

CLAS12 Offline Code Management
and Validation

Nathan Harrison
UNG

CLAS Collaboration Meeting
March 7, 2018
Jefferson Lab

Outline

● Summary of existing management and validation tools

- clas12-offline-software GitHub repository

- Maven project management tool

- Travis Continuous Integration (CI) testing system

● Recent improvements and updates

- Shorter and simpler build procedure

- Improved implementation of unit testing

- Automatic code coverage reports

- Automatic SpotBugs reports

● Summary of existing management and validation tools

- clas12-offline-software GitHub repository

- Maven project management tool

- Travis Continuous Integration (CI) testing system

Documentation/tutorials

Frozen releases (downloads and notes)History of all changes

Report problems

Different branches for parallel development

Current build status and link to Travis CI

Source code

github.com/JeffersonLab/clas12-offline-software

 Project Object Model file
- Manages dependencies
- Compiles code
- Runs plugins
- Builds documentation (JavaDocs)

Travis CI Page

Travis CI Page

For every change to the repository:
- Builds the project and checks for errors
- Runs validation tests
- Notifies developers of any problems

Validation Example: DC Tracking

* single simulated electron event with p=2.5 GeV, θ=25 deg, φ=0, torus=-1, solenoid=0

Test checks the following for HBT and TBT:

- has tracking bank

- tracking bank has 1 row

- the one track has charge -1

- px, py, pz are close to the true values

* These tests are run automatically
by Travis CI after every build; returns
a failure if tests don't pass

● Recent improvements and updates

- Shorter and simpler build procedure

- Improved implementation of unit testing

- Automatic code coverage reports

- Automatic SpotBugs reports

validation-devel2 branch

● Cleaner, more efficient build script: 118 lines --> 48 lines

● Major improvement in unit test organization

- A single command (mvn install) builds the project and runs the unit tests

- Considerably easier/faster for developers to add new tests, e.g.

 common-tools/clas-physics/src/main/java/org/jlab/clas/physics/LorentzVector.java

 common-tools/clas-physics/src/test/java/org/jlab/clas/physics/LorentzVectorTest.java
 ^^^ note parallel directory structure

- Automatic code coverage reports from CodeCov

New badge/link to codecov.io

https://codecov.io/gh/JeffersonLab/clas12-offline-software/branch/validation-devel2

LorentzVector.java LorentzVectorTest.java

(Test Driven Development (TDD) is a popular development process in which unit tests
are written before the actual code!)

SpotBugs

● Runs as a Maven plugin; analyzes the entire code base with a single
command (done automatically by Travis CI):

mvn com.github.spotbugs:spotbugs-maven-plugin:spotbugs (gives warnings)
or
mvn com.github.spotbugs:spotbugs-maven-plugin:check (gives errors)

● Checks for over 400 common bug patterns (which might be missed by the
compiler and unit tests)

● spotbugs-exclude.xml file provides customization – e.g. ignore non-serious
bugs (such as a possible “bug” if sector < 0)

● Generates a bug report for each module, e.g.
- reconstruction/dc/target/spotbugsXml.xml
- common-tools/clas-geometry/target/spotbugsXml.xml

● GUI tool for debugging

SpotBugs - Example

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html

Summary/Conclusions

● The CLAS12 software team is working to create a culture in
which our code is of a high quality, clean, easy to use, and
reliable

● Over the past ~1 year, GitHub + Travis CI has been a very
successful code management and validation system

● The improvements described here will soon be merged into
the master branch and are expected to build upon an already
strong foundation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

