STATUS OF THE BDX EXPERIMENT

MARIANGELA BONDI FOR THE BDX COLLABORATION

• BDX EXPERIMENT OVERVIEW:

- GOAL
- BDX @ JLAB
- DETECTOR
- BACKGROUNDS
- BDX STATUS
- BDX UPDATE
- MUON FLUX MEASUREMENTS

HPS COLLABORATION MEETING - JLAB, MAY 22-24, 2018

BDX EXPERIMENT

GOAL : LIGHT DARK MATTER SEARCH IN A BEAM DUMP EXPERIMENT

1 STEP: LDM PRODUCTION An electron radiates an A' and the A' promptly decays to a X pair GeV - high intensity e- beam

2 STEP : LDM DETECTION The X (in-)elastically scatters on a e-/nucleon in the detector producing a visible recoil

BDX @ JLAB

KEY POINTS:

- High energy beam : 11 GeV
- the **Highest** available **beam current** ~ 65 μA
- Integrated charge: 10²² EOT in ~ 10 months
- BDX detector located underground, downstream of Hall-A beam-dump
- BDX beamtime fits the Hall-A experimental program (already-approved experiments with more than 10²² (11 GeV) EOT, e.g. Moeller exp.)
- New underground experimental hall

BDX DETECTOR

LDM SIGNAL IN THE DETECTOR : X-electron -> EM shower ~ GEV

LOM DETECTION MODULAR EM CALORIMETER

- 800 CsI(TI) crystals (from BaBar EMCal)
- 8 modules 10x10 crystals each
- ~ 3 m long , ~ 50x50 cm² front face
- 6x6 mm² SiPM readout

BACKGROUND REJECTION

LEAD VAULT 5cm thick

OUTER VETO Plastic scintillators LightGuide/WLS scint. PMTs/SiPM

BDX PROTOTYPE

Inner Veto in the lead vault 🍃

Outer Veto: plastic scint. + Light guide + PMT

Inner Veto: plastic scint. + WLS + SiPM

GOALS:1) validate the proposed design and technical choices

2) measure the capability of rejecting cosmic background and project conservatively experimental data to full detector.

BACKGROUND

COSMIC BACKGROUND : MEASURED WITH THE BDX PROTOTYPE IN CATANIA/LNS

Using Vetos in anti-coincidence and high energy thresholds O(0.5GeV):

expected cosmic bg in the BDX lifetime < 2 counts

BEAM-RELATED BACKGROUND :

The interaction of the 11 GeV electron beam in the dump was simulated and the flux of secondaries was studied as a function of the distance from the dump

No μ n and γ with E>500 MeV are found at detector
 location

• Neutrinos survives to the detector -> For a simulated statistics of 2.2×10^8 EOT we obtained, after all rejection cuts and extrapolation to 10^{22} EOT ~ 10 v.

BDX Proposal to JLAB PAC 44 (2016)

- C2 Conditionally Approval
- Main concern expressed by the PAC on beam-on background

From the report:

While simulations are an essential tool in understanding background conditions, they are not sufficient to design an experiment. The BDX collaboration is therefore encouraged to think more about **benchmarking their simulations with measurements on site**.

BDX Proposal Update to JLAB PAC 45 (2017)

Assessing the beam-related bg :

measuring the muon flux behind the Hall-A dump with the current shielding configuration
 compare MC results obtained in two frameworks: Geant4 and FLUKA (in col with RadCond)

Summary: The collaboration should continue working with JLab to carry out the proposed tests, towards achieving full approval at a subsequent PAC.

3DX PROPOSAL TO JLAB PAC46 (2018

report results/simulation of Muon test

BDX MUON TEST

- The measurements is a benchmark for MC simulation and helping to understand background
- 2 10" pipes downstream of Hall-A beam-dump were drilled down to beam height (8 m) and aligned with the beam-line n 2 different positions B (25 m) and C (28 m)

BDX MUON TEST : BDX-HODO DETECTOR

SAME TECHNOLOGIES PROPOSED IN THE FINAL EXPERIMENT

20

♦ CRISTAL

- CsI(TI) crystal (5x5 x 30 cm²)
- 6x6 mm2 Hamamatsu SiPMs

SCINTILLATORS

- I3 plastic scintillator paddles 1 cm thick
- 3x3 mm2 SIPM coupled via WLS fibers

CONTAINER

- Optimized vessel (d=20cm, h=52cm)
- Stainless steel, water-tight

BDX MUON TEST

DETECTOR 8 M DOWI

9

BDX MUON TEST EXPECTED RESULTS: MC SIMULATION

- Simulation performed using FLUKA/GEANT4 framework
 - generating muons by primary electron interaction on Hall-A beam dump (FLUKA)
 - propagating muons to the pipe positions using GEANT4
 - BDX-HODO response with GEANT4
- Only muons and neutrons reach the area of interest
- Rate from cosmic muons is negligible (and measurable !)

BDX MUON TEST EXPECTED RESULTS: MC SIMULATION

- Simulation performed using FLUKA/GEANT4 framework
 - generating muons by primary electron interaction on Hall-A beam dump (FLUKA)
 - propagating muons to the pipe positions using GEANT4
 - BDX-HODO response with GEANT4
- Only muons and low-energy neutrons reach the area of interest
- Rate from cosmic muons is negligible (and measurable !)

