08:30 - 10:30 Hadron Spectroscopy Working Group Remote connection: https://bluejeans.com/681949276 Convener: Marco Battaglieri (INFN-GE) CEBAF Center (L102) Location: 08:30 Hadron Spectroscopy Working Group Business 20' Speaker: Dr. Marco Battaglieri (INFN-GE) 08:50 JPAC activity update 20' Speaker: Jannes Nys (Ghent University) Event generator for exclusive Npi and KY electroproduction at Q^2 up to 12 GeV^2 09:10 Speaker: Mr. Valerii Klimenko (Moscow State University) Material: Slides 📆 09:30 Analysis of eta->pi+pi-pi0 with CLAS6 20' Speaker: Mr. Daniel Lersch (Juelich Research Center) 09:50 K+Sigma- E observable from g14 20' Speaker: Dr. Nicholas Zachariou (University of Edinburgh) Material: Slides 🔼 10:10 Lambda-Nucleon Scattering with g12 20' Speaker: Joey Rowley (Ohio University)

11:00 - 12:30

Material:

Slides 🖳

HSWG

CLAS Collaboration Meeting JLab, March 8 2018

Hadron Spectroscopy Working Group

Remote connection: https://bluejeans.com/681949276

Convener: Marco Battaglieri (INFN-GE)

11:00 A Study of Lambda(1520) photoproduction 20'

Speaker: Mr. Utsav Shrestha (Ohio University)

Material: Slides 📆

11:20 Polarization Observables from Strangeness Photoproduction on g9a 20'

Speaker: Dr. Stuart Fegan (GWU)

11:40 Polarization Observables T and F in the gamma p to p pi0 reaction (g9b) 20'

Speaker: Mr. Hao Jiang (University of South Carolina)

Material: Slides

12:00 Analysis Reviews status 30'

Speaker: Dr. Marco Battaglieri (INFN-GE)

Agenda

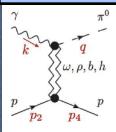
- * CLAS6 data analysis
- * Status of ongoing analysis (update from previous collaboration meeting)
- * Dedicated (joint) session for CLAS12

Activities

- * A lot of activity around Engineering run + RG-A preparation/analysis
- * All groups are encouraged to look at the data (low/high level) to check calibration, possible issues,
- * CLASI2 data analysys are needed to optimize fall run conditions (luminosity, acceptance, trigger efficiency, ...)
- * 13/4 analysis/new
- * Any CLAS6 analysis ready for review has to give a presentation to the HSWG?
- * CLAS6 analysis ready for a plenary talk next time
- * Strengthen the collaboration with JPAC

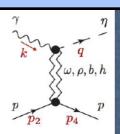
Talks

- * Over all CLAS contributions, HSWG-related are 34 (2017)%
- * Regular interactions with the CSC
- * REMINDER: Communicate talks and proceedings to the CSC
- * JSA-TFC funds \$15k allocated for 2018

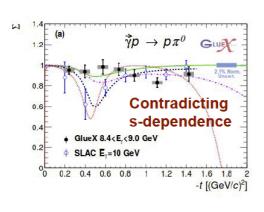


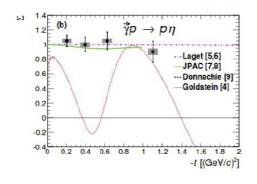
Overview

- Various reactions
- Predictions at JLab energies (photoproduction)
- Two main questions about the production process:
 - Which exchanges dominate at JLab energies?
 - Are these processes factorizable?


$$\gamma N \to \pi^{(0,\pm)} N$$
 $\gamma N \to \pi \Delta$ $\gamma N \to \omega N$ $\gamma N \to \eta N$ $\gamma N \to \rho^0 N$ $\gamma N \to \phi N$

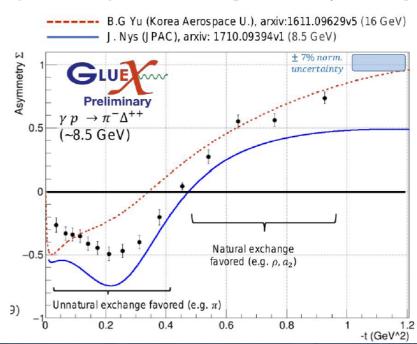
Unitary models for PWA of exotic channels



