

Hall-B Beamline

S. Stepanyan (JLAB) CLAS Collaboration meeting, March 6, 2018

Accelerator ops Hall-B engineering Fast electronics group Nathan Baltzell Rafayel Paremuzyan

State of the Beamline is Strong!

Almost all design requirements have been met

PARAMETER	DESIGN VALUE	Achieved
Beam energy	≤11 GeV (up to 5 pass)	V
Beam energy spread	~10-4	✔ (acc.)
Beam power	≤5000 W (450 nA at 11 GeV)	v
Beam current stability	<5%	V
Beam size at the target	≤0.4 mm	V
Beam position stability	≤0.1 mm	V
Beam halo	~10 ⁻⁴ of the core	V
Beam polarization	~80% (if requested)	✓ (> 80%)
Polarization measurement accuracy	~3%	± 4%
Helicity correlated charge charge asymmetry	~0.1%	V

- Machine delivered high quality, reproducible beam over months of running
- Our beamline devices provided adequate control and monitoring of relevant parameters for beam quantity and quality

SCIENCE

Hall-B beamline: 2C-line (upstream tunnel)

S. Stepanyan, CLAS Collaboration Meeting, March 6 2018

3

Main monitoring GUI

5

Beam profile and position stability

5-pass beam profile at 2H01A harp, 7 m upstream of the target

Beam current

- The Hall-B Faraday cup is the main source of the beam charge for CLAS12 experiments
- Most of CLAS12 experiments will run with a beam blocker in front of the Faraday cap due to 170 W power limit for Faraday (~15 nA at 11 GeV)
- With beam-blocker on the beam, some fraction of the beam power and the charge leak to FC
- The leakage amount is beam energy dependent, (has been studied with simulations, backed up with measurements at few energy points, CLAS12 Note 2016-004) and must be measured for each energy setting

Fraction of the beam current for 5-pass, 10.6 GeV beam

 CLAS12 notes are in archive for 3- and 5- pass beams of engineering and RG-A energies, CLAS12 Note 2018-003 and CLAS12 Note 2018-004

S. Stepanyan, CLAS Collaboration Meeting, March 6 2018

Beam polarization

- No dependence of the polarization magnitude on Helmholtz coil current >3 A
- Consistent values and sign change of polarization with change in Helmholtz field direction
- Zero polarization when Pockels cell HV is OFF
- Polarization with ½ wave plate
 OUT consistently higher than
 ½ wave plate IN, but still within stat err.
- Still working on determination of the correct analyzing power (Brian)
- Will aim to make Moller polarimeter setup "one-button" operation for the future

ISR2C20 SLM

- Important beam current monitor for helicity dependent beam charge accounting (need a fast, reliable charge measurement).
- SLM performs reasonably well, with the new optics (acc.) and the new PMT rate is ~16 kHz/nA at normal operating gain (~530 Hz/nA for each helicity flip)

Target

- CLAS-6 cryo. target system (Saclay target) with few modifications will be used:
 updated controls
 - a new, larger diameter cell with 10 mm diameter 30 μ m Al windows
 - a longer pipes to the cryostat
- A new foam scattering chamber accommodates the new geometry
- Alignment of the target cell and FTCal and tungsten Moller shield is within 1.5 mm. Beam always is aligned relative to FTCal
- All-in-all Cryo target (LH₂) performed very well
- To further improve reliability, controls for the buffer dewer will be moved under PLC control, similar to other cryo. controls for the magnets

S. Stepanyan, CLAS Collaboration Meeting, March 6 2018

FSD system

- Signals from halo counters are used as inputs to FSD OR of 4-midstram counters (ch.#1), 4-downstream counters (ch.#2), 2-upstream counters (ch.#3), and the sum of BOM 16 channels (ch.#4), and a channel for the solenoid
- System has been tested using a fast readout of FSD input signals on Struck scaler, performance turned to be in line with expectations

Summary

- The Hall-B beamline achieved its design goals
- With very few hiccups (BOM, downstream camera, IOC trips due to insufficient shielding) beamline performed quite well during the CLAS12 engineering run and ongoing RG-A run
- Despite some struggle with high current running and changing conditions, accelerator was able to deliver high quality, reproducible beam over months of running
- Beamline manual and the operational procedures for shifters served its purpose very well, and has been updated few times already based on the feedbacks of users
- There are list of improvements and upgrades for future experiments that will be dealt with after the run

