
Data Format
for Physics Analysis

G.Gavalian (JLAB)

Introduction

Data File Formats

Lessons from previous experience

HIPO Data Format

Future of Physics Data formats

Data Analysis Tools

Lessons (from data-mining)

BOS:
format does not have compression, external dictionary
file size limit of 2GB
sequential read only

EVIO:
does not have compression
random read is only possible for files <2GB
random read initialization very slow
big memory foot print for files with small event size

HDF5:
event by event reading is slow, designed of keeping large objects
unable to write variable length events
no native JAVA interface

CLAS12

EVIO
EVIO is not suited for large data files analysis

files with small event size cause big time latency and memory footprint

inability to random read large files makes it useless for debugging programs (like
CED)

no utilities to filter banks or events, split file.

HIPO
New flexible data format was introduced solve shortcomings of other data
formats.

Data is on fly compressed with LZ4 (much faster performance compared to GZIP,
used by ROOT)

Large data file support with random access with smaller latency

Internal dictionary describing data structures

DATA FORMAT

Good deal of thought have to be given to the data format for
storing the physics results from experiment.
The world is moving towards much larger data sets, fast
random access and compression are a must.
The analysis workflow will depend on the data format.
Large data sets need different set of tools to browse, skim and
condition events for final analysis, tag groups of events.
Framework will be crucial for reproducibility of results.
Archiving and tagging of data needs to be done at the first
level of creating the data.

DIANA-HEP project

HEP community is developing new approaches to large data set
analysis.
They employ Apache-Spark for efficient data reading and
reducing.
There is a lot of discussion on how ROOT data format is not
well suited for big data sets for efficient filtering and skimming.
The data is converted to Apache-Avro (from ROOT) for parallel
data processing.
The language used with Apache tools is SCALA (High Level
JAVA scripting language, optimized for multi-threaded
applications).
Check it out at: http://diana-hep.org

http://diana-hep.org

HIPO File Format

RH
Record Header
Contains record properties (size, compression

type, event count). Contains fields for tagging
the record (up to 8 tags)

UH
User Header
Contains information about the record dictionary,

format. User specified parameters related to
conditions of the experiment.

EB
Event Buffer
Events in the record back to back. To disengage

them index array is needed.

IA
Index Array
Array of event offsets inside the event buffer.

Dynamically creates event random access table.

RH
UH
IA

EB

FH
RH

RH

RH

RH

FI File Index
Contains positions of all records in the file

File Header
Information about file

Why is HIPO good for data analysis

HIPO is dictionary driven data format (backward compatibility)
Record based data structure allows event grouping by tags:

different topologies of events can be separated into different records.
record headers can contain scaler information.

reading relevant record positions is very fast.

skimming files can by desired final state can be done on IO level.

Well organized file will lead to reproducibility and easy data
distribution and archiving.
Data cuts (fiducial cuts) and correction parameters can be
embedded into the data file.
Record structure of HIPO makes it ideal for Apache-Spark
DataFrame implementation.
Analysis codes can be embedded into the file (as binary JAR)
It stood test of time. Was successfully used in KPP and ER.

Benchmarks

For Benchmarking run #2475 was used (entire run size 89 GB)

Filtered events leaving REC::EVENT and REC::PARTICLE (size 670 MB)

HIPO file was converted to ROOT file, using HasPec code (Derek)

Run test on reading the data from the file in both formats

Second test was done on reconstruction file without filtering (all banks included)

The all banks test was done on better machine (2.6 GHz i7)

File Format File Size Read Time (sec) Machine
ROOT 810 MB 32.45 1.4 GHz i5
HIPO 670 MB 7.12 1.4 GHz i5

ROOT(ALL) STL VECTOR 1.92 GB 48.43 2.6 GHz i7
ROOT(ALL) ARRAY C-9 1.37 GB 63.34 2.6 GHz i7
ROOT(ALL) ARRAY C-1 1.58 GB 65.72 2.6 GHz i7

HIPO(ALL) 1.87 GB 10.51 2.6 GHz i7
HDDM (HALL-D) 468 MB 14.87 IFARM1401

HIPO 517 MB 5.02 IFARM1401

HIPO file reading is ~5x faster compared to ROOT

Performance difference between HDDM and HIPO are largely due to GZIP vs LZ4

decompression speeds

Benchmark

I was reminded by many people that ROOT can read only specified branches, which considerably
speeds up the reading.

I spent 1 hour to make each bank to be written into different basket in HIPO allowing only reading
specific parts of the file to speed up the process.

Turned out it was easy to change the read structure to be similar to how ROOT writes the branches.

Resulting data that is being read is only 5.7 MB, yet again HIPO beats ROOT by large margin.

In real analysis scenario it is highly unlikely that one will write 1.9 GB file with only 5.7 MB relevant
data.

