

Twist-2 transverse momentum dependent distributions at NNLO in QCD

QCD Evolution 2018, Santa Fe, NM, US, May 20-24

Daniel Gutiérrez Reyes (UCM)(speaker) Ignazío Scímemi (UCM)
Alexey A. Vladímirov (Regensburg U.)

Based on:
arXiv: 1702.06558 arXiv: 1805.07243 New!

Outline

* Introduction
* Factorization theorems with TMDs
* Small-b operator product expansion
* Transversity and Pretzelosity at NLO
* Transversity and Pretzelosity at NNLO
* Conclusions

Factorization theorems with TMDs Definition of Operators

IMD factorization theorems Consistent treatment of rapidity divergences in Spin (in)dependent TMDs

Self contained definition of TMD operators

Without referring to a scattering process

- Quark and gluon components of the generic TMDs

$$
\begin{gathered}
\Phi_{i j}(x, \boldsymbol{b})=\int \frac{d \lambda}{2 \pi} e^{-i x p^{+} \lambda} \bar{q}_{i}(\lambda n+\boldsymbol{b}) \mathcal{W}(\lambda, \boldsymbol{b}) q_{j}(0) \\
\Phi_{\mu \nu}(x, \boldsymbol{b})=\frac{1}{x p^{+}} \int \frac{d \lambda}{2 \pi} e^{-i x p^{+} \lambda} F_{+\mu}(\lambda n+\boldsymbol{b}) \mathcal{W}(\lambda, \boldsymbol{b}) F_{+\nu}(0)
\end{gathered}
$$

- The soft function renormalizes the rapidity divergences

R-factor
$S(\boldsymbol{b})=\frac{\operatorname{Tr}_{\text {color }}}{N_{c}}\langle 0|\left[S_{n}^{T \dagger} \tilde{S}_{\bar{n}}^{T}\right]$
(b) $\left[\tilde{S}_{\bar{n}}^{T \dagger} S_{n}^{T}\right]$
(0) $|0\rangle$
$=R_{\delta_{\text {-reg }}}=\frac{1}{\sqrt{S(\boldsymbol{b})}}$
$S(\boldsymbol{b})=\exp \left(A(\boldsymbol{b}, \epsilon) \ln \left(\delta^{+} \delta^{-}\right)+B(\boldsymbol{b}, \epsilon)\right)$

Factorization theorems with TMDs Drell-Van cross section

Small-b operator product expansion

Small-b OPE \Rightarrow Relation between TMD operators and lightcone operators

$$
\begin{aligned}
& \Phi_{i j}(x, \boldsymbol{b})=\left[\left(C_{q \leftarrow q}(\boldsymbol{b})\right)_{i j}^{a b} \otimes \phi_{a b}\right](x)+\left[\left(C_{q \leftarrow g}(\boldsymbol{b})\right)_{i j}^{\alpha \beta} \otimes \phi_{\alpha \beta}\right](x)+\ldots, \\
& \Phi_{\mu \nu}(x, \boldsymbol{b})=\left[\left(C_{g \leftarrow q}(\boldsymbol{b})\right)_{\mu \nu}^{a b} \otimes \phi_{a b}\right](x)+\left[\left(C_{g \leftarrow g}(\boldsymbol{b})\right)_{\mu \nu}^{\alpha \beta} \otimes \phi_{\alpha \beta}\right](x)+\ldots
\end{aligned}
$$

$$
\begin{gathered}
\text { Projectors over polarizations } \\
\Phi_{q}^{[\Gamma]}=\frac{\operatorname{Tr}(\Gamma \Phi)}{2} \quad \Phi_{g}^{[\Gamma]}=\Gamma^{\mu \nu} \Phi_{\mu \nu}
\end{gathered}
$$

Small-b OPE: Cancellation of rapidity divergences

- Small-b OPE for a generic TMD quark operator

$$
\Phi_{q}^{[\Gamma]}=\Gamma^{a b} \phi_{a b}+a_{s} C_{F} \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)[\cdots
$$

$$
\left.+\left(\frac{1}{(1-x)_{+}}-\ln \left(\frac{\delta}{p^{+}}\right)\right)\left(\gamma^{+} \gamma^{-} \Gamma+\Gamma \gamma^{-} \gamma^{+}+\frac{i \epsilon \gamma^{+} \not b \Gamma}{2 \boldsymbol{B}}+\frac{i \epsilon \Gamma b \gamma^{+}}{2 \boldsymbol{B}}\right)^{a b}+\ldots\right] \otimes \phi_{a b}+\mathcal{O}\left(a_{s}^{2}\right)
$$

- General R-factor

$$
R=1+2 a_{s} C_{F} \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)\left(\mathbf{L}_{\sqrt{\zeta}}+2 \ln \left(\frac{\delta}{p^{+}}\right)-\psi(-\epsilon)-\gamma_{E}\right)+\mathcal{O}\left(a_{s}^{2}\right)
$$

$$
\Gamma^{q}=\left\{\gamma^{+}, \gamma^{+} \gamma^{5}, \sigma^{+\mu}\right\}
$$

$$
\Gamma^{g}=\left\{g_{T}^{\mu \nu}, \epsilon_{T}^{\mu \nu}, b^{\mu} b^{\nu} / \boldsymbol{b}^{2}\right\}
$$

