Status and Plans Operational Performance Settings Calibration

CLAS Collaboration Meeting 03/06/2018

SVT Operation After Installation

Yuri Gotra

Page

SVT Monitoring: Solenoid at 5T, cosmic run

Jefferson Lab

SVT Monitoring: Solenoid at 2.5 T, run 1537

Yuri Gotra

SVT Monitoring: Solenoid at 5T, Cosmic Tracking

Page

SVT Status on 12/06/2017

- Stable operation:
 - Cooling system operational
 - Ambient conditions normal
 - Leakage currents below 250 nA
- No change in calibration:
 - mean noise 1600 e
 - Mean gain 87 mV/fC
 - 99.4% channels operational:
 - Intermittent readings in 1 chip (R2S6U2, shorter strips)

Yuri Gotra

- 6 open channels (R2S7N55, R2S8N13, R3S2N1, R3S9N3, R3S11N16, R3S14N24)
- 1 dead channel (R3S18N112)
- No DAQ issues observed

Jefferson Lab

- Data integrity and tracking performance validated
- Online monitoring on ET tested

SVT Calibration before Engineering Run

Investigation of SVT radiation damage during initial beam tuning

SVT operational conditions before beam delivery:

• leakage currents below 230 nA at 60 V and coolant at 4 C, mean noise 1600 e, 7 bad channels out of 21504

SVT conditions during beam tuning:

• HV/LV PS off (to protect the front-end electronics against beam induced failures), sensors at room temperature, nitrogen purging, ambient temperature and humidity sensors operational

Operational safety regulations during initial beam tuning:

- Beam line fully commissioned, all slow controls and interlocks operational
- Neutron shield upstream of the CLAS detector
- 20 mm and 14 mm collimators upstream of the detectors
- Fast beam shutdown monitors, BOM/halo counters operational
- Initial beam tuning on the tagger dump
- Beamline expert supervision of possible beam loss
- Minimal beam current
- · Solenoid field on to protect the detectors from the backgrounds
- MCC operators are aware of acceptable radiation conditions for the CLAS detectors

Beam to the Hall B was delivered on 12/08/2017. Beam tuning continued through the night shift on 12/09/2017. Several operational safety conditions were not met which led to beam loss on the beamline components and large radiation dose delivered to the SVT, exceeding the estimated dose over the lifetime of the experiment.

At 11:30 am on 12/09/2017 with no beam to the hall, SVT detector was powered up to verify it's conditions after the beam tuning.

Observations:

- SVT sensors suffered high radiation damage, predominately at lower radii.
- Sensor leakage currents increased up to 15 times (conservative estimate)
- No pinholes observed
- Preamplifier gains did not change, no signs of front-end or readout electronics or PS damage

Results of the measurements were posted on the HBLOG and reported to the run coordinator and the shifters.

Yuri Gotra

SVT operational conditions after the radiation damage

After initial short term annealing the sensor leakage currents have decreased to less than 1.5 μ A.

To ensure safe operation of the SVT during the engineering run, bias voltage of the inner layer was decreased to 50 V. Software warning limits were readjusted, hardware and software current trip limits remained unchanged to ensure detector safety.

Bias voltage of the sensor R1S2B was lowered to 27 V due to high current. Does not hold the bias voltage. SVT performance during the engineering run monitored by the system experts, system performed stable up to the maximum delivered beam current.

In normal operation conditions SVT front-end electronics is cooled by water at 4 C, sensors are close to room temperature. When silicon sensors suffer radiation damage, after beneficial short term annealing the long term reverse annealing could substantially degrade performance of the sensors up to the point where they become un-operational. The time constant of reverse annealing depends on sensor temperature.

Mitigation Plan

- Leakage currents increased 2-10 times
- Permanent sensor radiation damage (not recoverable) Mitigation plan:
- Develop and implement a new cooling model of the central tracker with sensors at lower temperature reducing the effects of reverse annealing
 - replacing water with glycol

Jefferson Lab

- improving insulation of the cooling pipes
- lowering the temperature of the purging nitrogen
- Installing the thermal shield over the tracker
- Lower sensor bias to reduce leakage currents
- Modify the cooling system, change coolant type to go below 0 C
- Modify gas purging system to operate at lower temperatures

