

Engineering Run Overview

N. Baltzell March 6, 2018 7th 1st Experiment Workshop

Ultimate Goals

- Understand detector response vs simulation
- Study acceptance/rates for different particle types and final states
- Study & optimize reconstruction for Forward and Central detectors
- Calibrate subsystems for different configurations
- Characterize CLAS12 resolution function
- Measure cross sections for well known processes
- Document studies via CLAS12-Notes

Dedicated Studies

- Beamline commissioning
 - beam tuning, harps/rates, FSD, SLM, Fcup attenuation, Moller polarimeter, ...
- Configuration Scans
 - Luminosity
 - Solenoid / Torus fields
 - FT-On/Off configurations
 - Feedback
 - rates compared to MC
 - normalized rates (e.g. tracks per electron, electrons per luminosity)
 - impact on PMT operations
 - acceptance impact
- Hardware setting optimzations
 - readout windows, thresholds, pulse integration ranges, high voltage
- Calibration data
 - different torus/solenoid fields and polarity
 - low/high luminosity
 - two beam energies, 2.2 and 10.6 GeV
 - no-field for alignment
- Trigger commissioning, validation, optimization

Organization

Run Dates: December 11, 2017 – January 28, 2018 Run Coordinators: D. Carman, R. De Vita Run Wiki: <u>https://wiki.jlab.org/clas12-run/index.php/Engineering_Run</u> Analysis Wiki: <u>https://clasweb.jlab.org/wiki/index.php/Engineering_Run_Analysis</u>

	Offline	Coordinator: organize group,			
Role	People	Detector	People	select runs for processing,	
Analysis Coordinato	r N. Baltzell, R. De Vita	CND	P. Chatagnon, D. Sokhan, S. Niccolai	reviewing the calibration results,	
Data Chef	F.X. Girod, N. Harrison	CTOF	D.S. Carman, L. Clark	organize daily meetings and ccdb	
Database Manager	H. Avakian	DC	L. Kabir	updates	
		ECAL	C. Smith, J. A. Tan		
Reaction	People	FT	S. Adhikari, A. Celentano, L. Lanza, A. Thornton	Chef: organize data processing and	
Inclusive electron N	. Markov	FTOF	D.S. Carman, L. Clark	associated scripts, offline shift	
Elastic N	1. Osipenko, R. De Vita	нтсс	N. Markov	takers processing data (temporary	
2-π Ε	. Golovach, OHIO (TBC)	LTCC	B. Duran, M. Ungaro	until dedicated fam ready)	
BH/DVCS F	X. Girod	MVT	G. Christiaens, M. Defurne	Calibrators: perform and optimize	
К⁺Л []	.S. Carman, E. Golovach	RICH	A. Kim, M. Turisini	calibrations, report results	
π ⁺ n		SVT	Y. Gotra		
π ⁰ p A	. Kim			Daily 10:00 meetings in couning	
e+e⁻ J	. Newton			house upstairs meeting room	

Dedicated Runs

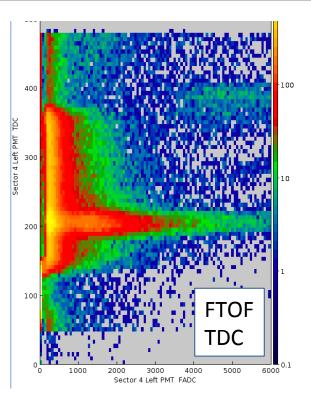
Description	Run #	Dates	Notes
Luminosity Scans	2088, 2103-2106, 2128-2129, 2324, 2711	12/17, 12/17, 12/17, 1/14, 1/27-28	Random/Electron triggers ; up to 75/125 nA ; FToff/FTon
Solenoid Scans	2228-2229, 2349-2350	12/21, 1/14	FTon, FToff
Torus Scans			+/-85,100% In- and Out- bending at 10.6 GeV ; +/-60-100% at 2.2 GeV
DCHV Scans	2014-2032, 2175-2187, 2578-2580, 2959-2968, 2993-2997	12/15, 12/19^*, 1/25, 2/5, 2/5	(^ lower HV settings) (* MVT HV scans included)
TOF	2736-2739		CTOF/FTOF Threshold scans
RICH	2308-2315 & 2321-2323, 2329-2341, 2727-2733, 2754-2759, 2784-2793, 2827-2831	1/14, 1/14, 1/25 1/29, 1/30, 1/31	time delays, trigger latency, HV/thresh, *,*, *
Forward Tagger	2425-2426, 2829-2843, 2892-2897, 2945-2948, 2971-2972	1/18, 2/1-2/3	trigger, FTC thresh and FTH HV, luminosity scan, trigger, FTH HV
Micro Megas	2175-2187, 2943- 2944	12/19, 2/2	HV scans
Moller, Trigger Tunings, etc			