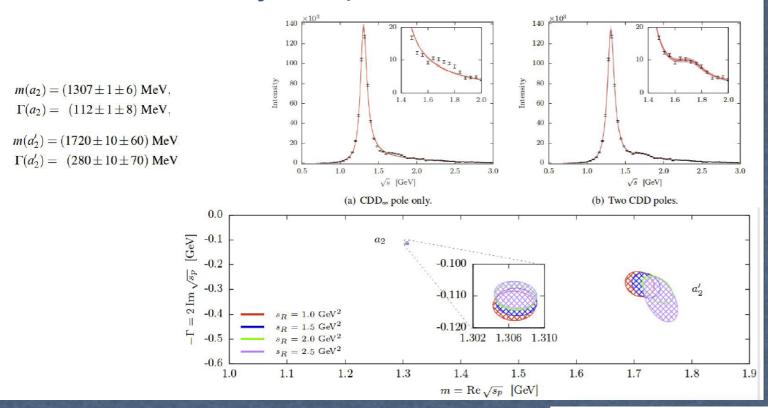

$$\gamma N \to \pi^0 N$$

$$\gamma N \to \eta N$$

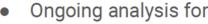
• Beam asymmetry is sensitive to **naturality**: natural exchanges dominate!

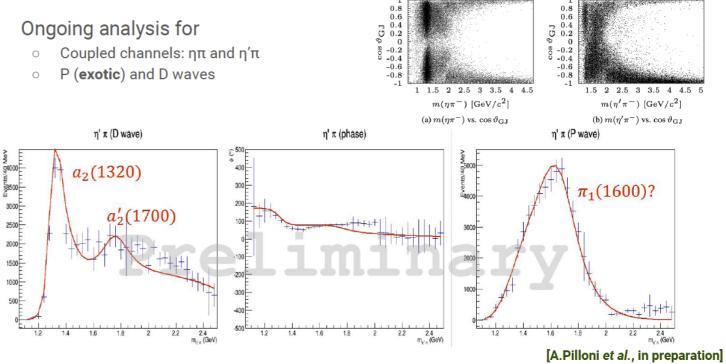

[V. Mathieu et al., PRD92 (2015) 074013]

[DATA: GlueX, PRC95 (2017) 042201]


[J.N. et al., PRD95 (2017) 034014]

$\gamma N o \pi \Delta$ charge exchange


Comparison to preliminary GlueX data @ 8.5 GeV (J.Zarling, DNP 2017)



Partial-wave analysis: $\eta \pi$

Partial-wave analysis: $\eta^{(')}\pi$

[DATA: COMPASS, PLB (2015) 303]

Basic for the event generator development

CLAS provided detailed cross section information for the exclusive channels: $p\pi^0$, $n\pi^+$, $K^+\Lambda$, $K^+\Sigma^0$ at $Q^2<5-6$ GeV² and W<3.0 GeV

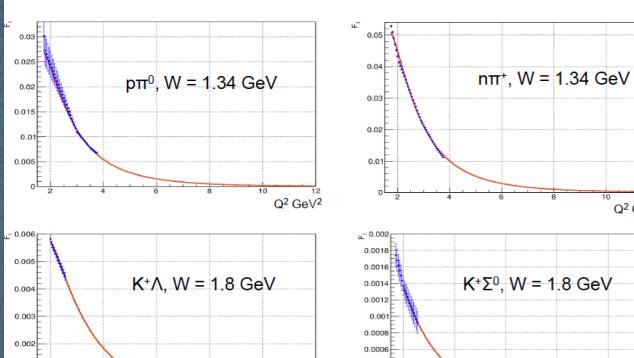
Data can be found in the CLAS physics DB http://clas.sinp.msu.ru/jlab/

The new CLAS12 detector extends the kinematic coverage W < 4.5 GeV and 5 < Q² < 12 GeV². This region remains almost unexplored in exclusive electroproduction. Evaluation of the CLAS12 efficiency and experiment modeling require the realistic event generators at this kinematics.

Developed EGs are based on interpolation ($Q^2 < 5 \text{ GeV}^2$) of the CLAS data on exclusive differential cross sections and extrapolation ($Q^2 > 5 \text{ GeV}^2$) of fully integrated cross sections.