FEA Model of the SVT cooling and mechanical stress

CVT Nitrogen Purging System: dealing with humidity issue at low temperature

Run 1909, no beam, channel hit occupancy

Page 13

Reconstructed CVT tracks, empty target, beam current 5 nA

CVT reconstruction, run 1985, empty target, beam current 5 nA

Run 2091, IH₂ target, beam current 10 nA

CVT reconstruction, run 2136, IH₂, beam current 30 nA

Trigger window, hit/no-hit thresholds:

- Run < 2124: 2048 ns, 30 % MIP
- 2124: 768 ns, 30 % MIP
- Run > 2126: 768 ns, 30 % MIP
- except layer 1, 45 % MIP

Jefferson Lab

Yuri Gotra

Problem Solving During the Run

- Sensor radiation damage
- Chiller failures
- Interlock system (hardware failures, software issues)
- Network errors
- EPICs/CSS timeouts
- Flow meter failures in solenoid field
- Shielding Region 1 with tungsten foil

SVT Calibration

Water cooling

Jefferson Lab

Glycol cooling

Yuri Gotra

SVT settings, performance

SVT settings, performance

HV PS settings

- Layer 1: S1:50 V, S2: 17 V, S3: 35 V, S4: 40 V, S5: 50 V, S6-S10: 60 V
- Layer 2: S1, S2, S6-S10: 70 V, 4 sensors at lower bias
- Layers 3-6: 75 V
- BCO clock frequency 4 MHz (128 ns) (80 979 16, in 8 ns units) Sensor Leakage
- Region 1: 600-800 nA
- Region 2: 400-600 nA
- Region 3: 400-600 nA

LV currents

• Analog: 300-350 mA, Digital: 140-180 mA

Hybrid temperatures

- 3-9 C
- Ambient temperatures and humidity
- -1 +5 C, 2%
- Chiller Temperature Settings
- Main chiller (Lauda): -18 C

Jefferson Lab

Gas purging

Nitrogen: 5-20 lpm

Noise and Gain

- Mean ENC: 1600 e, Mean Gain: 88 mV/fC
- Noise shoulder, mostly in the layer 1
- Possible pin-holes, 4 sensors in R2

02/09/2018 coolant -14 C

Sensor Leakage History

Page 22

Sensor Leakage History

Page 23

Current Status

SVT performance is validated up to the design luminosity Operational stability is not affected by the beam current up to 70 nA Noise, gain, and signal stable for most of the sensors, good agreement with performance before the engineering run Increase of the leakage current and performance degradation on modules received large radiation dose due to mistake with beam tuning in the first engineering run shift Sensor leakage current is gradually increasing due to radiation damage Four region 2 sensors developed pin holes (high leakage current, saturated preamps, strips with high occupancy) Observed issues are caused by sensor radiation damage Performance degradation due to reverse annealing continues, leakage current increased by 100-300 nA Currently the maximum leakage current (at 55 nA beam current) is ~900 nA Most of the sensors are biased at 70-75 V Sensor bias for the sensors with high leakage current is lowered to prevent breakdown Sensor bias on several modules is close to the limit Sensor degradation due to reverse annealing is not recoverable Sensor temperatures are still too high to prevent degradation, despite actions taken to lower them (coolant change, sealing, purging system modifications). Hybrid temperatures are within 3-9 C. Ambient humidity ~2%. Cooling system cannot support operational stability due to additional load at low temperatures Negative results from testing the nitrogen cooling system Investigating possible scenarios to improve sensor operational conditions Trigger latency is optimized, integration window is set to 4 BCO clocks (512 ns) Discriminator hit/no-hit thresholds are set to 26 keV except in layer 1 chips (39 keV) Hit occupancy in the SVT has linear dependence on the beam current, 2% at 70 nA Higher occupancy (4%) in the innermost layer Tungsten shielding tested, removed due to noise pick up in region 1 Slow controls, monitoring, and interlocks are functional, changes made based on experience with the system during the engineering run Online monitoring operational Front-end electronics functional, currents and voltages are within the specs No issues with DAQ or data observed

