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Factorization theorems with TMDs 
 Definition of Operators

TMD factorization theorems        
Consistent treatment of 

rapidity divergences in Spin 
(in)dependent TMDs   

Self contained definition of TMD 
operators 

Without referring to a scattering 
process

Quark and gluon components of the generic TMDs
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The soft function renormalizes the rapidity divergences
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It allows to split r.d. and define individual TMDs!  
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Factorization theorems with TMDs 
Drell-Yan cross section

  

Factorization theorems allow us to write cross sections as 
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We write the cross section in terms 

 of a product of TMDPDFs!

DIFFERENT POLARIZATIONS!



Small-b operator product expansion

Small-b OPE       Relation between TMD operators and lightcone operators
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Small-b OPE: Cancellation of rapidity 
divergences
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Spin dependent TMD 
decomposition

Hadron matrix elements of TMD decomposed over all posible Lorentz variants     
Polarized TMDPDFs

Boer, Gamberg, Musch, Prokudin 1107.5294 
Echevarria, Kasemets, Mulders, Pisano 

1502.05354   

Naturally 
defined
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Unpolarized 
quarks

Unpolarized  
gluons

Helicity  
quarks

Transversity
Pretzelosity

Helicity gluons
Linearly polarized  

gluons

Decomposition over 
Lorentz variants 

Goeke, Metz, Schegel 0504130, 
Bacchetta, Boer, Diehl, Mulders 

  0803.0227      Momentum space 
         b-space (IPS)



LO NLO NNLO

Unpolarized

Helicity

Transversity

Pretzelosity

Linearly 
polarized gluons
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polarized gluons



Transversity and 
Pretzelosity at 

NLO



Lorentz structure and 
matching
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Usual spinor structure

Scheme dependent Scheme independent!
Not mixture with gluons 

at leading twist

Common spinor structure
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matching



Matching coefficients up to NLO

PDFTMD Let us solve it recursively!
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Matching coefficients up to NLO

FFTMD Let us solve it recursively!
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Renormalized TMDs up to NLO
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Diagrams contributing to TMDS at NLO

The calculation is  
striaghtforward 

 to the unpolarized case 
Echevarria, Scimemi, Vladimirov 

1604.07869
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Rapidity divergences: 
 Renormalized with SF



Matching coefficients up to NLO
Transversity - Transversity small-b expression
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Agrees with 
 Bacchetta, 

Prokudin  
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     This observation is supported by the measurement of                       
              asymmetries by HERMES and COMPASS!  

Lefky, Prokudin 1411.0580, Parsamyan  PoS(QCDEV2017)042
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Matching coefficients up to NLO
Transversity - Transversity Fragmentation small-b expression

NLO matching coefficient

Pretzelosity - Transversity small-b expression
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     This observation is supported by the measurement of                       
              asymmetries by HERMES and COMPASS!  

Lefky, Prokudin 1411.0580, Parsamyan  PoS(QCDEV2017)042
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COMPASS

HERMES

JLAB
Lefky, Prokudin 1411.0580

COMPASS
Parsamyan  PoS(QCDEV2017)042

See Parsamyan’s talk



Transversity and 
Pretzelosity at  

NNLO



Transversity 
distribution



Virtual-Real diagrams

Double WL  Single WL 

Vertex 
Corrections

Self energy

Self energy

RD

RD RD

RD

L.H.S. R.H.S.

�+µ

��⌫

Pole 1/✏3
Should be cancelled with vertex  

correction term 
in RR diagrams 

Pole 
Should be cancelled with  

single WL term 
in RR diagrams 

1/✏3

These diagrams are  
exactly zero! 

Quark self-energy 
+ 

Gluon self-energy (TrNf)



Real-Real diagrams

Vertex 
Corrections

 Single WL Double WL 

Self energy

Real ladder Complex ladder

q q

q q

Pole 1/✏3
Cancelled with  

vertex correction term 
in VR diagrams  

As in Unpolarized!