Spin dependent TMD decomposition

Hadron matrix elements of TMD decomposed over all posible Lorentz variants

 Polarized TMDPDFs

Decomposition over Lorentz variants

$\Phi_{q \leftarrow h, i j}(x, \boldsymbol{b})=\langle h| \Phi_{i j}(x, \boldsymbol{b})|h\rangle=\frac{1}{2}\left(f_{1} \gamma_{i j}^{-}+g_{1 L} S_{L}\left(\gamma_{5} \gamma^{-}\right)_{i j}\right.$

$\Phi_{g \leftarrow h, \mu \nu}(x, \boldsymbol{b})=\langle h| \Phi_{\mu \nu}(x, \boldsymbol{b})|h\rangle=\frac{1}{2}\left(-g_{T}^{\mu \nu} f_{1}^{g}-i \epsilon_{T}^{\mu \nu} S_{L} g_{1 L}^{g}+2 h_{1}^{\perp g}\left(\frac{g_{T}^{\mu \nu}}{2}+\frac{b^{\mu} b^{\nu}}{\boldsymbol{b}^{2}}\right)+\ldots\right)$

Unpolarized gluons
$\begin{aligned} & \text { Unpolarized } \\ & \text { quarks }\end{aligned}$
$|h\rangle=\frac{1}{2}\left(f 1 \gamma_{i j}+91+\right.$ quarks
$\left.\left(\frac{g_{T}^{\mu \nu}}{2}+\frac{b^{\mu} b^{\nu}}{\boldsymbol{b}^{2}}\right) \frac{S_{T}^{\nu}}{2} h_{1 T}^{\perp}+\ldots\right)$
Pretzelosity

Linearly polarized gluons

	LO	NLO	NNLO
Unpolarized			
Helloity			
Transversity			
Pretzelosity			
Linearly polarized gloons			

	L0	NLO	NNLO
Unpolarized		\checkmark	\checkmark
Heliaity		\checkmark	\cdots
Transversity		\checkmark	\checkmark
Pretzelosity		\checkmark	
Linearly polarized gluons		V	\cdots

Transversity and Pretzelosity at NLO

Lorentz structure and matching

Usual spinor structure
$\Gamma=i \gamma_{5} \sigma^{+\mu}$
Scheme dependent

Not mixture with gloons at leading twist

Common spinor structure

$$
\Gamma=\sigma^{+\mu}
$$

Scheme independent!

Calculating $R \Phi$ and comparing with the general parameterization

$$
R \Phi_{q}^{\left[\sigma^{+\mu}\right]}=g_{T}^{\mu \nu} \delta C_{q \leftarrow q} \otimes \phi_{q}^{\left[\sigma^{+\nu}\right]}+\left(\frac{b^{\mu} b^{\nu}}{b^{2}}+\frac{g_{T}^{\mu \nu}}{2(1-\epsilon)}\right) \delta^{\perp} C_{q \leftarrow q} \otimes \phi_{q}^{\left[\sigma^{+\nu}\right]}
$$

Transversity-Transversity matching

Pretzelosity- Transversity matching

Matching coefficients up to NLO

$$
\Phi_{1 ; f \leftarrow q}(x, \boldsymbol{b})=\sum_{f^{\prime}=q, \bar{q}} \delta C_{f \leftarrow f^{\prime}}^{(\perp)} \otimes h_{1 ; f^{\prime} \leftarrow q}(x)
$$

TMD

Let us solve it recursively!

$$
\begin{gathered}
\delta^{(\perp)} C_{f \leftarrow f^{\prime}}^{[0]}=\Phi_{1 ; f \leftarrow f^{\prime}}^{[0]}(x, \boldsymbol{b}) \\
\delta^{(\perp)} C_{f \leftarrow f^{\prime}}^{[1]}=\Phi_{1 ; f \leftarrow f^{\prime}}^{[1]}(x, \boldsymbol{b})-h_{1 ; f \leftarrow f^{\prime}}^{[1]}(x)
\end{gathered}
$$

Matching coefficients up to NLO

$$
\delta C_{q \rightarrow q}^{[0]}=H_{1}^{[0]}(z, \boldsymbol{b})
$$

$$
\delta C_{q \rightarrow q}^{[1]}=H_{1}^{[1]}(z, \boldsymbol{b})-\frac{H_{1}^{[1]}(z)}{z^{2-2 \epsilon}}
$$