SVT Operation and Performance at 50 nA beam current

Tracking and Vertexing at 50 nA beam current

CVT Tracking and Vertexing Performance

The CLAS12 SVT system is a part of the Centre	al Detector and will be used	to measure the	Angular coverage Θ	35°–125°
momentum and determine the vertex of charged part	articles emerging from the t	arget The SVT	Angular coverage Φ	~2π
system includes 4 regions with 10 14 18 and 24 se	actors of double-sided mod	ules (silicon sensors	Spatial resolution	50-65 μm
on both sides of the backing structure) instrumente	d with digital readout ASIC		Momentum resolution	~6%
The system is designed to operate at a luminos	$10^{35} \text{ cm}^{-2} \text{ cm}^{-1}$ and to be	s, 1 00125.	θ resolution	10–20 mrad
The system is designed to operate at a luminosity resolution of -5% for 1 CoV particles emerging from	The target at $\Omega = \Omega \Omega^0$		φ resolution	~5 mrad
resolution of ~5% for 1 GeV particles emerging from	in the target at $\theta = 90^\circ$.		Designed to operate at a luminosity of	10 ³⁵ cm ⁻² s ⁻¹
20000 215000 22% A Entries 259750 Mean -0.005 RMS 0.029 Underflow 1990 Cuefflow 1990 Cuefflow 1990	s Entries 259750 Mean 0.022 PMS 0.370 Ouderflow 4141 Duerflow 4141 Duerflow 4141 Duerflow 4141	Pos Entries 259750 Mean 0.045 0.0 RMS 0.133 0.0 Underflow 1593 0.0 Croaflow 2056 0.0		
O O	wean 0.005 10000 sigma 0.177 5000 0 1.0 2.0 -1.0 -0.	wean 0.035 ⊲ 0.0 sigma 0.075 ₀	$\begin{array}{c} 240 \\ 1220 \\ 1220 \\ 1200 \\ 0.25 \\ 0.25 \\ 0.20 \\ 0.5 \\ 10 \\ 15 \\ 20 \\ 0.25 \\ 0.20 \\ 0.2$	· • • • • • •
$\Delta p / p$ $\Delta \theta$,	deg	$\Delta \boldsymbol{\varphi}, \deg_{pos}$	p, GeV F	o 1.5 2.0 o, GeV
40000 - Entries 259750 40000 - Mean -0.000 - RMS 0.016 -	Entries 259750. Mean 0.000 RMS 0.015 15000	Entries 259750 Mean 0.069 (C RMS 1.154).18	
\$ 30000 Underflow 1273 0 verflow 1043 10000 10000	Underflow 2857 Overflow 2857 - 5000 -	Underflow 4376 Overflow 6894 mean 0.007 sigma 0.507 ↓0	0.16 0.14 0.12 0.10 0.08	$\overline{)}$
-0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.0 0.05 0.0 -0.05 0.05	0 0.05 0.10 -5 -4 -3 mm	-2 -1 0 1 2 3 4 5 ΔVz, mm	0.5 1.0 1.5 2.0 p, GeV	100 120 140 160 100 120 140 160 ck phi
	$ \begin{array}{c} & & \\ & & $	σ _c = 73 μm	Entries 482 Mean -0.059 RMS 1.100 mean -0.048 sigma 0.365 10.0 1.0	Entries 267 Mean 0.052 RMS 0.761 mean 0.046. sigma 0.265
	20	0.1 -5 -4 -3 -2 -		1 2 3 4 5
	-0.6 -0.4 -0.2	0 0.2 0.4 Residual (mm) Centre	oid Residual Centroid I	Residual
Jetterson Lab	Yuri Gotra		Page 27	57

Outstanding Issues and Path Forward

- Operational stability (increasing of sensor leakage current)
 - Modifying cooling system
 - Working with chiller vendors (SPScientific, Lauda, Lytron)
 - Planning for possible replacement of R1/R2 modules
 - Evaluating installing the thermal shield around SVT
- Failed hardware interlock cRio processor (03/06/2018)
 - Installing loaner processor, ordering replacement
- Hardware interlock issues (leak detection, inlet temperature, ambient temperature)
- Integration of SVT hardware interlock to CSS
- Patch panel modification
- Fabricate and install V450 filters (Fast Electronics group)
- Survey misalignments (local and global) in tracker geometry
 - Validating misaligned geometry
 - Adding global misalignments
- Track based alignment using the alignment sample at 0 field
 - Development of alignment algorithm in progress
- Low track finding efficiency at current luminosity
 - Working on improvements of the tracking algorithm
 - Evaluating options on reducing beam backgrounds
- Analysis of commissioning data

Jefferson Lab