Pole 
Cancelled with  
single WL term 
in RR diagrams 

As in Unpolarized! 

1/✏3

Depend on  
TrNf

From
Real ladder

Complex ladder
Double WL 1/✏2

No RD 
Finite result, without plus-distribted terms and deltas

q q
It is zero! 

Odd number of gamma-matrices 
In each trace



Renormalization of TMD at NNLO 
Cancellation of rapidity divergences
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UV surface term 
Pure UV divergence
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Matching coefficients
Renormalized 

TMD. Free of RDs!

Renormalized 
TMD. Free of RDs!

Convolution of 1-loop coefficient 
with 1-loop PDF 
Cancellation of Lµ/✏

No convolution terms 
No PDF at 1-loop in this channel

PDFs at 2-loops

PDFs at 2-loops: Written in terms of 2-loop splitting functions
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Matching coefficients
Renormalized 

TMD. Free of RDs!

Renormalized 
TMD. Free of RDs!

Convolution of 1-loop coefficient 
with 1-loop PDF 
Cancellation of Lµ/✏

No convolution terms 
No PDF at 1-loop in this channel

FFs at 2-loops

FFs at 2-loops: Written in terms of 2-loop splitting functions

Coefficients do 
not have  

any 
divergence!

Vogelsang 9706511 
Mikhailov, Vladimirov 0810.1647
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Results
The matching coefficients are written as
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LO transversity DGLAP kernel

The part of the coefficient that is multiplied by the LO transversity DGLAP kernel 
literally coincides with the corresponding part in the unpolarized case
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Abelian part of the lowest order of matching coefficient for quark-to-quark case
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Results
The matching coefficients are written as

Abelian part of the lowest order of matching coefficient for quark-to-quark case
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The part of the coefficient that are multiplied by the LO transversity DGLAP kernel 
literally coincides with the corresponding part in the unpolarized case
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Pretzelosity 
distribution



Reduction of the number 
of diagrams

Diagrams with a non-interacting quark are exactly zero

�+µ
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� gµ⌫T

2(1� ✏)

◆
��⌫ = 0 = 0

As in the transversity case Odd number of gamma matrices in each trace in It is zero!

At NNLO we have the same two cases that in transversity

1-loop result is ✏ -suppressed
Two loop diagrams are less divergent than in another TMDs 

All the diagrams have no poles in ✏

q  q0



Non-zero Virtual-Real diagrams

Double WL  Single WL 

Vertex 
Corrections

Self energy

Self energy

RD

RD RD

RD

L.H.S. R.H.S.

�+µ

��⌫

No RDs 
Finite diagrams 

Vertex-correction QCD x 1-loop

RDs 
Finite diagrams 

Combined with RR diagrams by 
color factor RDs should be cancelled

These diagrams are  
exactly zero! 

Pretzelosity at NNLO  
does not depend on TrNf 
Sum of these diagrams  
with RR should be zero

No interacting quark 
All the X2 diagrams 

are zero!



Non-zero Real-Real diagrams

Vertex 
Corrections

 Single WL Double WL 

Self energy

Real ladder Complex ladder

q q

q q

No RDs 
Finite diagrams

Only RD in diag I 
With VR RDs should be  

cancelled

Depend on TrNf 
Cancelled with VR

Double WL is zero 

No RD 
Finite result, without plus-distribted terms and deltas

q q
It is zero! 

Odd number of gamma-matrices 
In each trace

No RDs 
Finite diagrams

RDs in both diagrams 
With VR should be 

cancelled



Cancellation of Rapidity Divergences
Expression for renormalized TMD
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Results

q q q q

First two diagrams are finite 
Third is zero 

Sum of the diagrams is        !     
Zero from the beginning 

Odd number of gamma matrices
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q q0 = 0

O(✏)



Results
q q �?C [2]

q q = 0
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AA + CFNfAN

AFA = AA +O(✏)

AN = O(✏)

There is an ✏-suppression of the CA CF  and Nf parts of the TMD! 
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Actually the result is zero!
O(✏)

LO at twist-4?