Calibration Runs

Description	Run #	Dates	Notes
10.6 GeV, FToff	2325-2327, 2346-2350	1/14, 1/15	25-125 nA, Inbending
10.6 GeV, FTon		December	5-50 nA, Inbending
10.6 GeV, FToff		December	5-30 nA, Outbending
10.6 GeV, FTon	2711-2722	1/27-1/28	5-75 nA, many at low luminosity, Inbending
2.2 GeV, FTon		Mid-Late January	Various torus/solenoid combinations at 60% and 100% and both polarities
ECAL	2316-2319	1/14	dedicated configuration for ECAL calibration
Alignment / Empty Target	2467, 2443, 2449	1/20, 1/19, 1/19	0/0 torus/solenoid empty, 0/60% LH2, , 0/60% empty

Hardware Settings Examples

ciency Scan thresholds and high voltage settings, efficiency plateaus. Tune readout windows and latency, and offline time cuts, ayer Efficiency integration windows. Various opportunistic non-beam studies for DC and SVT to accommodate new noise effects. 30 mV 45 mV 25 60 mV 20 15 **R1** 90 10 200 400 **R2** 5 DC HV Setting HV Setting 7.5 8 8.5 11.5 0 200 400 600 800 1000 1200 1400 160 0 TDC Pseudo-Efficiency median: 3081 e, RMS: 632 e 23500 3000 Eorward I 1 Forward L2 2500 Forward L3 Forward L4 2000 ► Forward L5 Forward L6 1500 1000 **Shielding grounded** 0 500- 380 400 420 180 500 520 MVT HV 0^仕 50 100



N. Baltzell – Engineering Run Overview – 7th 1st Experiment Workshop – March 6, 2018

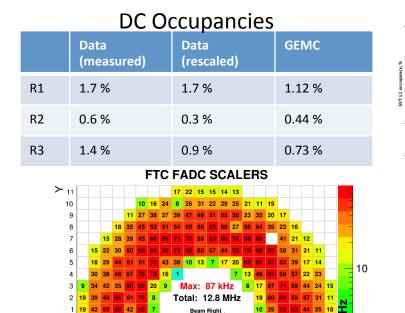
Hardware Settings Examples

Readout windows, trigger integration ranges optimized similarly for all PMT-based detectors. Loose enough to accommodate all trigger types.

FADC250 Settings for PMT-Based Detectors					
System	NSB	NSA	Threshold		
EC	12	60	30,60 (~1.5 MeV)		
PCAL	12	156	60 (~1.5 MeV)		
FTOF	8	28	60 (~1 MeV)		
CTOF	12	60	60 (~0.5 MeV)		
CND	12	60	60 (~1 MeV)		

NSB/A: FADC number of samples Before/After pulse

TDC1190 Settings for PMT-Based DetectorsTDC readout window500 ns



N. Baltzell – Engineering Run Overview – 7th 1st Experiment Workshop – March 6, 2018

Luminosity Scans, Rate/Occupancy Studies

Rates and occupancies compare well with simulation (accounting for slightly different settings, e.g. window sizes, thresholds) and scale linearly with current. Used online slow controls scalers / ced / for many detectors.

