Coherent @-Meson Photoproduction off Deuterium from CLAS

Submitted to PLB, arXiv:1802.06746

Taya Chetry Ohio University

CLAS COLLABORATION MEETING 2018

09 March, 2017

- > Physics Motivation
- > Vector Meson Dominance
- > Differential Cross Section
- Results
- Summary and Outlook

Physics Motivation

π-N scattering provides access to fundamental questions

- Baryonic spectrum of QCD.
- Chiral dynamics of QCD.
- Study of isospin violation.
- Internal structure of the nucleon.
- Just imagine the possibilities with other mesons, say a vector meson!
- Experimental Challenge:
 - Short mean lifetimes ~10²³ s
 - Vector meson beams cannot be produced in a lab.
- Extract *ω*-**N** cross section!
 - > LQCD

Goal

> Physics models

C. Patrignani et al. (Particle Data Group) Chin. Phys. C, 40, 100001 (2016) and 2017 update

CLAS coll. Meeting 03/09/2018 3

Scattering on the Lattice

• Lattice QCD

> $\pi\pi$ scattering (ρ resonance)

- Meson-baryon scattering is now [°] ₉₀ a possibility.
- ω is a good choice!!
 - \rightarrow Pions are heavy on the lattice.
- Jianwei pointed out the progress made by The Hadron Spectrum Collaboration on Wednesday's Plenary talk.

D.J. Wilson, R.A. Briceño, J.J. Dudek, R.G. Edwards, C.E. Thomas The Hadron Spectrum Collaboration Phys. Rev. D 92, 094502 (2015)

Vector Meson Dominance (VMD)

D. W. G. S. Leith, "High Energy Photoproduction: Diffractive Processes" SLAC-PUB-1978

CLAS coll. Meeting 03/09/2018 5

Vector Meson Dominance (VMD)

- Two processes:
 - $\gamma N \rightarrow \omega N$
 - $\rightarrow \omega N \rightarrow \omega N$
- Slope parameters: > $b_{\gamma N}$ and $b_{\omega N}$
- Ratio of Re(A) and Im(A): • $\alpha_{\gamma N}$ and $\alpha_{\omega N}$

- Proton $\rightarrow I = 0, 1$
- Deuteron acts as an Isospin filter for I = 0 only.
- Vector Meson off deuterium simplifies theoretical interpretations of the data.

Vector Mesons off deuteron in CLAS

Highlights:

- g10 data
- A rescattering model is used.
- Within VMD, data is consistent with σ_{ϕ^N} at about 10 mb.
- In the model, larger $\sigma_{\phi {\rm N}}$ is possible by taking $b_{\gamma {\rm N}} > b_{\phi {\rm N}}$

T. Mibe *et al.* CLAS Collaboration Phys. Rev. C 76, 052202(R) (2007)

Previous Results: $\gamma d \rightarrow \omega d$

Limited World Data

- Mostly from Bubble Chamber experiments.
- Missing double scattering effect.

Experiment	Energy	Target	Measured quantities	$ T_0^N ^2$ (μ b/GeV ²)	$\sigma_{\omega N}$ (mb)	$\hat{f}_{\omega}^2/4\pi$	Assumptions	Comments
SLAC-Berkeley Ballam <i>et al</i> . (1973)	9.3	н (70)(25	$\left. \frac{d\sigma}{dt} \right _{\omega}$	11.4±2.1	•••	25.3 ± 4.7	$\sigma_{\omega N} = 27 \text{ mb}$ $\alpha_{\omega} = -0.24$ $\frac{d\sigma}{dt}\Big _{t=0} = T_0^N ^2$	No correction for A_2 exchange
Rochester Abramson <i>et al</i> . (1976)	8.3	D, Be, C, Al Cu, Pb	$\left. \frac{d\sigma}{dt} \right _{t=0}$	7.4 ± 0.5	25.4±2.7	30.4±4.8	$\alpha_{\omega N} = -0.24$	Corrected for A_2 exchange
Tel Aviv Alexander <i>et al</i> . (1975)	7.5	D	$\left. \frac{d\sigma}{dt} \right _{\omega}$	11.2 ± 2.5		25.7 ± 6.5	$\sigma_{\omega N} = 27$ $\alpha_{\omega} = -0.24$	
Tel Aviv Alexander <i>et al</i> . (1975)	7.5	D	$\frac{d\sigma}{dt}\Big _{\rho,\omega}$ $\frac{d\sigma}{dt}\Big _{\rho}\Big/\frac{d\sigma}{dt}\Big _{\omega} = 7.1^{+2.0}_{-1.2}$	•••	••••	$15.5^{+7.0}_{-2.8}$	$\hat{f}_{\omega}^{2}/\hat{f}_{\rho}^{2} = \frac{d\sigma}{dt} \bigg _{\rho} \bigg/ \frac{d\sigma}{dt} \bigg _{\omega}$ $\hat{f}_{\rho}^{2}/4\pi = 2.18$	The rho cross section was anomalously low
Pisa-Bonn Braccini <i>et al</i> . (1970)	5.7	C, Al, Zn, Ta Ag, Pb	, Smeared cross section	13.5 ± 3.3	27.0 ^{+6.0} -5.5	22.0 ± 5.4	$\alpha_{\omega N} = -0.3$	Poor t resolution and uncertainties in background correction