Event generator for exclusive pπ⁰, nπ⁺, K⁺Λ, K⁺Σ⁰ electroproduction at Q² up to 12 GeV²

V. Klimenko, Moscow State University

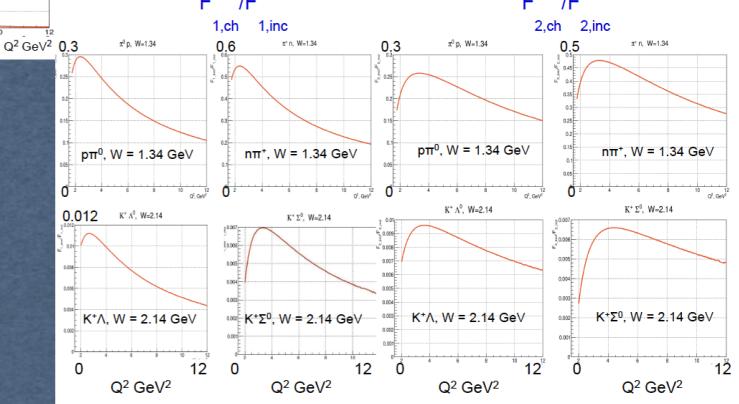

Extrapolation of the fully integrated cross sections

Exclusive channel contributions to inclusive structure functions F₁ and F₂ were evaluated from the integrated cross section:

In spirit of the operator product expansion:

$$F_{1,2}(W,Q^2) = C_0 + \sum_{\tau} C_{\tau} \left(\frac{\Lambda_{QCD}^2}{Q^2}\right)^{\tau/2}$$

Fit of the exclusive contributions $F_{1,ch}$ into inclusive $F_{1,inc}$ structure function and their extrapolation at 5 GeV²< Q² < 12 GeV²

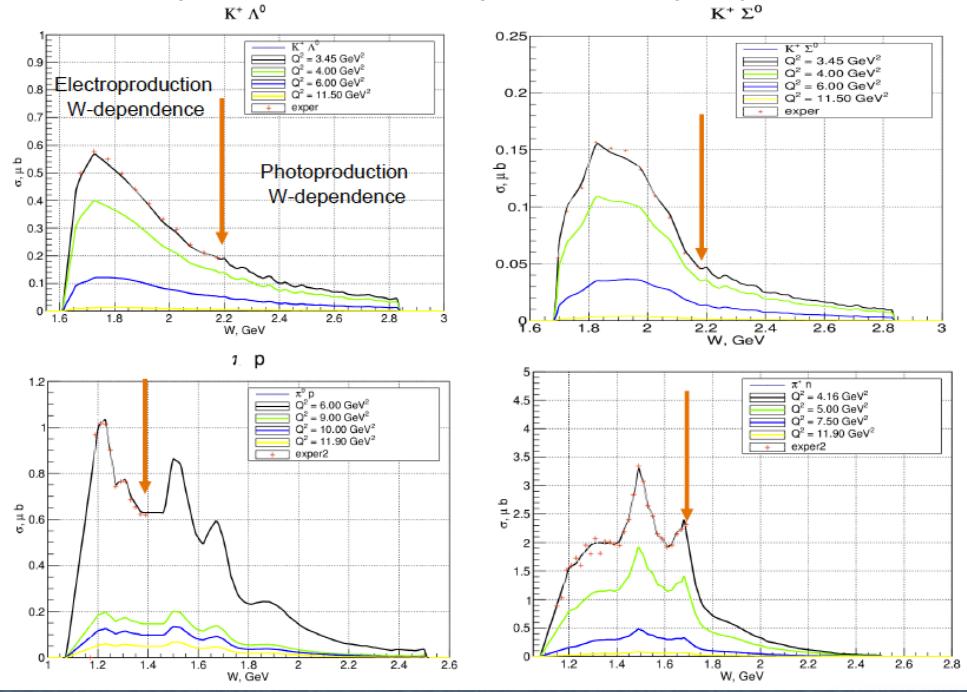


Q² GeV²

0.0004

0.0002

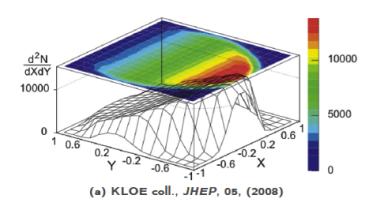
Constraints from inclusive structure functions F /F F