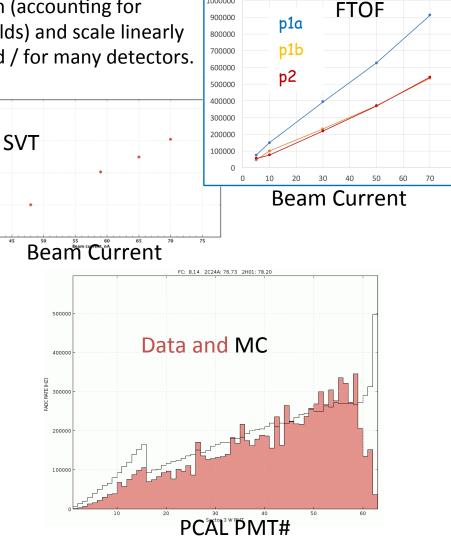
X-Asy: -1.9% Y-Asv: +5.4%

21 20 13 23 29

18 13 18 18 21 17 31 31 28 11 17 7

5 12 14 13 14

17 8 28 33 40 44 39 41 48 41


5 4 3 2 1 -1 -2 27/1/2018 14:04:34

68 48 60 53 46 38 26 12

20 7

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

49 56 54 54 30 40 35 47 28 12 16

1000000

-5

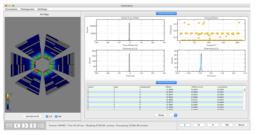
-6

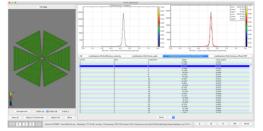
-7 -8

-9

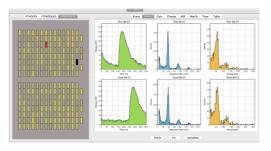
-10

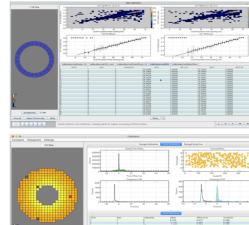
-11

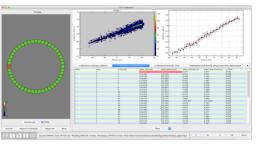

11 10 9


N. Baltzell – Engineering Run Overview – 7th 1st Experiment Workshop – March 6, 2018

10

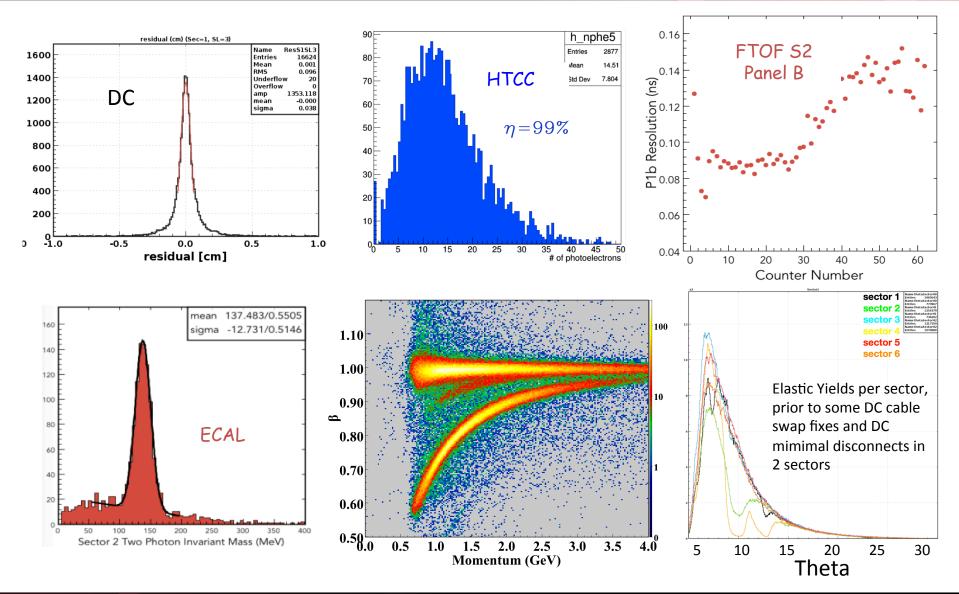



Calibrations



Subsystem calibration and commissioning studies well underway for different field and luminosity conditions for:

- 2.2 GeV
- 10.6 GeV


for

- CND
- CTOF
- DC
- ECAL
- FT (Hodo, Trk, Cal)
- FTOF
- HTCC
- LTCC
- MM (FMT, BMT)
- RICH
- SVT

Some Calibration Results

N. Baltzell – Engineering Run Overview – 7th 1st Experiment Workshop – March 6, 2018

Jefferson Lab

Conclusion

- Analysis of luminosity and field scans for understanding backgrounds
- Detector performance studies for different fields and luminosity in progress
- Partial calibration performed in semi-real time (DC, FTOF, CTOF, HTCC, FTCal, FTHodo, CND, ...)
- Work continuing under supervision of CalCom group (Friday meetings)
- Calibration work presently focused on RG-A data to provide feedback to data taking and support first analyses
- See the many, many talks today for details on each subsystem, topic, study ... !