Renormalized TMDs up to NLO

$$
\Phi(x, \boldsymbol{b} ; \mu, \zeta)=Z(\mu, \zeta \mid \epsilon) R(\boldsymbol{b}, \mu, \zeta \mid \epsilon, \delta) \Phi^{\mathrm{unsub} .}(x, \boldsymbol{b} \mid \epsilon, \delta)
$$

$$
\begin{gathered}
\begin{array}{c}
\text { Rapidity divergences } \\
\text { cancelled here! }
\end{array} \\
k
\end{gathered} \Phi_{f \leftarrow f^{\prime}}^{[0]}=\Phi_{f \leftarrow f^{\prime}}^{[0] \text { unsub. }}
$$

Diagrams contributing to TMDS at NLO

Matching coefficients up to NLO

Transversity - Transversity small-b expression

$$
h_{1}(x, \boldsymbol{b})=\left[\delta C_{q \leftarrow q}(\boldsymbol{b}) \otimes \delta f_{q}\right](x)+\mathcal{O}\left(b^{2}\right)
$$

Agrees with Bacchetta, Prokudin 1303.2129!

NLO matching coefficient

$$
\delta C_{q \leftarrow q}=\delta(\bar{x})+a_{s} C_{F}\left(-2 \mathbf{L}_{\mu} \delta p_{q q}+\delta(\bar{x})\left(-\mathbf{L}_{\mu}^{2}+2 \mathbf{L}_{\mu} \mathbf{l}_{\zeta}-\zeta_{2}\right)\right)+\mathcal{O}\left(a_{s}^{2}\right)
$$

Pretzelosity - Transversity small-b expression
$h_{1 T}^{\perp}(x, \boldsymbol{b})=\left[\delta^{\perp} C_{q \leftarrow q}(\boldsymbol{b}) \otimes \delta f_{q}\right](x)+\mathcal{O}\left(\boldsymbol{b}^{2}\right)=\left[\left(0+\mathcal{O}\left(a_{s}^{2}\right)\right) \otimes \delta f_{q}\right](x)+\mathcal{O}\left(\boldsymbol{b}^{2}\right)$
NLO matching coefficient
$\delta^{\perp} C_{q \leftarrow q}=-4 a_{s} C_{F} \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon) \bar{x} \epsilon^{2}$
 At NLO the coefficient is $\sim \epsilon$

This observation is supported by the measurement of $\sin \left(3 \phi_{h}-\phi_{S}\right)$ asymmetries by HERMES and COMPASS!
Lefky, Prokudin 1411.0580, Parsamyan PoS(QCDEV20171042

Matching coefficients up to NLO

Transversity - Transversity Fragmentation small-b expression

$$
H_{1}^{q}(z, \boldsymbol{b})=\int_{z}^{1} \frac{d y}{y^{3-2 e}} \sum_{f=q, \bar{q}} \delta \mathbb{C}_{q \rightarrow f}\left(\frac{z}{y}, \mathbf{L}_{\mu}\right) H_{1}^{f}(y)+\mathcal{O}\left(b^{2}\right)
$$

NLO matching coefficient

$$
z^{2} \delta \mathbb{C}_{q \rightarrow q}=\delta(\bar{z})+a_{s} C_{F}\left(\left(4 \ln z-2 \mathbf{L}_{\mu}\right) \delta p_{q q}+\delta(\bar{z})\left(-\mathbf{L}_{\mu}^{2}+2 \mathbf{L}_{\mu} \mathbf{1}_{\zeta}-\zeta_{2}\right)\right)
$$

Pretzelosity - Transversity small-b expression

$h_{1 T}^{\perp}(x, \boldsymbol{b})=\left[\delta^{\perp} C_{q \leftarrow q}(\boldsymbol{b}) \otimes \delta f_{q}\right](x)+\mathcal{O}\left(\boldsymbol{b}^{2}\right)=\left[\left(0+\mathcal{O}\left(a_{s}^{2}\right)\right) \otimes \delta f_{q}\right](x)+\mathcal{O}\left(\boldsymbol{b}^{2}\right)$
NLO matching coefficient
$\delta^{\perp} C_{q \leftarrow q}=-4 a_{s} C_{F} \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon) \bar{x} \epsilon^{2}$

This observation is supported by the measurement of $\sin \left(3 \phi_{h}-\phi_{S}\right)$ asymmetries by HERMES and COMPASS!
Lefky, Prokudin 1411.0580 , Parsamyan PoS(QCDEV20171042

COMPASS

Parsamyan PoS(QCDEV20171042
See Parsamyan's talk

JLAB
Lefky, Prokudin 1411.0580

> Transversity and Pretzelosity at NNLO

Transversity distribution

Virtual-Real diagrams

Corrections

(A)

Self energy $\sigma^{+\mu}$

Should be cancelled with vertex correction term in RR diagrams

Pole $1 / \epsilon^{3}$
Should be cancelled with single WL term in RR diagrams

These diagrams are exactly zero!