Q2 GeV2

Extrapolation of the exclusive electroproduction cross sections into the W regions where the are not available

are not available
$$\sigma_{ch}(W,Q^2) = \sigma_{ch}(W_{\max},Q^2) \frac{\sigma_{ch,ph}(W,Q^2=0)}{\sigma_{ch,ph}(W_{\max},Q^2=0)}$$


Extrapolation is based on W-dependence of the photoproduction data

Update on the Dalitz Plot Analysis of: $\eta \to \pi^+\pi^-\pi^0$ with the CLAS6 g12 Data Set

Daniel Lersch

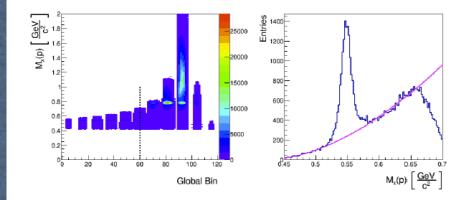
Dalitz Plot Analysis of $\eta \to \pi^+\pi^-\pi^0$

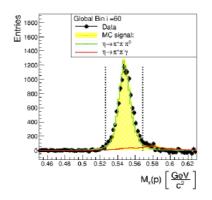
Dimensionless Dalitz Plot Variables:

$$X = \sqrt{3} \frac{T_{\pi^{+}} - T_{\pi^{-}}}{T_{\pi^{+}} + T_{\pi^{-}} + T_{\pi^{0}}}$$
$$Y = 3 \frac{T_{\pi^{0}}}{T_{\pi^{+}} + T_{\pi^{-}} + T_{\pi^{0}}} - 1$$

- Describe three body decay by two variables (here: X and Y)
- Complete information about decay dynamics
- Parameterise decay width Γ: $\frac{d^2\Gamma}{dXdY} \propto (1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + gX^2Y + ...)$
- $c \neq 0$ and $e \neq 0$:
 - i) Imply C-violation

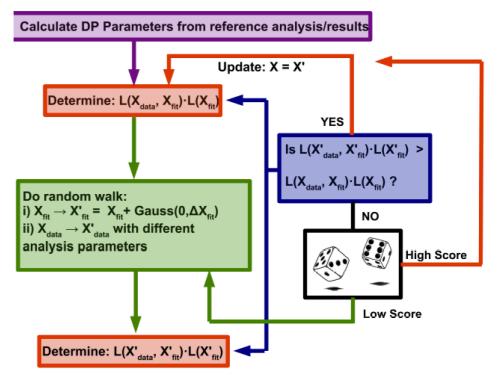
9


- ii) Cause asymmetries within the Dalitz Plot
- Compare Dalitz Plot parameters a,b,d,f from experiment and theory

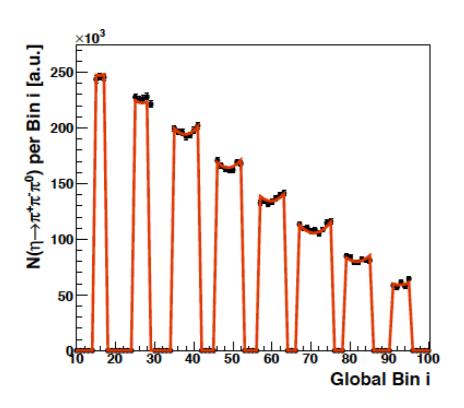

- Decay $\eta \to \pi^+\pi^-\pi^0$ is G-violating \Rightarrow Forbidden to first order
- Decay is driven by isospin breaking part of strong interaction
 ⇒ C is conserved
 - ⇒ C is conserved
- Decay width: $\Gamma \propto Q^{-4}$ with: $Q^2 = \left(\frac{m_s}{m_d}\right)^2 \times \left[1 \left(\frac{m_u}{m_d}\right)^2\right]^{-1}$
- \Rightarrow Determine decay width $\Gamma \Rightarrow$ Access to quark mass ratio