T. H. Bauer, R. D. Spital, D. R. Yennie, and F. M. Pipkin **Rev. Mod. Phys. 50, 261(1978)**

Previous Results: $\gamma d \rightarrow \omega d$

Limited World Data

• Best data till date is from the Weizman Institute of Science

 $E_{\gamma}\!=4.3\,{\rm GeV}$ and $|t|<0.2\,{\rm GeV^2}\!/c^{\!2}$

Experiment	Energy	Target	Measured quantities	$ T_0^N ^2$ ($\mu b/{ m GeV}^2$)	$\sigma_{\omega N}$ (mb)	$\hat{f}_{\omega}^2/4\pi$	Assumptions	Comments
Weizmann Eisenberg <i>et al</i> . (1976)	4.3	D	$\left. \frac{d\sigma}{dt} \right _{\omega}$	18.5 ± 4.5		15.6 ± 3.8	$\sigma_{\omega N} = 27 \text{ mb}$ $\alpha_{\omega N} = -0.24$	
Weizmann Eisenberg <i>et al</i> . (1976)	4.3	D	$\left. \frac{d\sigma}{dt} \right _{\rho}$	•••	••••	$14.6^{+4.9}_{-3.0}$	$\hat{f}_{\omega}^{2}/\hat{f}_{\rho}^{2} = \frac{d\sigma}{dt}\Big _{\rho} / \frac{d\sigma}{dt}\Big _{\omega}$	
			$\frac{d\sigma}{dt}\bigg _{\rho}\bigg/\frac{d\sigma}{dt}\bigg _{\omega} = 6.7^{+2}$.1			$\hat{f}_{ ho}^{2}/4\pi = 2.18$	
Harvard-CEA Gladding <i>et al</i> . (1973)	4.2	Н	$\left. \frac{d\sigma}{dt} \right _{\rho, \omega}$			16.8 ± 2.8	$\hat{f}_{\omega}^{2}/\hat{f}_{\rho}^{2} = \frac{d\sigma}{dt}\bigg _{\rho}\bigg/\frac{d\sigma}{dt}\bigg _{\omega}$	No correction for OPE or A_2 exchange
		1997) • 1997	$\frac{d\sigma}{dt}\bigg _{\rho}\bigg/\frac{d\sigma}{dt}\bigg _{\omega} = 7.7 \pm$	0.12			$\hat{f}_{\rho}^{2}/4\pi = 2.18$	
ABHHM Benz et al. (1974)	1.3-5.3	3 D	$\sigma_{ ho,\omega}$				$\hat{f}_{\omega}^{2}/\hat{f}_{\rho}^{2} = \frac{\sigma(\gamma d \rightarrow \rho d)}{\sigma(\gamma d \rightarrow \omega d)}$	
			$\frac{\sigma(\rho)}{\sigma(\omega)} = 7.2^{+2.7}_{-1.6}$			$15.7^{+6.2}_{-3.7}$	$\hat{f}_{\rho}^2/4\pi = 2.18$	
Lancaster Morris <i>et al</i> .	3.9	D	$\left. \frac{d\sigma}{dt} \right _{\rho,\omega}$	14.5 ± 5.4		15.3 ± 6.4	$\hat{f}_{\omega}^{2}/\hat{f}_{\rho}^{2} = \frac{\sigma(\gamma d \to \rho d)}{\sigma(\gamma d \to \omega d)}$	Poor-resolution experiment
(1976) Colliding beams						18.4 ± 1.8	$\hat{f}_{\rho}^{2}/4\pi = 2.18$	

T. H. Bauer, R. D. Spital, D. R. Yennie, and F. M. Pipkin **Rev. Mod. Phys. 50, 261(1978)**

Global Spectrum: $\gamma d \rightarrow \omega d$ (*g*10 dataset)

- Basic cuts to reduce background:
 - z-vertex cut
 - Fiducial cut
 - > Minimum Momentum cut, etc.
- Corrections applied:
 - Momentum corrections
 - Energy loss corrections
- Signal over smooth background.

Binning

4 incident photon energy and variable 4-momentum transfer bins.

E = [1.4, 1.8] GeV

Yield Extraction

Differential Cross section: $\gamma d \rightarrow \omega d$

Model Based on VMD: $\gamma d \rightarrow \omega d$

Coherent ω-meson Photoproduction off Deuteron 14 CLAS coll. Meeting 03/09/2018

SLAC Data

Results: $\gamma d \rightarrow \omega d$

- Access to lower energy and larger momentum transfer to investigate $\omega\text{-N}$ scattering.
- First high statistics world data for the reaction: $\gamma d \rightarrow \omega d$ Extracted 30 < $\sigma_{\omega N}$ < 40 mb using a rescattering model based on VMD for E_{γ} = [2.8, 3.4] GeV.
- The cross-section data provides sensitivity to the nucleonscattering data in the energy and momentum transfer range mentioned.

