Bump Hunt on 2016 Dataset

Sebouh Paul

May 24, 2018

Outline

- Pre-Fitting
 - Event Selection
 - Mass Resolution & Signal Shape
 - Radiative Fraction
- Bump Hunt
 - Background & Signal Models
 - p-values
 - Look Elsewhere Effect
 - Exclusion Limits on Signal Yield & Coupling
- Conclusions & To Do List

Event-Selection Cuts

- Preliminary cuts
 - SVT flags good.
 - ▶ e⁺e⁻
 - if tracks share \geq 4 hits, use track with best χ^2
 - both tracks matched to a cluster
- Accidental reduction
 - $n_{\sigma} < 6.1$ both tracks
 - $|t_{
 m trk} t_{
 m clust}| <$ 4.4 ns for both tracks
 - ▶ $p_{e-} < 1.76 \text{ GeV}$ ($\approx 76\% E_{\text{beam}}$, reduces FEEs)
 - $p_{\rm tot} < 2.9 \text{ GeV}$ ($\approx 126\% E_{\rm beam}$
 - $|t_{\text{clust},1} t_{\text{clust},2}| < 2$ ns
 - ▶ track \u03c0² < 70</p>
- Bethe-Heitler and WAB reduction
 - ► $p_{tot} > 1.51 \text{ GeV}$ (≈65% E_{beam})
 - ▶ d_{0,e+} < 1.07 mm
 - positron has L1 cut

Cutflows: Cluster-Time Difference

Cutflows: Invariant Mass

Mass Resolution & Signal Shape

- ► Use A' Monte Carlo at several mass hypotheses.
 - Included wab-beam-tri background
 - Same cuts as in data
 - Fit mass spectrum to Crystal-Ball function
- Use Møller pairs to correct for mismatch in mass resolution between data and MC.
 - See slide 8 for cuts
 - Fit to Crystal-Ball function

•
$$\sigma_{\mathcal{A}',\mathrm{corr}} = \sigma_{\mathcal{A}',\mathrm{MC}} \left[\frac{\sigma_{\mathrm{M}\emptyset\mathrm{l,data}}}{\sigma_{\mathrm{M}\emptyset\mathrm{l,MC}}} \right]$$

A' Signal Shape:

Reconstructed A' Mass

Møller Event Selection

- Event Samples used:
 - Carbon-target calibration run (8054)
 - MC: moller-WBT
- Selection Cuts
 - All flags good.
 - both tracks: fit $\chi^2/d.o.f. < 7$
 - both tracks: p < 1.75 GeV</p>
 - exactly one track matches to a cluster $(n_{\sigma} < 7)$
 - track time difference < 3 ns $(\approx 3\sigma_{t_track})$
 - ▶ 1.8 GeV $< p_{\rm sum} <$ 2.9 GeV
 - Target-constrained vertex $\chi^2 < 100$
 - Single-0 trigger

Signal-Shape Correction

9/31

Radiative Fraction

Radiative Fraction

Radiative Fraction

Radiative Fraction

Formalism of a Bump Hunt Analysis: Log Likelihood Test

13/31

Formalism of a Bump-Hunt Analysis: p-Values

Relationship between p-value and q_{a}

*Cowan et. al., 1007.1727

Global Background Model

Global Background Model

Residuals of Global Fit

Global Fit \rightarrow Local Fit

Local Background Model

 p^{th} order polynomial in a window $m \in [m_{A'} - \frac{f\sigma_m}{2}, m_{A'} + \frac{f\sigma_m}{2}]$

Events / (5e-05) $m_A \pm f \frac{\sigma_m}{2}$ 8000 7000 6000 5000 4000 $m_A \pm \sigma_m$ 3000 2000 1000 0.08 0.09 0.1 0.11 0.12

Invariant Mass (A' = 100.025 MeV)

Invariant Mass (GeV)

Local Background Model Comparison

Pulls

Local Background Model Comparison

Median Upper Limit on Signal Yield

p-Values

p-Values

22/31

Look Elsewhere Effect

Look Elsewhere Effect

Global vs. Local p-values

24/31

25 / 31

Most Significant Bump-Candidate

Invariant Mass (A' = 62.275 MeV)

Upper Limits on Signal Yield

Signal Yield

Upper Limits on Signal Yield: Power Constraint

Signal Yield

Convert These to Upper Limits on Coupling ...

$$\epsilon_{\rm ul}^2 = \frac{\mu_{pc}}{f_{rad}[\Delta B/\Delta m]} \frac{2N_{\rm eff}\alpha}{3\pi m_{A'}}$$

where

- $\mu_{\rm pc}$ = power-constrained upper limit on signal yield.
- $f_{\rm rad}$ = fraction of events in sample that are radiative tridents
- $\Delta B / \Delta m$ = number of background events per mass in a mass window

•
$$N_{\rm eff} = 1$$
, for $m_{A'} < 2m_{\mu}$

Upper Limits on Coupling (Preliminary)

30/31

Conclusions & To Do List

- ▶ We expect tiny reach from 2016 dataset after unblinding.
- ▶ Improved alignments \rightarrow Improved resolutions (hopefully) \rightarrow better reach.
- Improved fits could be done with exp(poly) background model (as Omar talked about)
- When the alignments are ready, I can rerun the bump hunt on the blinded 2016 datasets, and then unblinded

Backup Slides

Cutflows: Electron Momentum

Cutflows: Positron Momentum

Cutflows: Total Momentum

Cutflows: Track χ^2

Cutflows: Target Constrained Vertex χ^2

Cutflows: Electron d0

Cutflows: Positron d0

Signal Shape: Sigma

Signal Shape: Mass Offset

Signal Shape: Crystal Ball Parameter α

Signal Shape: Crystal Ball Parameter n