This cancelation is highly non-trivial!



Results
q q �?C [2]

q q = 0
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f f 0 = C2

FAF + CF
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AFA = AA +O(✏)

AN = O(✏)

There is an ✏-suppression of the CA CF  and Nf parts of the TMD! 
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Actually the result is zero!
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LO at twist-4?

This cancelation is highly non-trivial!
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Cq f (x, b) = 0

Conjecture: At all orders in P.T.!
LO of large-Nf matching is zero 

Supports the conjeture!



Conclusions
We have a polarized TMD (transversity) calculated the at same order that the unpolarized one. This feature 
allows tests of independence of polarization of the TMD Evolution 

For the transversity TMD we have information both for PDFs and FFs, which allows further tests of TMD 
evolution 

It is welcome to know and to have grids of collinear transversity extracted at NNLO. See Radici’s talk 

Resume of our calculation: 

Transversity has a matching coefficient calculated in an analogous way of the unpolarized function.  

Rapidity divergences cancelled (Polarized Factorization theorems at NNLO) 

Z’s do not depend on the polarization. 

Pretzelosity has a matching coefficient that 

Is    -suppressed at NLO, explaining phenomenological analysis 

Zero (   -suppressed) at NNLO for all the different channels. Conjecture: zero at all order in P.T. 

LO is twist-4 matching?

✏

✏



Thanks!!!



Back up



   -regularization
W

n

= P exp

✓
�ig

Z 1

0
d�(n ·A)(n�)

◆
! P exp

✓
�ig

Z 1

0
d�(n ·A)(n�)e���x

◆

Sn = P exp

✓
�ig

Z 1

0
d�(n ·A)(n�)

◆
! P exp

✓
�ig

Z 1

0
d�(n ·A)(n�)e���

◆

1

(k+1 + i0)(k+1 + k+2 + i0)...(k+1 + ...+ k+n + i0)
! 1

(k+1 + i�)(k+1 + k+2 + 2i�)...(k+1 + ...+ k+n + ni�)

This regularization makes  
zero-bin equal to soft factor

R =

p
S(b)

zero-bin

��reg.����! R��reg. =
1p
S(b)

  -regularization violates gauge properties 
 of WL by power suppressed in   terms 
Only calculation at          is legitimate!

�

� ! 0

R-factor is scheme dependent!

At diagram level                   Eikonal propagators

Non-abelian exponentiation satisfied  
at all orders!

�

�



Pretzelosity distribution
Cuadrupole modulation of parton density in the distribution of transversely  

polarized quarks in a transversely polarized nucleon  
   A polarized proton might not be spherically symmetric

Pretzelosity distribution in convolution 
with the Collins FF generates 

                     asymmetry in SIDIS (HERMES 
& COMPASS) and future facilities (EIC, LHC-b)  
sin(3�h � �S)

d�

dxdyd�SdPhT
=

↵

22PhT

xyQ

2

⇢✓
1� y +

1

2
y

2

◆
(FUU,T + "FUU,L) + ST (1� y) sin(3�h � �S)F

sin(3�h��S)
UT + ...

�

Experimentally measured: SSA
Asin(3�h��S)

UT / F sin(3�h��S)
UT

F
sin(3�h��S)
UT = C

⇥
wkinh

?
1TH

?
1

⇤

H.Avakian et al. 0805.3355



Linearly polarized gluons matching coefficients

Small-b expression for the linearly polarized gluon TMDPDF

h

?g
1 (x, b) = [�LCg q(b)⌦ fq](x) + [�LCg g(b)⌦ fg](x) +O(b2)

NLO matching coefficients

These results agree with the obtained in 
T. Becher et al. 1212.2621!!