Submitted to PLB, arXiv:1802.06746

• *d** interference using the same final state detected particles.

- $\gamma d \rightarrow d^{*+}\pi \rightarrow d\pi^0 \pi^+ \pi^-$

- Investigation of photocoupling ratio of light vector mesons.
- A2 meson exchange from proton data (T0 and T1 amplitudes).
 f meson exchange or the P exchange in deuteron data provides T0 (natural isospin 0 transfer) amplitude.
 - Combining proton (pion extracted) and deuteron data, estimation of A2 is possible.

Any Questions?

Lattice QCD (LQCD)

Investigated Channels

γd	$\rightarrow \rho d \rightarrow$	π^+ π^-	d				
	ρ(770) [^h]	I ^G (J ^{PO}	$C) = 1^{+}(1)$	L — —)			
	Mass $m = 775$	5.26 ± 0.25 MeV					
	Full width Γ =	$= 149.1 \pm 0.8$ MeV					
	$\Gamma_{ee}=$ 7.04 \pm	0.06 keV					
	ρ(770) DECAY MODES	Fraction (Γ_j/Γ)		Scale factor/ Confidence level	р (MeV/c)		
	ππ	\sim 100	%		363		
γd	$\rightarrow \omega d \rightarrow$	π^+ π^-	d	(π^0)			
	ω(782)	I ^G (J ^{PC}	$) = 0^{-}(1)^{-}$)			
	Mass $m = 782.65 \pm 0.12$ MeV (S = 1.9) Full width $\Gamma = 8.49 \pm 0.08$ MeV $\Gamma_{ee} = 0.60 \pm 0.02$ keV						
				Scale factor/	р		
	ω(782) DECAY MODES	Fraction (Γ _i /Γ)	Confidence level	(MeV/c)		
	$\pi^+\pi^-\pi^0$	(89.2 ±	:0.7)%		327		
	$\pi^0 \gamma$	(8.28±	:0.28) %	S=2.1	380		
	$\pi^+ \pi^-$	(1.53	$(0.11)_{0.13}$ %	S=1.2	366		

Photon Coupling ratio of the vector mesons:

 $\gamma_{\rho}: \gamma_{\omega}: \gamma_{\phi}=1:3:-3/\sqrt{2}$

- Assuming SU(3) and SU(6) symmetry.
- The coupling constants provide understanding for EM form factors of pseudo-scalar mesons and nucleons, EM meson decays, etc.

Differential Cross Section: $\gamma \mbox{ d} \rightarrow \omega \mbox{ d}$

Differential cross-section,

$$\frac{d\sigma}{dt} = \frac{Y_D}{\Delta t A \mathscr{L}} \times \frac{\Gamma_\omega}{\Gamma_{\omega \to \pi^+ \pi^- \pi^0}} \times \gamma_{corr}$$

A = Acceptance $\Delta t = \text{Width of } t\text{-bin}$ $Y_D = \text{Signal Yield}$ $\gamma_{corr} = \text{Photon Multiplicity}$ Correction factor

Luminosity,

$$\mathscr{L}(E_{\gamma}) = \frac{\rho_T N_A l_T}{M_d} N_{\gamma}(E_{\gamma})$$

$$\rho_d = 0.169 \ g cm^{-3}$$

$$l_d = 24 \ cm$$

$$M_d = 2.014 \ g \ mole^{-1}$$

$$N_{\gamma}(E_{\gamma}) = Photon \ Flux$$

$$\frac{d\sigma}{dt} \propto e^{-b|t}$$

Source	Description	Uncertainty	
Flux Consistency/Luminosity	Sec. 9.1	8.00%	
<i>t</i> -slope dependence	Varied from $b = 2.5$ to $b = 0$	0.04%	
Sector Dependence	Sec. 9.3	2.00%	
Timing Cut	Varied from a 3σ to 3.5σ cut	0.60%	
Minimum p Cut	Removed	0.52%	
Missing Mass Cut	Varied from a 3σ to 2.5σ cut	3.46%	
z-Vertex Cut	Varied from $ z + 25 < 11$ to $ z + 25 < 11.5$	0.73%	
Fiducial Cut	Varied from a 50% to a 100% cut	1.34%	
Signal Integral Range	Varied from 4σ to 5σ	0.10%	
Choice of Background function	Sec. 9.10	8.59%	
Branching Ratio	Reference [5]	0.70%	
Total Systematic U	12.54%		

Data: MM(γ d, $\pi^+\pi^-$) vs MM(γ d, d)

Interference

Back-up

Plot Description

The 2D histogram is made after basic cuts are applied to the data.

Plot on the left is the y-projection of the 2D histogram. It is the mass distribution for the π^0 and the outgoing d.

Plot on the right is the x-projection of the 2D histogram. It is the mass distribution for $\pi^+ \pi^- \pi^0$ or the ω -meson distribution.