Quark self-energy

Gluon self-energy (TrNf)

Real-Real diagrams

Real ladder
:

Self energy

Single WL

No RD

Complex ladder

Double WL

It is zero!
Odd number of gamma-matrices In each trace

[^0]
Renormalization of TMD at NNLO Cancellation of rapidity divergences

Hoop Transversity
RD free!

$$
h_{1}^{[2]}=\frac{\delta \Phi^{[2]}-\frac{S^{[1]} \delta \Phi^{[1]}}{2}-\frac{S^{[2]} \delta \Phi^{[0]}}{2}+\frac{3 S^{[1]} S^{[1]} \delta \Phi^{[0]}}{8}+\left(Z_{q}^{[1]}-Z_{2}^{[1]}\right)\left(\delta \Phi^{[1]}-\frac{S^{[1]} \delta \Phi^{[0]}}{2}\right)}{+\left(Z_{q}^{[2]}-Z_{2}^{[2]}-Z_{2}^{[1]} Z_{q}^{[1]}-Z_{2}^{[1]} Z_{2}^{[1]}\right) \delta \Phi^{[0]}} \begin{gathered}
\text { UV surface term } \\
\text { Pure UV divergence }
\end{gathered} Z_{q} Z_{2} \text { The same that } \begin{gathered}
\text { in unpolarized case! }
\end{gathered}
$$

Sum of all the diagrams

$$
\operatorname{diag}=A+B\left(\frac{\delta^{+}}{p^{+}}\right)^{-\epsilon}+C\left(\frac{\delta^{+}}{p^{+}}\right)^{\epsilon}+D \ln \left(\frac{\delta^{+}}{p^{+}}\right)+E \ln ^{2}\left(\frac{\delta^{+}}{p^{+}}\right)
$$

In the sum of the diagrams the total expression for B and C is zero
IR terms are self-cancelled!

$$
\begin{aligned}
& \delta \Phi^{[0]}=0 \\
& \delta \Phi^{[1]}=0
\end{aligned} \xrightarrow[\substack{\text { This channel does not appear } \\
\text { up to NNLO }}]{ } h_{1}^{[2]}=\delta \Phi^{[2]} k_{\text {No RD here! }}
$$

Matching coefficients

PDFs at 2-loops: Written in terms of 2-loop splitting functions
Vogelsang 9706511
Mikhailov, Vladimirov 0810.1647
$\delta f_{q \leftarrow q}^{[2]}=\frac{1}{2 \epsilon^{2}}\left(\delta P_{q \leftarrow q}^{[1]} \otimes \delta P_{q \leftarrow q}^{[1]}+\frac{\beta_{0}}{2} \delta P_{q \leftarrow q}^{[1]}\right)-\frac{1}{2 \epsilon} \delta P_{q \leftarrow q}^{[2]}$

$$
\delta f_{q \leftarrow \bar{q}}^{[2]}=-\frac{1}{2 \epsilon} \delta P_{q \leftarrow \bar{q}}^{[2]}
$$

Matching coefficients

FFs at 2-loops: Written in terms of 2-loop splitting functions

$$
\left.\begin{array}{c}
\delta d_{q \rightarrow q}^{[2]}=\frac{1}{2 \epsilon^{2}}\left(\begin{array}{c}
\text { Mogelsang 9706511 } \\
\text { Mikhailov, Vladimirov 0810.1647 }
\end{array}\right. \\
\delta \mathbb{P}_{q \rightarrow q}^{[1]} \otimes \delta \mathbb{P}_{q \rightarrow q}^{[1]}+\frac{\beta_{0}}{2} \delta \mathbb{P}_{q \rightarrow q}^{[1]}
\end{array}\right)-\frac{1}{2 \epsilon} \delta \mathbb{P}_{q \rightarrow q}^{[2]} .
$$

Results
The matching coefficients are written as

$$
\delta C_{f \leftarrow f^{\prime}}\left(x, \mathbf{L}_{\mu}, \mathbf{l}_{\zeta}\right)=\sum_{n=0}^{\infty} a_{s}^{n} \sum_{k=0}^{n+1} \sum_{l=0}^{n} \mathbf{L}_{\mu}^{k} \mathbf{l}_{\zeta}^{l} \delta C_{f \leftarrow f^{\prime}}^{(n ; k, l)}(x)
$$

Abelian part of the lowest order of matching coefficient for quark-to-quark case

$$
\begin{aligned}
\delta C_{q<q}^{(2 ; 0,0)}(x)= & C_{F}^{2}\left\{\delta p (x) \left[4 \operatorname{Li}_{3}(\bar{x})-20 \operatorname{Li}_{3}(x)-4 \ln \bar{x} \operatorname{Li}_{2}(\bar{x})+12 \ln x \operatorname{Li}_{2}(x)+2 \ln ^{2} \bar{x} \ln x+2 \ln \bar{x} \ln ^{2} x\right.\right. \\
& \left.\left.+\frac{3}{2} \ln ^{2} x+8 \ln x+20 \zeta_{3}\right]-2 \ln \bar{x}+4 \bar{x}+\delta(\bar{x}) \frac{5}{4} \zeta_{4}\right\}+\ldots
\end{aligned}
$$

The part of the coefficient that is multiplied by the LO transversity DGLAP kernel literally coincides with the corresponding part in the unpolarized case