�

L
Cg g = �4asCA

x̄

x

+O(a2s) �

L
Cg q = �4asCF

x̄

x

+O(a2s)



Helicity distribution



Schemes for     in DR. Small-b OPE   
Lorentz structures

� = �+�5 �µ⌫ = i✏µ⌫T
needs a definition 

in DR! 
�+�5 =

i

3!
✏+⌫↵��⌫�↵��

�5

Larin d-dimensional

HVBM 4-dimensional

Larin scheme is more convenient than HVBM because it does not violate Lorentz invariance,  but it 
violates the definition of the leading dynamical twist                           

�+� = �+
�
�+�5

�
Larin

=
i

3!
✏+⌫↵��+�⌫�↵�� 6= 0,

Light modification of Larin scheme         Larin+

(�+�5)Larin+ =
i✏+�↵�

2!
�+�↵�� =

i✏↵�T
2!

�+�↵��

�5

                  Helicity TMD distribution in the regime of small-b

g1L(x, b) = [�Cq q(b)⌦�fq](x) + [�Cq g(b)⌦�fg](x) +O(b2)

g

g
1L(x, b) = [�Cg q(b)⌦�fq](x) + [�Cg g(b)⌦�fg](x) +O(b2)



Diagrams contributing to TMDS at NLO

The calculation is  
striaghtforward 

 to the unpolarized case 
M.G.Echevarria et al.: 1604.07869

�+�5

���5
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s Rapidity divergences: 

 Renormalized with SF



Matching coefficients: scheme 
dependence

Hsch. =

(
1 + 2✏ HVBM

1 + ✏

1� ✏
Larin+

At NLO there is not 
scheme dependence!

�Cq q = �(x̄) + asCF

(
2BBB✏�(�✏)

h 2

(1� x)+
� 2 + x̄(1 + ✏)Hsch. + �(x̄)

�
Lp⇣ �  (�✏)� �E

� i
)

✏-finite

�Cq g = asCF

(
2BBB✏�(�✏)

h
x� x̄Hsch.

i)

✏-finite

�Cg q = asCF

(
2BBB✏�(�✏)

h
1 + x̄Hsch.

i)

✏-finite

�Cg g = �(x̄) + asCA

(
2BBB✏�(�✏) 1

x

h 2

(1� x)+
� 2� 2x2 + 2xx̄Hsch. + �(x̄)

�
Lp⇣ �  (�✏)� �E

� i
)

✏-finite



Helicity matching coefficients: 
NLO results

At           we have the NLO coefficients  ✏ ! 0

�Cq q ⌘ Cq q = �(x̄) + asCF

⇣
� 2Lµ�pqq + 2x̄+ �(x̄)

��L2
µ + 2Lµl⇣ � ⇣2

� ⌘
+O(a2s)

�Cq g = asTF (�2Lµ�pqg + 4x̄) +O(a2s)

�Cg q = asCF (�2Lµ�pgq � 4x̄) +O(a2s)

�Cg g = �(x̄) + asCA

⇣
� 2Lµ�pgg � 8x̄+ �(x̄)

��L2
µ + 2Lµl⇣ � ⇣2

� ⌘
+O(a2s)

These results agree with the obtained in 
 M.G.Echevarría et al. 1502.05354 

A.Bacchetta A.Prokudin 1303.2129!!



Drawback of schemes.        renormalization 
constant

Drawback of both schemes        Violation of Adler-Bardeen theorem       Non renormalization  
of the axial anomaly

  Fixed by an extra renormalization constant,               Derived from a external condition

Only affect to the quark-to-quark part

At large      TMD factorization reproduces collinear factorization          It is natural to normalize Helicity 
distribution          It reproduces polarized DY which is normalized to unpolarized DY

qT

Equivalent in TMDs           Equality in polarized and unpolarized coefficients     h
Z

5
qq(b)⌦�Cq q(b)

i
(x) = Cq q(x, b)

Z

5
qq = �(x̄) + 2asCFBBB

✏�(�✏) (1� ✏� (1 + ✏)Hsch.) x̄

 S.A. Larin 9302240, Y.Matiouine et al 076002, V.Ravindran et al. 0311304
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qq

Z5
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