Combining 0.5mm and 1.5mm to Obtain Combined Bumphunt Result

Matt Graham HPS May 2018 Collaboration Meeting May 23, 2018

The likelihood...unbinned and binned

The PDFs are buried in the expected number of events in each bin (μ_i), namely:

$$\mu_i(\nu) = N_{sig} \mathcal{P}_{sig}(m_i|\nu) + N_{bkg} \mathcal{P}_{bkg}(m_i|\nu)$$

...where m_i is the mass at the bin center...or, even better:

$$\mu_i(\nu) = \int_{m_{min}}^{m_{max}} \left[N_{sig} \mathcal{P}_{sig}(m_i | \nu) + N_{bkg} \mathcal{P}_{bkg}(m_i | \nu) \right] dm$$

*** max and min are the bin boundaries

2

combining datasets → **multiply likelihoods**

$$L(\nu) = \prod_{i=1}^{n} \mathcal{P}_n(n_i|\nu) \prod_{i=1}^{m} \mathcal{P}_m(m_i|\nu)$$

 $\boldsymbol{\nu}$ now includes all parameters for both datasets

$$-\ln L(\nu) = -\left(\sum_{i=1}^{n} \ln\left[\mathcal{P}_n(n_i|\nu)\right] + \sum_{i=1}^{m} \ln\left[\mathcal{P}_m(m_i|\nu)\right]\right)$$

SLAC

Combining 0.5mm and 1.5mm BH datasets

• Need to link the two likelihoods for combination to make any sense...i.e.

$$-\ln L(\theta,\phi) = -\left(\sum_{i=1}^{n} \ln\left[\mathcal{P}_n(n_i|\theta)\right] + \sum_{i=1}^{m} \ln\left[\mathcal{P}_m(m_i|\phi)\right]\right)$$

Independent Likelihoods...no reason to combine

- Current way we do the BH, 0.5mm and 1.5mm LKLs are independent..
 - acceptance (kinematics!), efficiency, radiative fraction, luminosity different between 0.5/1.5
 - For signal: we can scale N_{sig} so that 0.5 & 1.5 mm are on same basis
 - Signal resolution probably should stay independent between two samples
 - For background: potentially correct for acceptance & efficiency for this too and fit common shape & cross-section!, but pretty complicated and likely more effort/ systematic than it's worth

Scaling signal yields between 0.5 and 1.5 mm

• Basically, the common parameter is ~ epsilon (minus some constants): $\Gamma = N \cdot (m)$

$$\epsilon'_{X.Xmm}(m) = \left[\frac{N_{sig}(m)}{\mathcal{L}f_{RAD}(m)a(m)}\right]_{X.Xmm}$$

a(m)==acceptance x efficiency

• So the likelihood (unbinned) becomes:

$$L(\epsilon_{0.5}, \epsilon_{1.5}, \theta, \phi) = \frac{\mu^{n+m}}{n!m!} e^{-\mu} \prod_{i=1}^{n} \left[\epsilon'_{0.5} P_{sig,0.5}(m_i|\theta) + \epsilon'_{bkg,0.5} P_{bkg}(m_i|\theta) \right]$$
$$\prod_{i=1}^{m} \left[\epsilon'_{1.5} P_{sig,1.5}(m_i|\phi) + \epsilon'_{bkg,1.5} P_{bkg}(m_i|\phi) \right]$$

Note that the yields are still the floating parameters! Other parts of ϵ ' are derived from MC or beam.

...don't worry about ϵ'_{bkg} for now...matters if actually fitting the samples together

Ok, fine, how do we combine these measurements!

- Two (at least, that I'll talk about) ways to combine these two datasets:
 - 1. Fit the data simultaneously
 - add the constraint that $\epsilon_{0.5}'=\epsilon_{1.5}'$
 - this can be done by multiplying likelihood by a very narrow Gaussian (or whatever)
 - then, procedure is same as what's done in stand-alone search
 - warning, (log) likelihood will probably not be very hyperbolic!
 - this method allows us to easily use pure-toy for limits etc.
 - 2. Combine the likelihoods after stand-alone minimization/scan
 - sum separate likelihood ratio scans (all nuisance parameters floating) vs ε' and convert to probability (-2lnL $\rightarrow \chi^2 \rightarrow$ Prob)
 - must convert N_{sig} to ϵ'
 - integrate probability scan up to α (e.g. 90%) or get symmetric interval (yeah right)
 - this method is much quicker than above and allows two analyses to be almost entirely independent

Example: combining likelihoods after the fact

Once you have combined likelihood, can do all the tricks you want.

Just an example (never mind the x-axis or what these scans are from)...

SLAC

...simply add the -nll after subtracting min(nll) (only delta's matter) *after converting your variable to something that should be the same in the two samples*. This combined likelihood should be identical to that obtained if you did a simultaneous fit.

What's better? Joint fit or combine latter?

- Performing independent fits and combining the likelihood scans is much easier for obtaining statistical-only values
 - systematics are trickier...need to fold into the likelihood by convoluting probabilities.
- Joint fits take some time to set up, longer to run, but give natural way to include systematics ...
- Either way works ~equivalently ... you pick!