$C^{(2 ; 0,0)}(x)=P^{[1]} F_{1}(x)+F_{2}(x)+\delta(\bar{x}) F_{3} |$| Unpolarized | Transversity | |
| :---: | :---: | :---: |
| $P^{[1]}=\frac{1+x^{2}}{1-x}$ | | $P^{[1]}=\frac{2 x}{1-x}$ |
| F_{1} | $=$ | F_{1} |
| F_{2} | \neq | F_{2} |
| F_{3} | $=$ | F_{3} |

The matching coefficients are written as

$$
\delta \mathbb{C}_{f \rightarrow f^{\prime}}\left(z, \mathbf{L}_{\mu}, \mathbf{l}_{\zeta}\right)=\sum_{n=0}^{\infty} a_{s}^{n} \sum_{k=0}^{n+1} \sum_{l=0}^{n} \mathbf{L}_{\mu}^{k} \mathbf{l}_{\zeta}^{l} \delta \mathbb{C}_{f \rightarrow f^{\prime}}^{(n ; k, l)}(z)
$$

Abelian part of the lowest order of matching coefficient for quark-to-quark case

$$
\begin{aligned}
z^{2} \delta \mathbb{C}_{q \rightarrow q}^{(2 ; 0,0)}(z)= & C_{F}^{2}\left\{\delta p (z) \left[40 \operatorname{Li}_{3}(z)-4 \operatorname{Li}_{3}(\bar{z})+4 \ln \bar{z} \operatorname{Li}_{2}(\bar{z})-16 \ln z \operatorname{Li}_{2}(z)-\frac{40}{3} \ln ^{3} z+18 \ln ^{2} z \ln \bar{z}-2 \ln ^{2} \bar{z} \ln z\right.\right. \\
& \left.\left.+\frac{15}{2} \ln ^{2} z-8\left(1+\zeta_{2}\right) \ln z-40 \zeta_{3}\right]+4 \bar{z}(1+\ln z)+2 z(\ln \bar{z}-\ln z)+\delta(\bar{z}) \frac{5}{4} \zeta_{4}\right\}+\ldots
\end{aligned}
$$

The part of the coefficient that are multiplied by the LO transversity DGLAP kernel literally coincides with the corresponding part in the unpolarized case

Unpolarized
Transversity

$$
C^{(2 ; 0,0)}(z)=P^{[1]} F_{1}(z)+F_{2}(z)+\delta(\bar{z}) F_{3}
$$

$$
\begin{array}{clc}
P_{13}^{(1)}=\frac{1+z^{2}}{1-z} & & P^{[1]}=\frac{2 z}{1-z} \\
F_{1} & = & F_{1} \\
F_{2} & \neq & F_{2} \\
F_{3} & = & F_{3}
\end{array}
$$

Pretzelosity distribution

Reduction of the number of diagrams

Diagrams with a non-interacting quark are exactly zero

$$
\sigma^{+\mu}\left(\frac{\boldsymbol{b}^{\mu} \boldsymbol{b}^{\nu}}{\boldsymbol{b}^{2}}-\frac{g_{T}^{\mu \nu}}{2(1-\epsilon)}\right) \sigma^{-\nu}=0
$$

As in the transversity case \rightarrow 0dd number of gamma matrices in each trace in $q \leftarrow q^{\prime} \longrightarrow 1+$ is zero!
At NNLO we have the same two cases that in transversity

> 1-loop result is ϵ-suppressed
> Two loop diagrams are less divergent than in another TMDs All the diagrams have no poles in ϵ

Non-zero Virtual-Real diagrams

Vertex

Corrections

Self energy

(D)

Self energy $\sigma^{+\mu}$

 | All the X2 diagrams are zero!
I
I $\sigma^{-\nu}$
L.H.S.
R.H.S.

Cancellation of Rapidity Divergences

Expression for renormalized TMD

$$
\begin{gathered}
h_{1}^{[2]} \frac{\delta \Phi^{[2]}-\frac{S^{[1]} \delta \Phi^{[1]}}{2}}{2}-\frac{S^{22} \delta \Phi^{[0]}}{2}+\frac{3 S}{8}+\left(Z_{q}^{[1]}-Z_{2}^{[1]}\right)\left(\delta \Phi^{[1]}-\frac{S^{[1]} \delta \Phi^{[1]}}{2}\right) \\
+\left(Z_{q}^{[2]}-Z_{2}^{[2]}-Z_{2}^{[1]} Z_{q}^{[1]}-Z_{2}^{[1]} Z_{2}^{[1]}\right) \delta \Phi^{[0]}
\end{gathered}
$$

We have different combinations of diagrams and SF to cancel RDs depending on their color factors

Results

$q \leftarrow \bar{q}) \delta^{\perp} C_{q \leftarrow \bar{q}}^{[2]}=0$
First two diagrams are finite Third is zero
Sum of the diagrams is $\mathcal{O}(\epsilon)$!

$$
\delta^{\perp} C_{q \leftarrow q^{\prime}}^{[2]}=0
$$

Zero from the beginning Odd number of gamma matrices

Results

$$
\delta^{\perp} C_{q \longleftarrow q}^{[2]}=0
$$

This cancelation is highly non-trivial!