Significant dependence on soil density :

- soil density measured in correspondence of the two wells : 1.93 1.95 g/cm3
- soil density along the muon flight path unknown : constant ??
- concrete density: no measurement available

Expected Rate :

- Rate Well B: order of magnitude of kHz
- Rate Well C: order of magnitude of Hz
- Rate_WellB/Rate_WellC ~ 200-400

BDX MUON TEST EXPERIMENTAL CAMPAIGN

- ★ Positions scan: the muon flux sampled at different heights with respect to nominal beam height (8 m underground).
- Beam: CEBAF e- beam @ 10.6 GeV and current of 22 uA
 - ➡ Well B : 22 positions (ranged between -110 cm and 150 cm). Each measurement was repeated at least 2 times
 - ➡ Well C: 14 positions (ranged between -80 cm and 80 cm). Each measurement was repeated at least 2 times
 - ★ Currents scan: the muon flux sampled at nominal beam height (8 m underground) changing the current .
 - Beam: CEBAF e- beam @ 10.6 GeV
 - ➡ Current = 2.2uA, 5uA, 10uA, 22uA
 - →Well1 : 1 position (position 0)

★ Cosmic Background

 ${\scriptstyle \bigodot}$ Long run taken with BDX-HODO inside Well C

BDX MUON TEST RUNNING THE EXPERIMENT

-Sc5

Sc7

Beam

5c13

×

Right

BDX MUON TEST EXPERIMENTAL RESULTS

In phase of analysis, the data have been cleaned excluding the beam-trip

Red histo: events analyzed

♦ Rate extracted integrating the green fit

BDX MUON TEST COSMIC BACKGROUND

Black spectrum: measurement without shielding performed at TEDF building

- ◆Blue spectrum: measurement inside well C at 0 position
 - ★Reduction factor between TEDF and well is ~ 2.5

★<u>No significant effect of cosmic muons on rates measured with beam-on</u>

★Front/Back/crystal coincidence rate is ~ 0.1 Hz -> Negligible

BDX MUON TEST EXPERIMENTAL RESULTS

- Muon rate measured in the two wells at different Z-distances from the beam-line height (Z=0)
 - ★ Rate well B (Z=0, I=22 uA) ~ 8 KHz
- ★ Rate well C (Z=0, I=22 uA) ~ 15 Hz
- \star Ratio of the two wells is ~ 500
- Similar bell shape : both distributions are fitted to gaussian with the same width (σ ~ 45 cm)
- ★ The asymmetric shape in the left part of well B distribution could be due to a no constant soil density

BDX MUON TEST DATA/SIM COMPARISON

Absolute rates obtained

- generating muons by primary electron interaction on Hall-A beam dump (FLUKA)
- propagating muons to the pipe positions using GEANT4
- BDX-HODO response with GEANT4

♦ Significant dependence on soil density :

We assumed a density range of values : 1.9 - 1.95 gr/cm³

★ Data in agreement with the simulation for the assumed density range

CONCLUSION

- ♦ Measurements to assess the BDX beam-on bg proposed to PAC45, endorsed and supported by JLab
- ◆The BDX-Hodo detector (CsI(TI) + scintillator paddles) lowered in two wells located ~25m and ~28m downstream of the Hall-A beam-dump
- Expected significant variation between the two wells and along the Z-profile
- ◆Despite the uncertainty in soil density, simulations reproduce both absolute rates and shape
- Ready to present results to PAC46 seeking for BDX proposal full approval

BDX MUON TEST OVER THRESHOLD BACKGROUND ASSESSMENT

- + BDX good events are defined as an electromagnetic shower in the calorimeter with no activity in two veto system
- ◆ The shower is characterized by: energy seed Eseed (<500 MeV), number of crystal with E>Ethr , total energy Etot
- ✦ Beam-on background has been simulated finding only hits from neutrino

CAN WE USE BEAM-ON BOX-HODO DATA TO CONFIRM THE (ALMOST) O-BG?

beam-on BDX experiment	beam-on BDX-Hodo test	
80 crystals (x10)	l crystal	
ermethic (2x) veto	few paddles	
iron shield (no muon)	dirt shield (muons)	
285 run days ~10 counts neutrino bg	~O(few) NO neutrino bg	

- Only Eseed information (conservative)
- ◆ BDX-Hodo in well 2
- reduce beam energy to range out muons
 - ★Compare Beam on / Beam off energy spectra for E>Ethr

BDX MUON TEST OVER THRESHOLD BACKGROUND ASSESSMENT

- A significant fraction of BDX-HODO data have taken at Ebeam =4.3 GeV (Ibeam ~ 22 uA)
- ✦ Good statistic with beam-off in the same experimental conditions
 - beam on : 6.5 days (EOT ~ 7.7*10¹⁹)
 - beam off: 20 days
- Analysis no involve plastic scintillator counters
- Comparison of energy distributions
 - Beam-off events scaled to beam time
- Normalizations E>500 MeV
 - ★ Beam-on : 705 events
 - ★ Beam-off: 692 events

BEAM TIME REQUEST

- 10²² EOT (65 uA for 285 days)
- BDX can run parasitically to any Hall-A
 Ebeam>10 GeV experiments (e.g Moller)

Beam-related background		Cosmic background	
Energy threshold	N _v (285 days)	Energy threshold	√ Bg (285 days)
300 MeV	~10 counts	300 MeV	<2 counts

BDX SENSITIVITY IS 10-100 TIMES BETTER THAN EXISTING LIMITS ON LDM

