3\phi_h - \phi_S)F_{UT}^{\sin(3\phi_h - \phi_S)} + \dots \right\}$$

Linearly polarized gluons matching coefficients

Small-b expression for the linearly polarized gluon TMDPDF

$$h_1^{\perp g}(x, \boldsymbol{b}) = [\delta^L C_{g \leftarrow q}(\boldsymbol{b}) \otimes f_q](x) + [\delta^L C_{g \leftarrow g}(\boldsymbol{b}) \otimes f_g](x) + \mathcal{O}(\boldsymbol{b}^2)$$

NLO matching coefficients

$$\delta^L C_{g \leftarrow g} = -4a_s C_A \frac{x}{x} + \mathcal{O}(a_s^2)$$

$$\delta^L C_{g \leftarrow q} = -4a_s C_F \frac{\bar{x}}{x} + \mathcal{O}(a_s^2)$$

These results agree with the obtained in T. Becher et al. 1212.2621!!

Schemes for γ^5 in DR. Small-b OPE

Larin scheme is more convenient than HVBM because it does not violate Lorentz invariance, but it violates the definition of the leading dynamical twist

$$\gamma^{+}\Gamma = \gamma^{+} \left(\gamma^{+} \gamma^{5}\right)_{\text{Larin}} = \frac{\imath}{3!} \epsilon^{+\nu\alpha\beta} \gamma^{+} \gamma_{\nu} \gamma_{\alpha} \gamma_{\beta} \neq 0$$

Light modification of Larin scheme ⇒ Larin+

$$(\gamma^{+}\gamma^{5})_{\text{Larin}^{+}} = \frac{i\epsilon^{+-\alpha\beta}}{2!}\gamma^{+}\gamma_{\alpha}\gamma_{\beta} = \frac{i\epsilon_{T}^{\alpha\beta}}{2!}\gamma^{+}\gamma_{\alpha}\gamma_{\beta}$$

Helicity TMP distribution in the regime of small-b $g_{1L}(x, \mathbf{b}) = [\Delta C_{q \leftarrow q}(\mathbf{b}) \otimes \Delta f_q](x) + [\Delta C_{q \leftarrow g}(\mathbf{b}) \otimes \Delta f_g](x) + \mathcal{O}(\mathbf{b}^2)$ $g_{1L}^g(x, \mathbf{b}) = [\Delta C_{g \leftarrow q}(\mathbf{b}) \otimes \Delta f_q](x) + [\Delta C_{g \leftarrow g}(\mathbf{b}) \otimes \Delta f_g](x) + \mathcal{O}(\mathbf{b}^2)$

Diagrams contributing to TMDS at NLO

Rapidity divergences: enormalized with SF

> The calculation is striaghtforward to the unpolarized case M.G.Echevarria et al.: 1604.07869

Matching coefficients: scheme dependence

$$\Delta C_{q\leftarrow q} = \delta(\bar{x}) + a_s C_F \left\{ 2B^{\epsilon} \Gamma(-\epsilon) \left[\frac{2}{(1-x)_+} - 2 + \bar{x}(1+\epsilon)\mathcal{H}_{\mathrm{sch.}} + \delta(\bar{x}) \left(\mathbf{L}_{\sqrt{\zeta}} - \psi(-\epsilon) - \gamma_E \right) \right] \right\}_{\epsilon-\text{finite}}$$

$$\Delta C_{q\leftarrow g} = a_s C_F \left\{ 2B^{\epsilon} \Gamma(-\epsilon) \left[x - \bar{x}\mathcal{H}_{\mathrm{sch.}} \right] \right\}_{\epsilon-\text{finite}}$$

$$\Delta C_{g\leftarrow q} = a_s C_F \left\{ 2B^{\epsilon} \Gamma(-\epsilon) \left[1 + \bar{x}\mathcal{H}_{\mathrm{sch.}} \right] \right\}_{\epsilon-\text{finite}}$$

$$\Delta C_{g\leftarrow g} = \delta(\bar{x}) + a_s C_A \left\{ 2B^{\epsilon} \Gamma(-\epsilon) \frac{1}{x} \left[\frac{2}{(1-x)_+} - 2 - 2x^2 + 2x\bar{x}\mathcal{H}_{\mathrm{sch.}} + \delta(\bar{x}) \left(\mathbf{L}_{\sqrt{\zeta}} - \psi(-\epsilon) - \gamma_E \right) \right] \right\}_{\epsilon-\text{finite}}$$

At NLO there is not

scheme dependence!

$$\mathcal{H}_{\rm sch.} = \begin{cases} 1+2\epsilon & \text{HVBM} \\ \frac{1+\epsilon}{1-\epsilon} & Larin^+ \end{cases}$$

Helicity matching coefficients: NLO results

At $\epsilon \rightarrow 0$ we have the NLO coefficients

$$\Delta C_{q \leftarrow q} \equiv C_{q \leftarrow q} = \delta(\bar{x}) + a_s C_F \left(-2\mathbf{L}_{\mu} \Delta p_{qq} + 2\bar{x} + \delta(\bar{x}) \left(-\mathbf{L}_{\mu}^2 + 2\mathbf{L}_{\mu} \mathbf{l}_{\zeta} - \zeta_2 \right) \right) + \mathcal{O}(a_s^2)$$

$$\Delta C_{q \leftarrow g} = a_s T_F \left(-2\mathbf{L}_{\mu} \Delta p_{qg} + 4\bar{x} \right) + \mathcal{O}(a_s^2)$$

$$\Delta C_{g \leftarrow q} = a_s C_F \left(-2\mathbf{L}_{\mu} \Delta p_{gq} - 4\bar{x} \right) + \mathcal{O}(a_s^2)$$

$$\Delta C_{g \leftarrow g} = \delta(\bar{x}) + a_s C_A \left(-2\mathbf{L}_{\mu} \Delta p_{gg} - 8\bar{x} + \delta(\bar{x}) \left(-\mathbf{L}_{\mu}^2 + 2\mathbf{L}_{\mu} \mathbf{l}_{\zeta} - \zeta_2 \right) \right) + \mathcal{O}(a_s^2)$$

These results agree with the obtained in M.G.Echevarría et al. 1502.05354 A.Bacchetta A.Prokudin 1303.2129!!

Drawback of schemes. Z_{qq}^5 renormalization constant

Drawback of both schemes >>>Violation of Adler-Bardeen theorem>>>Non renormalization of the axial anomaly

Fixed by an extra renormalization constant, Z_{qq}^5 Derived from a external condition

S.A. Larin 9302240, Y.Matiouine et al 076002, V.Ravindran et al. 0311304

Only affect to the quark-to-quark part

• At large q_T TMD factorization reproduces collinear factorization \implies It is natural to normalize Helicity distribution \implies It reproduces polarized DY which is normalized to unpolarized DY

• Equivalent in TMDs => Equality in polarized and unpolarized coefficients

$$\left[Z_{qq}^{5}(\boldsymbol{b}) \otimes \Delta C_{q\leftarrow q}(\boldsymbol{b})\right](x) = C_{q\leftarrow q}(x,\boldsymbol{b})$$

 $Z_{qq}^{5} = \delta(\bar{x}) + 2a_{s}C_{F}\boldsymbol{B}^{\epsilon}\Gamma(-\epsilon)\left(1-\epsilon-(1+\epsilon)\mathcal{H}_{\mathrm{sch.}}\right)\bar{x}$