$$
\left.\delta^{\perp} \Phi_{f \leftarrow f^{\prime}}^{[2]}=C_{F}^{2} A_{F}+C_{F}\left(C_{F}-\frac{C_{A}}{2}\right) A_{F A}+\frac{C_{A}}{2} A_{A}+C_{F} N_{f} A_{N} \right\rvert\, \begin{gathered}
A_{F A}=A_{A}+\mathcal{O}(\epsilon) \\
A_{N}=\mathcal{O}(\epsilon)
\end{gathered}
$$

There is an ϵ-suppression of the $\mathrm{C}_{A} \mathrm{C}_{F}$ and N_{f} parts of the TMD!

$$
\delta^{\perp} C_{q \leftarrow q}^{[2]}(x, \boldsymbol{b})=h_{1 T, q \leftarrow q}^{\perp[2]}(x, \boldsymbol{b})-\left[\delta^{\perp} C_{q \leftarrow q}^{[1]}(\boldsymbol{b}) \otimes \delta f_{q \leftarrow q}^{[1]}\right](x)
$$

So, after renormalization
$h_{1 T, q \leftarrow q}^{\perp[2]}(x, \boldsymbol{b})=-4 C_{F}^{2}(\bar{x}(3+4 \ln \bar{x})+4 x \ln x)$
$\left[\delta^{\perp} C_{q \longleftarrow q}^{[1]}(\boldsymbol{b}) \otimes \delta f_{q \longleftarrow q}^{[1]}\right](x)=-4 C_{F}^{2}(\bar{x}(3+4 \ln \bar{x})+4 x \ln x)$

Actually the result is zero! $\mathcal{O}(\epsilon)$
L0 at twist-4?

Results

 Conjecture:
At all orders in PT.!

$$
\delta^{\perp} C_{q \leftarrow f}(x, \boldsymbol{b})=0
$$

$$
\delta^{\perp} C_{q \leftarrow q}^{[2]}=0
$$

This cancelation is highly non-trivial!

$$
\left.\delta^{\perp} \Phi_{f \leftarrow f^{\prime}}^{[2]}=C_{F}^{2} A_{F}+C_{F}\left(C_{F}-\frac{C_{A}}{2}\right) A_{F A}+\frac{C_{A}}{2} A_{A}+C_{F} N_{f} A_{N} \right\rvert\, \begin{aligned}
& A_{F A}=A_{A}+\mathcal{O}(\epsilon) \\
& A_{N}=\mathcal{O}(\epsilon)
\end{aligned}
$$

There is an ϵ-suppression of the $\mathrm{C}_{A} \mathrm{C}_{F}$ and N_{f} parts of the TMD!

$$
\delta^{\perp} C_{q \leftarrow q}^{[2]}(x, \boldsymbol{b})=h_{1 T, q \leftarrow q}^{\perp[2]}(x, \boldsymbol{b})-\left[\delta^{\perp} C_{q \leftarrow q}^{[1]}(\boldsymbol{b}) \otimes \delta f_{q \leftarrow q}^{[1]}\right](x)
$$

So, after renormalization

$$
\begin{aligned}
& h_{1 T, q \leftarrow q}^{\perp[2]}(x, \boldsymbol{b})=-4 C_{F}^{2}(\bar{x}(3+4 \ln \bar{x})+4 x \ln x) \\
& {\left[\delta^{\perp} C_{q \longleftarrow q}^{[1]}(\boldsymbol{b}) \otimes \delta f_{q \leftarrow q}^{[1]}\right](x)=-4 C_{F}^{2}(\bar{x}(3+4 \ln \bar{x})+4 x \ln x)}
\end{aligned}
$$

Actually the result is zero! $\mathcal{O}(\epsilon)$
L0 at twist-4?

Conclusions

* We have a polarized TMD (transversity) calculated the at same order that the unpolarized one. This feature allows tests of independence of polarization of the TMD Evolution
* For the transversity TMD we have information both for PDFs and FFs, which allows further tests of TMD evolution
* It is welcome to know and to have grids of collinear transversity extracted at NNLO. See Radici's talk
* Resume of our calculation:
* Transversity has a matching coefficient calculated in an analogous way of the unpolarized function.
* Rapidity divergences cancelled (Polarized Factorization theorems at NNLO)
* Z's do not depend on the polarization.
* Pretzelosity has a matching coefficient that
* Is ϵ-suppressed at NLO, explaining phenomenological analysis
* Zero (ϵ-suppressed) at NNLO for all the different channels. Conjecture: zero at all order in PT.
* LO is twist-4 matching?

Thanks!!!

