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Introduction 
 The HPS experiment has thus far employed a pair trigger for the purpose of 

selecting trident-like events. 

o The pair trigger takes two calorimeter clusters and, using a number of 

cuts, selects those most likely to be tridents. 
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Introduction 
 It turns out that for many tridents, the electron in the pair is lost to the 

beam hole and, further, wide-angle bremsstrahlung rates are very high. 

o Many lost electrons are good, high-energy particles. 

o Wide-angle bremsstrahlung can often cause a pair trigger. 
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Introduction 
 A possible solution to this is positrons. Positrons are generally only seen as 

part of a trident. 

o A positron trigger should be able to select events where the electron is 

lost, increasing trident rates in readout. 

o A positron trigger should be more pure and have fewer WAB events. 

 

 A singles triggers won’t work! 

o Rates are extremely high, even when limited to just the positron side 

of the detector. 

o There is not a reliable way to differentiate a positron from other 

particles using only the calorimeter. 

o The SVT can not perform reconstruction quickly enough to be used for 

triggering purposes. 
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Introduction 
 To catch these positrons, we create a hodoscope that sits between the SVT 

and the calorimeter on the positron side only. 
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Hodoscope Software Implementation  
 To better study the effects of a hodoscope and positron trigger, it is 

important to implement the hodoscope for usage in HPS-Java. 

 This is complete! 

 The geometry can be automatically generated using code in HPS-Java. 

 This code is responsible for generating specifically the hodoscope 

geometry, and handles the following components: 

o Scintillators: The actual active components of the detector. 

o Reflectors: Reflective material that surrounds the sides of the 

scintillators. (Blue in the above picture.) 

o Covers: Material that covers the front and back of the hodoscope 

crystals. (Gold in the above picture.) 

o Buffer: Material that sits between the first and second hodoscope 

layers. 
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Hodoscope Software Implementation  
 By using this method, the hodoscope geometry may be easily inserted into 

new or existing detectors using only an XML declaration in the detector’s 

compact.xml. 

 

 The hodoscope XML element is designed to offer a great deal of flexibility, 

and minimize the need for users to interface with the underlying code. 

 

  

<detector id="N" name="Hodoscope" type="Hodoscope_v1" readout="HodoscopeHits" 

insideTrackingVolume="true" vis="HodoscopeVis"> 

 <scintillator_material value="Polystyrene" /> 

 <cover_material value="TitaniumDioxide" /> 

 <reflector_material value="Mylar" /> 

 <buffer_material value="Carbon" />  

</detector> 
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Hodoscope Software Implementation  
 Only a few arguments are mandatory when declaring the hodoscope XML 

for a detector. These are the component material definitions: 

o Scintillator Material: Defines the material for the actual hodoscope 

crystals. 

o Cover Material: Defines the material for the cover that goes in front of 

and behind the hodoscope crystals. 

o Reflector Material: Defines the material for the side reflectors. 

o Buffer Material: Defines the material for the layer buffer. 

 If not other options are declared, the hodoscope will use preset “nominal” 

values. 

o These will be set more formally once the hodoscope is physically 

implemented and a more final nominal set-up is defined. 
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Hodoscope Software Implementation  
 However, virtually every aspect of the hodoscope design may be declared 

through the XML declaration. These include: 

o Positioning: It is possible to declare the x- and y-position of the first 

(inner-most) crystal of each layer of the hodoscope, both top and 

bottom. 

 Other crystal positions are determined by the dimensions of the 

various components and placed relative to the first crystals. 

 The z-position of each layer may also be declared, but is always 

the same for the top and bottom. 

 The x-position of the inner edge of the layer buffer may also be 

declared. 
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Hodoscope Software Implementation  
 However, virtually every aspect of the hodoscope design may be declared 

through the XML declaration. These include:  

o Component Dimensions: Most component dimensions may be 

declared in the XML description. 

 The dimensions of the scintillators may be declared freely. The 

depth and height of all crystals is always the same, but the widths 

can be specified for each crystal. 

 The thickness of both the crystal reflectors and the crystal covers 

may be defined. 

 The thickness, width, and depth of the layer buffer may be 

defined. 

o The geometry code will automatically position the component 

elements in the appropriate positions relative to the defined starting 

crystal positions to account for the declared dimensions. 
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Hodoscope Software Implementation  
 However, virtually every aspect of the hodoscope design may be declared 

through the XML declaration. These include:  

o Crystal Set-Up: Lastly, the number of crystals can be modified through 

the XML. 

 Crystal widths are given in a comma-delimited list in the XML. 

 Each entry is treated as a new crystal. 

 Crystals are automatically generated with covers and reflectors, 

and placed one after another in the order of their declaration 

after the starting crystal. 

 

 This set-up allows the user to easily modify almost any part of the 

hodoscope design as desired without the need to find and modify the 

underlying generating code. 
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Hodoscope Software Implementation  
 When implemented, SLIC will output hit objects into the data representing 

energy depositions onto the hodoscope. 

 These are created in the form of SimCalorimeterHit objects in the 

collection “HodoscopeHits”. 

 Hodoscope simulation hits contain a number of details about the hit. Most 

notably: 

o Energy: The energy deposition that created the hit. 

o Time: The time, with respect to the beam bunch, at which the energy 

was deposited. 

o Truth Information: Which MC particle was responsible for creating the 

hit, and how much energy they deposited. 

o Additionally, position is recorded. The hit positions will always report 

the same y- and z-values for a given crystal, but are further segmented 

along the x-direction to give a more precise x-position. 
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Hodoscope Software Implementation  
 Presently, no detector response is emulated. Rather, hodoscope MC is 

analyzed using the pure truth information. 

o It is expected that a more detailed simulation can be created later, 

once the hodoscope is physically built and its in-practice behavior can 

be better understood. 

