Dark Sector Overview

ASHER BERLIN, SLAC

HPS Collaboration Meeting, Newport News, VA May 22, 2018

Thermal Contact

Experiments proposed: What models live here?

Moore's Law

Cosmic Visions

US Cosmic Visions Community Report arXiv: 1707.04591

Outline

- I. Very Thermal
- II. Pretty Thermal
- III. Almost Thermal
- III. Not Thermal

larger coupling to visible sector

smaller coupling to visible sector

WIMP-Like

Light Thermal Dark Matter

light mediator

suppressed annihilations at late times

Light Mediators

Sub-GeV thermal DM requires light mediators: $m_{\varphi} \sim m_{\chi}$

B. Lee and S. Weinberg, Phys.Rev.Lett. 39 (1977) 165-168

C. Boehm and P. Fayet arXiv: hep-ph/0305261

CMB

(DM < 10 GeV has suppressed visible annihilations at late times)

energy injection

$$m_{\chi} n_{\chi}^2 \langle \sigma v \rangle \sim m_{\chi} \left(\frac{\rho_{\chi}}{m_{\chi}} \right)^2 \langle \sigma v \rangle \lesssim \# \implies \langle \sigma v \rangle \lesssim m_{\chi} \times \#$$

CMB

(DM < 10 GeV has suppressed visible annihilations at late times)

invisible mediator decays

Fixed-Target Search

invisible mediator decays

invisible mediator decays

arXiv:1512.04119

 $\langle \sigma v \rangle \propto e^{-(m_{\chi'}-m_{\chi})/T}$ (coannihilation)

visible χ ' decays

visible χ ' decays

Visible and Secluded Annihilations

arXiv:0711.4866 arXiv:1505.07107

Visible and Secluded Annihilations

visible mediator decays

$$\sin\theta \ \frac{m_f}{v} \ \phi \ \bar{f}f$$

Invisible Annihilations

Invisible Annihilations

arXiv:1709.07001

Hidden Sector Dynamics

(π = Dark Matter)

 $m_V < 2 m_\pi$

to keep dark matter cold

Carlson, Machacek and Hall (1992) arXiv: 1402.5143 arXiv: 1801.05805

Hidden Sector Dynamics

(vector mesons are long-lived)

2-body V⁰ decay

3-body V[±] decay

Hidden Sector Dynamics

Outline

- I. Very Thermal
- II. Pretty Thermal
- III. Almost Thermal
- III. Not Thermal

larger coupling to visible sector

smaller coupling to visible sector

freeze-out + equilibration
$$\implies m_{\chi} \sim \left(\frac{m_{\rm Pl}}{T_{\rm eq}}\right)^{1/4} m_{\nu} \sim {\rm MeV}$$

Outline

- I. Very Thermal
- II. Pretty Thermal
- III. <u>Almost Thermal</u>
- III. Not Thermal

larger coupling to visible sector

smaller coupling to visible sector

Freeze-in

Sub-MeV Freeze-Out

Freeze-in: Sterile Neutrino

$$-\mathcal{L} \supset y_{\nu} N L H + \frac{1}{2} M_N N^2 + \text{h.c.}$$

$$\nu\simeq i\,\nu_{\rm\scriptscriptstyle SM}-\theta\,\nu_s\ ,\ N\simeq \nu_s+i\,\theta\,\nu_{\rm\scriptscriptstyle SM}$$

$$\theta = \frac{y_{\nu} v}{\sqrt{2} M_N} \simeq \left(\frac{m_{\nu_{\rm SM}}}{m_{\nu_s}}\right)^{1/2}$$

$$\Omega_{\nu_s} \simeq \Omega_{\rm DM} \times \left(\frac{\theta}{10^{-5}}\right)^2 \left(\frac{m_{\nu_s}}{30 \text{ keV}}\right)^2$$

arXiv:hep-ph/9303287

Freeze-in: Sterile Neutrino

 $v_s \rightarrow v \gamma$

Freeze-in: Light Mediator

Freeze-in: Light Mediator

Outline

- I. Very Thermal
- II. Pretty Thermal
- III. Almost Thermal
- III. Not Thermal

(QCD axion, ultralight scalars and vectors)

larger coupling to visible sector

smaller coupling to visible sector

Ultralight Bosons

see relevant sections in arXiv:1707.04591

QCD axion, ultralight scalars and vectors

Field-Like

 $n_{\rm DM} \ \lambda^3 \simeq \left(\frac{2\pi}{v}\right)^3 \ \frac{\rho_{\rm DM}}{m^4}$ $\simeq \mathcal{O}(100) \times \left(\frac{10^{-3}}{v}\right)^3 \ \left(\frac{\rho_{\rm DM}}{0.4 \text{ GeV} / \text{ cm}^3}\right) \ \left(\frac{10 \text{ eV}}{m_\phi}\right)^4$

$$\phi \simeq \frac{\sqrt{2}\,\rho_{\rm DM}}{m_{\phi}} \,\, \cos m_{\phi} \,t$$

Measurement of the Fine-Structure Constant

"A model consisting of the Standard Model and dark photons of any m_V or ϵ is now incompatible with the data at up to a 99% confidence \mathbb{Y} level (CL)."

Richard H. Parker, Chenghui Yu, Weicheng Zhong, Brian Estey, and Holger Müller Science 360, 191-195 (2018) Measurement of the Fine-Structure Constant

SM predicts X = 0

SM + BSM predicts $X = 10^{-6}$

Richard H. Parker, Chenghui Yu, Weicheng Zhong, Brian Estey, and Holger Müller Science 360, 191-195 (2018) Measurement of the Fine-Structure Constant

SM predicts X = 0

SM + BSM predicts $X = 10^{-6}$

Experiment measures $X = -1 \pm 0.333$

Experiment excludes SM + BSM at 3σ ?

Richard H. Parker, Chenghui Yu, Weicheng Zhong, Brian Estey, and Holger Müller Science 360, 191-195 (2018)

Summary

arXiv:1707.04591

Summary

Anomalies \Rightarrow Models \Rightarrow Signals

Summary

Anomalies \iff Models \iff Signals

Dark Sector Candidates, Anomalies, and Search Techniques

Back Up Slides