Surprisingly HIPO reading all the branches is still faster than ROOT reading only two branches
(EVENT, and HEADER)

File Format File Size Read Time (sec) Machine

ROOT (EVENT BRANCH) 1.89 GB 6.15 (1.03) 2.6 GHz i7

ROOT (ALL BRANCHES) 1.89 GB 63.34 2.6 GHz i7

HIPO (ALL BRANCHES) 1.92 GB 7.06 2.6 GHz i7

HIPO (EVENT BRANCH) 1.92 GB 0.15 2.6 GHz i7

to filter 1 PB of data with ROOT ~ 31.7 Years
to filter 1 PB of data with HIPO ~ 0.62 Year 2 TB of data with ROOT ~ 23 days

2 TB of data with HIPO ~ 0.4 days

RUN 3249 (on volatile)

Data Analysis Tools

JAVA Analysis Workstation (JAW) is included in the distribution
Allows PAW like N-Tuple manipulations with familiar KUIP
syntax
Implements dynamic auto corrective Command Line interface
Command line history and script running (batch mode coming
soon to computers near you)
Physics analysis module is available for quick data checks
Modules can be extended to read detector responses as well
Modular approach to data representation inside JAW allows
development of custom modules for specific reactions.

Physics Analysis
reaction/create 10 11:2212:Xn:X+ 2.2
reaction/particle 10 w2 [b]+[t]-[11] mass2
reaction/file 10 clas_run_2475.hipo.0
reaction/plot 10.w2 ! 1000 200

reaction/particle 10 ephi [11] phi
reaction/plot 10.w2%ephi

reaction/plot 10.w2 ! 1000 200

CUT N Events
N Bins

! - means use default value

Physics Analysis

canvas/zone 2 1
reaction/create 10 11:22:22:X+:X-:Xn 2.2
reaction/file 10 run_02861_0_20.hipo
reaction/particle 10 g1p [22,0] p
reaction/particle 10 g2p [22,1] p
reaction/particle 10 g1t [22,0] theta
reaction/particle 10 g2t [22,1] theta
reaction/particle 10 g1phi [22,0] phi
reaction/particle 10 g2phi [22,1] phi
reaction/particle 10 pi0m [22,0]+[22,1] mass
reaction/plot 10.pi0m pi0m<0.5
reaction/plot 10.pi0m%(g1phi-g2phi) pi0m<0.5&&g1t*57.29>8.0&&g2t*57.29>8.0&&(g1phi-g2phi)<-0.5

Particle Pseudo-Code

Event Filters:

11:X+:X-:Xn at least one electron, any number of positive, negative and neutral
particles

11:2212:22:22:X+:X- at least one electron, at least one proton, only two photons,
and any number of charge particles to follow

 11:211:22 - only one electron, one pion and only one photon

Event Particles:

[11,0] - electron from the reconstructed event (first one)

(11,0) - electron from generated event

{11,0} - a negative particle from the reconstructed event that matches first
generated electron

[22] or [22,0] - first photon in the event

[22,1] - second photon from the event

(22,2) - third generated photon

[211,0,0.938] - first positive pion from the event (assign proton mass to the
particle)

Resolution

reaction/create 10 11:X+:X-:Xn 11.0
reaction/mcfilter 10 11:X+:X-:Xn
reaction/file 10 generated_sidis.hipo
reaction/particle 10 ep [11] p
reaction/particle 10 egp (11) p
reaction/plot 10.(ep-egp)/egp ! ! 120 -0.2 0.2 220

Easy Acceptance Calculations

reaction/create 10 X+:X-:Xn 11.0
reaction/mcfilter 10 11:X+:X-:Xn
reaction/file 10 generated_sidis.hipo
reaction/particle 10 epp (11) p
reaction/create 11 11:X+:X-:Xn 11.0
reaction/file 11 generated_sidis.hipo
reaction/particle 11 erp [11] p
canvas/zone 1 3
reaction/plot 10.epp ! ! 120 1.0 8.0 220
reaction/plot 11.erp ! ! 120 1.0 8.0 221
histogram/divide 222 221 220
histogram/plot 222

Generated

Reconstructed

Acceptance

Summary

HIPO data format was developed for CLAS12 reconstruction
Flexible data format (dictionary driven, backward compatible).

Compression (LZ4) and random access.

Outperforms all the other formats tested.

Ideal for streaming applications due to internal structure.

Can be used as DST format, provides ability to sort internal content.

Utilities to tag individual data records for fast reading.

Physics Analysis Framework
Analysis framework was developed as a prove of concept.

The analysis framework is being extended to be used with HADOOP
and Apache-Spark, for fast data skimming and plotting through
distributed file systems.

Modular design of this framework allows implementations of sharable
analysis codes (like fiducial cuts and corrections) that can be
standardized.

Documentation - http://clasweb.jlab.org/jhep/docs/jaw/html/