δ-regularization

$$
\begin{aligned}
& W_{n}=P \exp \left(-i g \int_{0}^{\infty} d \sigma(n \cdot A)(n \sigma)\right) \rightarrow P \exp \left(-i g \int_{0}^{\infty} d \sigma(n \cdot A)(n \sigma) e^{-\delta \sigma x}\right) \\
& S_{n}=P \exp \left(-i g \int_{0}^{\infty} d \sigma(n \cdot A)(n \sigma)\right) \rightarrow P \exp \left(-i g \int_{0}^{\infty} d \sigma(n \cdot A)(n \sigma) e^{-\delta \sigma}\right)
\end{aligned}
$$

At diagram level \rightarrow Eikonal propagators

$$
\frac{1}{\left(k_{1}^{+}+i 0\right)\left(k_{1}^{+}+k_{2}^{+}+i 0\right) \ldots\left(k_{1}^{+}+\ldots+k_{n}^{+}+i 0\right)} \rightarrow \frac{1}{\left(k_{1}^{+}+i \delta\right)\left(k_{1}^{+}+k_{2}^{+}+2 i \delta\right) \ldots\left(k_{1}^{+}+\ldots+k_{n}^{+}+n i \delta\right)}
$$

This regularization makes zero-bin equal to soft factor
R-factor is scheme dependent!

$$
R=\frac{\sqrt{S(\boldsymbol{b})}}{\text { zero-bin }} \xrightarrow{\delta-\text { reg. }} R_{\delta-\text { reg. }}=\frac{1}{\sqrt{S(\boldsymbol{b})}}
$$

Non-abelian exponentiation satisfied at all orders!
δ-regularization violates gauge properties of WL by power suppressed in δ terms Only calculation at $\delta \rightarrow 0$ is legitimate!

Pretzelosity distribution

Cuadrupole modulation of parton density in the distribution of transversely polarized quarks in a transversely polarized nucleon

$$
\frac{d \sigma}{d x d y d \phi_{S} d P_{h T}}=\frac{\alpha^{2} 2 P_{h T}}{x y Q^{2}}\left\{\left(1-y+\frac{1}{2} y^{2}\right)\left(F_{U U, T}+\varepsilon F_{U U, L}\right)+S_{T}(1-y) \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}+\ldots\right\}
$$

Linearly polarized gluons matching coefficients

Small-b expression for the linearly polarized gloon TMDPDF

$$
h_{1}^{\perp g}(x, \boldsymbol{b})=\left[\delta^{L} C_{g \leftarrow q}(\boldsymbol{b}) \otimes f_{q}\right](x)+\left[\delta^{L} C_{g \leftarrow g}(\boldsymbol{b}) \otimes f_{g}\right](x)+\mathcal{O}\left(\boldsymbol{b}^{2}\right)
$$

NLO matching coefficients

$$
\delta^{L} C_{g \leftarrow g}=-4 a_{s} C_{A} \frac{\bar{x}}{x}+\mathcal{O}\left(a_{s}^{2}\right) \quad \delta^{L} C_{g \leftarrow q}=-4 a_{s} C_{F} \frac{\bar{x}}{x}+\mathcal{O}\left(a_{s}^{2}\right)
$$

Helicity distribution

Schemes for γ^{5} in DR. Small-b OPE

Lorentz structures

$$
\Gamma=\gamma^{+} \gamma^{5} \quad \Gamma^{\mu \nu}=i \epsilon_{T}^{\mu \nu}
$$

Larin scheme is more convenient than HVBM because it does not violate Lorentz invariance, but it violates the definition of the leading dynamical twist

$$
\gamma^{+} \Gamma=\gamma^{+}\left(\gamma^{+} \gamma^{5}\right)_{\text {Larin }}=\frac{i}{3!} \epsilon^{+\nu \alpha \beta} \gamma^{+} \gamma_{\nu} \gamma_{\alpha} \gamma_{\beta} \neq 0
$$

Light modification of Larin scheme \Rightarrow Larin +

$$
\left(\gamma^{+} \gamma^{5}\right)_{\text {Larin }}=\frac{i \epsilon^{+-\alpha \beta}}{2!} \gamma^{+} \gamma_{\alpha} \gamma_{\beta}=\frac{i \epsilon_{T}^{\alpha \beta}}{2!} \gamma^{+} \gamma_{\alpha} \gamma_{\beta}
$$

Helicity TMD distribution in the regime of small-b

$$
\begin{aligned}
& g_{1 L}(x, \boldsymbol{b})=\left[\Delta C_{q \leftarrow q}(\boldsymbol{b}) \otimes \Delta f_{q}\right](x)+\left[\Delta C_{q \leftarrow g}(\boldsymbol{b}) \otimes \Delta f_{g}\right](x)+\mathcal{O}\left(\boldsymbol{b}^{2}\right) \\
& g_{1 L}^{g}(x, \boldsymbol{b})=\left[\Delta C_{g \leftarrow q}(\boldsymbol{b}) \otimes \Delta f_{q}\right](x)+\left[\Delta C_{g \leftarrow g}(\boldsymbol{b}) \otimes \Delta f_{g}\right](x)+\mathcal{O}\left(\boldsymbol{b}^{2}\right)
\end{aligned}
$$