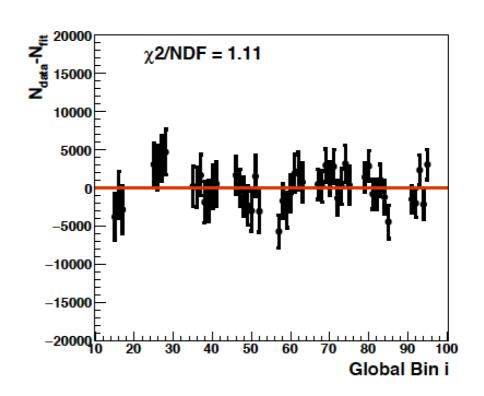
- a) Measure $\Gamma(\eta \to \pi^+\pi^-\pi^0)$, e.g. via $\frac{\Gamma(\eta \to \pi^+\pi^-\pi^0)}{\Gamma(\eta \to \gamma\gamma)}$
- b) Dalitz Plot Analysis

Background Handling and Determination of $N^0(\eta \to \pi^+\pi^-\pi^0)$



- ullet Correct for background for each Global Bin i
- Determination of $N^0(\eta \to \pi^+\pi^-\pi^0)$: $N^0(\eta \to \pi^+\pi^-\pi^0)[i] = N^{fit}(\eta \to \pi^+\pi^-\pi^0)[i]/\epsilon[i]$, with: Efficiency $\epsilon[i]$
- Fit resulting distribution with: Norm $\times (1 + aY + bY + cX + dX^2 + eXY + fY^3)$


- Total systematic error now: $\lesssim 13\%$
- Correlations have been taken care of


Updated Random Walk Analysis

- Approach: Random walk around different cut resutls
- Use reference analysis for comparison ⇔ Consistency within analysis
- No bias from other experiments

Dalitz Plot Parameter for $\eta \to \pi^+\pi^-\pi^0$

Parameter	-a	b	С	d	f
KLOE(08)	1.090(5)(+8 -19)	0.124(6)(10)	0.0	$0.057(6)(^{+7}_{-16})$	0.14(1)(2)
WASA	1.144(18)	0.219(19)(47)	0.0	0.086(18)(15)	0.115(37)
KLOE(16)	1.104(5)(2)	$0.142(3)(^{+5}_{-4})$	0.0	0.073(3)(⁺⁴ ₋₃)	0.154(6)(⁺⁴ ₋₅)
G12	1.102(20)(13)	0.127(18)(5)	0.011(7)(7)	0.106(19)(5)	0.248(45)(10)

Parameter e is 0

П

- Dalitz Plot Asymmetry $A = \frac{N^+ N^-}{N^+ + N^-} = (0.9 \pm 2.9) \cdot 10^{-3}$
- Systematic uncertainties determined via random walk analysis

Determination of double polarization observable E for

$$\gamma d \to K^+ \Sigma^-(p)$$

Nicholas Zachariou

University of Edinburgh

Determination of E

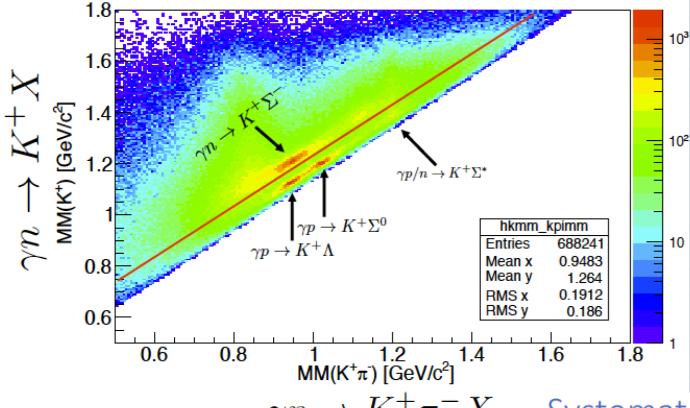
$$\frac{d\sigma}{dt} = \left(\frac{d\sigma}{dt}\right)_{0} \left[1 - P_{lin}\Sigma\cos(2\phi) + P_{x}(-P_{lin}\mathbb{H}\sin(2\phi) + P_{\odot}\mathbb{F}) + P_{y}(\mathbb{T} - P_{lin}\mathbb{P}\cos(2\phi)) + P_{z}(P_{lin}\mathbb{G}\sin(2\phi) - P_{\odot}\mathbb{E})\right],$$