 

 Instead, all truth hits within a beam bunch (2 ns window) are added 

together and treated as a single object, with the combined energy of the 

truth hits. 

  



Positron Trigger 
 

 13 

 

First-Pass MC Analysis 
 With a detector geometry defined and working, Monte Carlo analysis of 

the hodoscope and positron trigger has begun. 

 

 When designing a positron trigger, we want to maximize the selection of 

analyzable events – i.e., events which contain enough of the right kind of 

data from which a usable trident may be reconstructed. 

 

 A major component of any analyzable event is that it contains a positron 

and electron track, but this information is not available until 

reconstruction, which requires that we run the readout simulation first.  
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First-Pass MC Analysis 
 To get around this issue, we create a “dumb positron trigger” which 

performs readout on any event that contains a cluster in the positron side 

of the calorimeter. 

o All proposed positron trigger plans will require this condition to be 

met anyway, so this does not exclude any potential triggerable events. 

o By using pure trident Monte Carlo, we also ensure that we only 

consider desirable events and don’t have to worry about junk triggers. 

 

 This new readout data may then undergo reconstruction, and trigger 

tuning can account for which events include useful tracks. 
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First-Pass MC Analysis 
 Once reconstruction is complete, the first-pass analysis may begin. The 

goal of this step is to establish the necessary relations to define the 

positron trigger. 

 The idea behind the positron trigger is as follows: 

o When a positron occurs, it will pass through the hodoscope and then 

impact the calorimeter face. 

o The positron should pass through both layers of the hodoscope in a 

consistent fashion. 

o There should be some consistent relation between the position of the 

positron in the hodoscope versus the position of the positron on the 

calorimeter face. 

o By requiring that the detector signature be consistent with all three of 

these points, non-positronic events can be strongly excluded at the 

trigger level. 
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First-Pass MC Analysis 
 To establish these relations, we first start by selecting only “analyzable” 

events. These are events which: 

o Have one positive and one negative track. 

o One track must point upwards, and one track must point downwards 

(i.e. a top and bottom track). 

 We then aim to establish a relation between hodoscope hits in each layer. 

o To do this, we take advantage of the truth information stored in the 

hodoscope hits. 

o We can determine which MC particle created a given hodoscope hit, 

and use this generating particle to match hodoscope hits on different 

layers. 

o We plot the x- and y-indices of hodoscope hits on layer 1 with those of 

layer 2, and use this plot to generate a correlation table between the 

two layers. 
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First-Pass MC Analysis 
 The same process can then be performed with the calorimeter clusters. 

o New modifications made to the (currently iss166) readout allows for 

full propagation of calorimeter truth information. 

o This means that it is also possible to link hodoscope hits with clusters 

created by the same 

particle, and a similar plot 

made for each layer of the 

hodoscope versus 

calorimeter cluster position. 

o Correlation tables are again 

generated. 
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First-Pass MC Analysis 
 The correlation tables are presented below. 

Table 1: 
Layer 1 Index Layer 2 Min Index Layer 2 Max Index 

0 0 1 
1 0 1 
2 1 2 
3 2 3 
4 3 4 

Table 2: 

Hodoscope Layer 1 Hit Hodoscope Layer 2 Hit 

Hodo Index Cl. Min Index Cl. Max Index Hodo Index Cl. Min Index Cl. Max Index 

0 4 7 0 6 7 

1 6 6 1 7 12 

2 8 10 2 11 17 

3 12 21 3 14 21 

4 18 23 4 19 23 
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Trigger Proposal 
 From these correlations, a first-pass trigger is selected. 

o A hodoscope hit must exist in each layer of the hodoscope with 

𝐸 ≥ 1 MeV. 

o A cluster must exist in the calorimeter with 𝐸 ≥ 200 MeV. 

o There must exist a pair of two hodoscope hits that meet the relation 

requirements in Table 1, where both hits also meet the relation 

requirements in Table 2. 

 

 As a first-pass test of these trigger rules, we monitor how many analyzable 

events are excluded at each step. 
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Trigger Proposal 
 The results of this test are below: 

Event Type Event Count Percentage Loss 

Analyzable Track Pair 118,862 0.00% 
A Hodoscope Hit 117,801 0.89% 
A Hodoscope Hit per Layer 116,348 2.11% 
A Correlated Hodoscope Hit Pair 113,556 4.46% 
A Correlated Hodoscope/Cluster Pair 108,839 8.43% 
 

 It appears that the trigger relations retain over 90% of analyzable events 

which are possible to detect. 

 Further optimization may be possible for these tables, particularly for the 

final hodoscope/calorimeter correlation. 

 Further testing will be needed to check trigger performance on full 

background simulation and perform rate estimation.   
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Summary 
 A hodoscope detector has been implemented into HPS-Java. 

o The hodoscope geometry is generated programmatically, and inserted 

into detector definitions through the compact.xml. 

o It allows for a significant amount of customization without alteration 

of the underlying code. 

 

 Monte Carlo trigger simulation of the positron trigger is on-going. 

o A potentially viable trigger has been selected and shows promise in 

initial testing. 

o More studies are needed before finalization can occur. 

 


