MC Production at SLAC

- Coulomb scattering in Si layer could generate high Z background.
- If both e+ and e- had a Coulomb scattering, the topology is indistinguishable from A' decay.

- High statistics tritrig-wab-beam events roughly equivalent to the statistics of the 2015 0.5 mm data.
 - Trident events are overlaid on wab-beam background at every 250 bunches.
 - 100,000 tritrig files (10⁹ trident events)
 - Detector: HPS-EngRun2015-Nominal-v7-0-fieldmap
 - Millipede alignment + truth information in the inactive Si region
 - Beam: σ x=125μm, σ y=30μm, θ x=30.5mrad, θ y=0mrad, θ _{skew}=15°
 - Target: z=+0.5 mm

Checking simulators on scattering in Si

$$\theta y^{\text{rms}} = \frac{13.6 \, MeV}{E} \sqrt{\frac{x}{x0}} \left[1 + 0.038 \ln\left(\frac{x}{x0}\right)\right]$$

 $\theta y^{rms}~$ = 0.86 mrad for 640 μm Si

SLIC is based on Geant4 v10.03.p01

1.056 GeV eθy

- If the high Z background are due to Coulomb scattering in Si layer, we want 10× higher MC statistics.
 - Brute force generation is not practical.
 - Takes ~30 weeks
 - Use hps-sim to sample only large angle scattering.
 - Use the same 10⁹ tritrig events ten times with different random number seed and no beam background overlay.

Trident production from Si Layer 1

• Matt S. found trident productions from Si Layer 1.

- Any high energy e-'s hitting the Si layer can generate tridents.
 - FEE
 - Moller
 - WAB
 - Beam halo

Trident production cross section in Si

- Trident production $\sim Z^2$
- MadGraph 5 cuts for Eb = 1.056 GeV:
 - Tridents from the target: $\sigma = 1069 \ \mu b$
 - E > 50 MeV
 - Esum > 0.5 GeV
 - Mass(e+e-) > 10 MeV
 - |θy| > 10 mrad
 - Tridents from Si: $\sigma = 105 \ \mu b$
 - E > 50 MeV
 - Esum > 0.5 GeV
 - Mass(e+e-) > 10 MeV
 - |θy| > 5 mrad

e- flux

- FEE, Moller: EGS5
 - $|\theta y(e)| > 5 mrad$
- WAB: MadGraph 4
 - Cuts are applied to e-.
 - E(e-) > 0.1 GeV
 - |θy(e-)| > 5 mrad

FEE dominates.

Use only FEEs. E(e-) is fixed at Ebeam. No changes in σ and kinematics.

Trident production in Si layer

- Use Fast MC
- Track FEE to SVT Layer 1
- Sample interaction point uniformly over two Si layers
- Rotate event along the FEE direction
- Save event in stdhep
- Simulation with hps-mc

MC Production for the 2015 1.5 mm run

- Use the same 10⁹ tritrig events, wab, and beam background.
- Detector: HPS-EngRun2015-1_5mm-v7-0-fieldmap
 - Millipede alignment with SVT angle + truth info in the inactive Si
- Beam: $\sigma x=125 \mu m$, $\sigma y=30 \mu m$, $\theta x=30.5 m rad$, $\theta y=0 m rad$, $\theta_{skew}=15^{\circ}$
 - The same beam parameters as the 0.5 mm run.
- Target: z=+0.5 mm

MC Production for the 2016 2.3 GeV run

- 10⁹ tritrig events, wab and beam background have been generated.
- Waiting for the alignment
- Need before production:
 - Check ECal position
 - Beam parameters
 - Target position