$$\frac{d\sigma}{dt} = \left(\frac{d\sigma}{dt}\right)_0 [1 - P_z P_{\odot} \mathbb{E}].$$

$$\begin{array}{lcl} Y^{\rightrightarrows} & \sim & cF^{\rightrightarrows}[1-|P_z||P_{\odot}|\mathbb{E})]A(\Omega,p,\ldots) \\ Y^{\rightleftarrows} & \sim & cF^{\rightleftarrows}[1+|P_z||P_{\odot}|\mathbb{E})]A(\Omega,p,\ldots) \end{array}$$

$$P_{\odot} = P_{el} \frac{4x - x^2}{4 - 4x + 3x^2}$$
, with $x = \frac{E\gamma}{E_{el}}$

Method 1


$$\mathbb{E} = \frac{1}{|P_z||P_\odot|} \frac{Y^{\rightleftarrows} - Y^{\rightrightarrows}}{Y^{\rightleftarrows} + Y^{\rightrightarrows}}.$$

$$\sigma_{\mathbb{E}} = \frac{2}{|P_z||P_{\odot}|} \sqrt{\frac{Y^{\rightleftarrows}Y^{\rightrightarrows}}{(Y^{\rightleftarrows} + Y^{\rightrightarrows})^3}}.$$

Method 2

$$\log L = b + \sum_{i=1}^{Y^{\rightrightarrows}} \log(1 - |P_z^i||P_{\odot}^i|\mathbb{E}) + \sum_{i=1}^{Y^{\rightleftarrows}} \log(1 + |P_z^i||P_{\odot}^i|\mathbb{E})$$

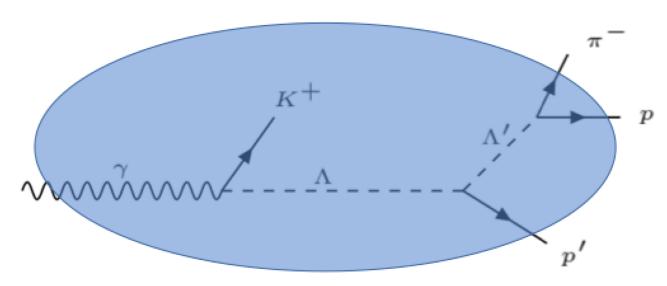
Analysis: Reaction reconstruction

 $\gamma n \to K^+ \pi^- X$ Systematic studies

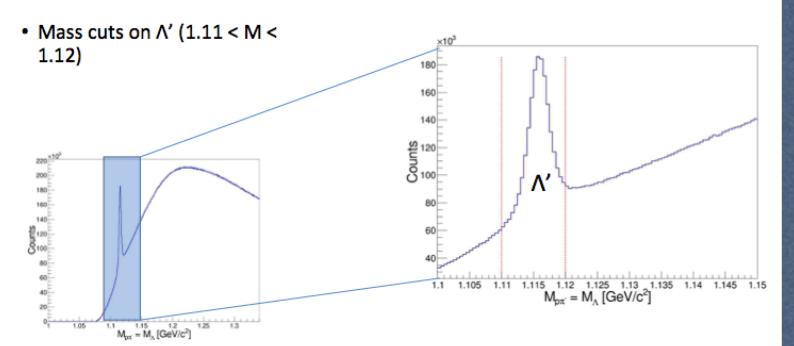
Estimation of systematic uncertainties:

- Variation of nominal cuts
- Comparison between extracted observables
- Difference and spread of difference reflects upper estimate of systematic uncertainty