Diagrams contributing to TMDS at NLO

Rapidity divergences:
Renormalizergences:

The calculation is
striaghtforward

Matching coefficients: scheme dependence

$$
\begin{gathered}
\Delta C_{q \leftarrow q}=\delta(\bar{x})+a_{s} C_{F}\left\{2 \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)\left[\frac{2}{(1-x)_{+}}-2+\bar{x}(1+\epsilon) \mathcal{H}_{\text {sch. }}+\delta(\bar{x})\left(\mathbf{L}_{\sqrt{\zeta}}-\psi(-\epsilon)-\gamma_{E}\right)\right]\right\}_{\epsilon \text {-finite }} \\
\Delta C_{q \leftarrow g}=a_{s} C_{F}\left\{2 \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)\left[x-\bar{x} \mathcal{H}_{\text {sch. }}\right]\right\}_{\epsilon \text {-finite }} \\
\Delta C_{g \leftarrow q}=a_{s} C_{F}\left\{2 \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)\left[1+\bar{x} \mathcal{H}_{\text {sch. }}\right]\right\}_{\epsilon \text {-finite }} \\
\Delta C_{g \leftarrow g}=\delta(\bar{x})+a_{s} C_{A}\left\{2 B^{\epsilon} \Gamma(-\epsilon) \frac{1}{x}\left[\frac{2}{(1-x)_{+}}-2-2 x^{2}+2 x \bar{x} \mathcal{H}_{\text {sch. }}+\delta(\bar{x})\left(\mathbf{L}_{\sqrt{\zeta}}-\psi(-\epsilon)-\gamma_{E}\right)\right]\right\}_{\epsilon \text {-finite }}
\end{gathered}
$$

$$
\mathcal{H}_{\text {sch. }}= \begin{cases}1+2 \epsilon & \text { HVBM } \\ \frac{1+\epsilon}{1-\epsilon} & \text { Larin }^{+}\end{cases}
$$

At NLO there is not scheme dependence!

Helicity matching coefficients: NLO results

$\mathrm{At}_{\epsilon} \rightarrow 0$ we have the NLO coefficients

$$
\begin{gathered}
\Delta C_{q \leftarrow q} \equiv C_{q \leftarrow q}=\delta(\bar{x})+a_{s} C_{F}\left(-2 \mathbf{L}_{\mu} \Delta p_{q q}+2 \bar{x}+\delta(\bar{x})\left(-\mathbf{L}_{\mu}^{2}+2 \mathbf{L}_{\mu} \mathbf{l}_{\zeta}-\zeta_{2}\right)\right)+\mathcal{O}\left(a_{s}^{2}\right) \\
\Delta C_{q \leftarrow g}=a_{s} T_{F}\left(-2 \mathbf{L}_{\mu} \Delta p_{q g}+4 \bar{x}\right)+\mathcal{O}\left(a_{s}^{2}\right) \\
\Delta C_{g \leftarrow q}=a_{s} C_{F}\left(-2 \mathbf{L}_{\mu} \Delta p_{g q}-4 \bar{x}\right)+\mathcal{O}\left(a_{s}^{2}\right) \\
\Delta C_{g \leftarrow g}=\delta(\bar{x})+a_{s} C_{A}\left(-2 \mathbf{L}_{\mu} \Delta p_{g g}-8 \bar{x}+\delta(\bar{x})\left(-\mathbf{L}_{\mu}^{2}+2 \mathbf{L}_{\mu} \mathbf{l}_{\zeta}-\zeta_{2}\right)\right)+\mathcal{O}\left(a_{s}^{2}\right)
\end{gathered}
$$

These results agree with the obtained in M.G.Echevarría et al. 1502.05354 A.Bacchetta A.Prokudin 1303.21 29!!

Drawback of schemes. $Z_{q q}^{5}$ renormalization constant

Drawback of both schemes \Rightarrow Violation of Adler-Bardeen theorem \Rightarrow Non renormalization of the axial anomaly

Fixed by an extra renormalization constant, $Z_{q q}^{5} \Rightarrow$ Derived from a external condition

S.A. Larin 9302240 , Y.Matiovine et al 076002 , VRavindran et al. 0311304

Only affect to the quark-to-quark part

- At large q_{T} TMD factorization reproduces collinear factorization \Rightarrow It is natural to normalize Helicity distribution \Rightarrow It reproduces polarized $D Y$ which is normalized to unpolarized $D Y$
- Equivalent in $\mathrm{TMDs} \Rightarrow$ Equality in polarized and unpolarized coefficients

$$
\left[Z_{q q}^{5}(\boldsymbol{b}) \otimes \Delta C_{q \leftarrow q}(\boldsymbol{b})\right](x)=C_{q \leftarrow q}(x, \boldsymbol{b})
$$

$$
Z_{q q}^{5}=\delta(\bar{x})+2 a_{s} C_{F} \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)\left(1-\epsilon-(1+\epsilon) \mathcal{H}_{\text {sch. }}\right) \bar{x}
$$

[^0]: Finite result, without plus-distribted terms and deltas