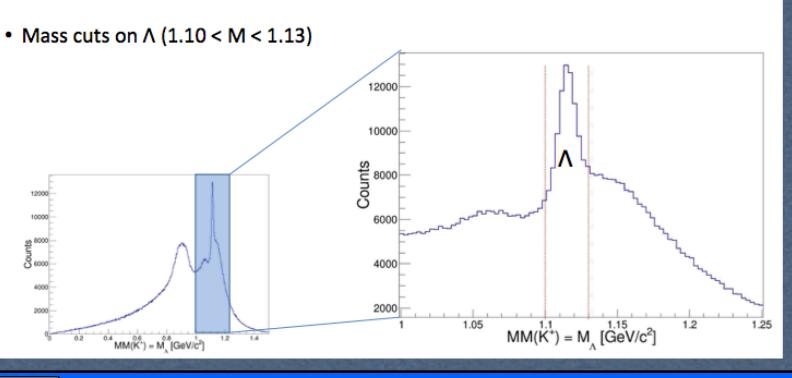
Source	σ^{sys}
Kaon PID	0.013
Pion PID	0.024
Photon Selection	0.06
Particle Misidentification	0.005
Λ/Σ^0 separation	0.055
Kaon decayed events	0.048
Σ^* background subtraction	0.047
z-vertex cut	0.025
Fiducial cuts	0.029
Method of extraction observable	0.005
Total Absolute Systematic	0.11
Target Polarization	6%
Photon Polarization	3.4%
Empty target subtraction	1.0%
Total Scale Systematic	6.9%


Results

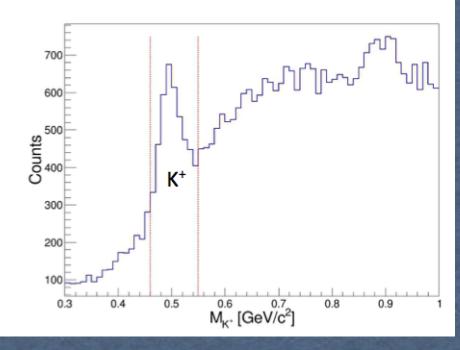
Preliminary Lambda-Nucleon Scattering with g12


Joey Rowley Kenneth Hicks John Price

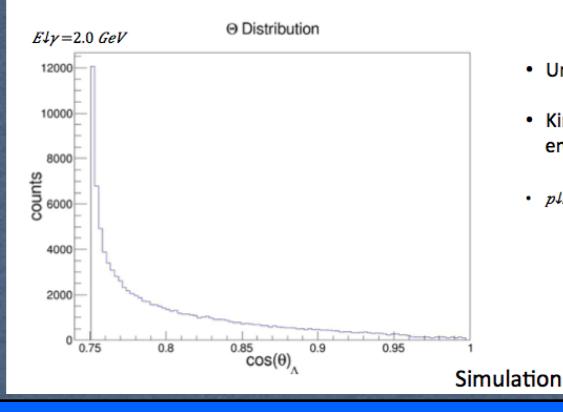
Reaction



- $p,p1',\pi1-$ detected
- Λp1' scatter elastically

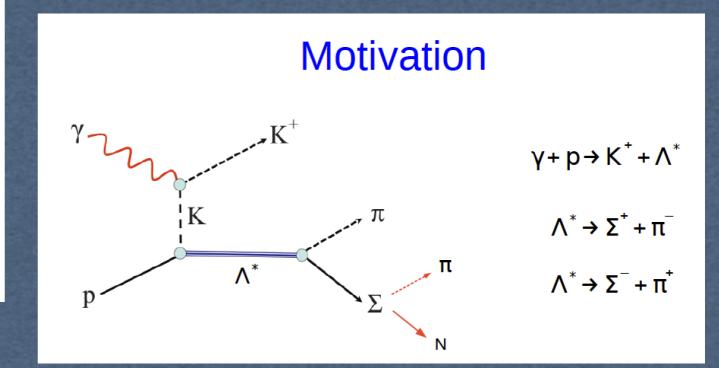

Cuts

Cuts

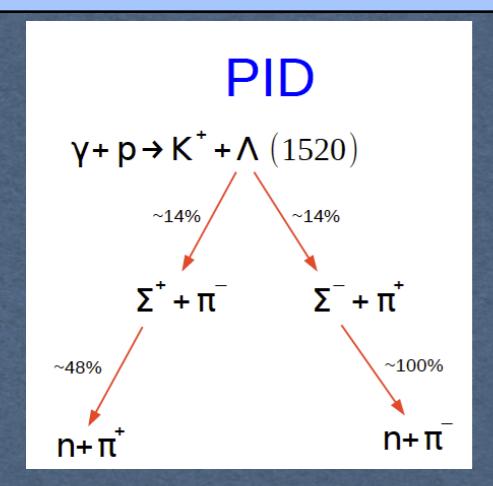


Integrated K+

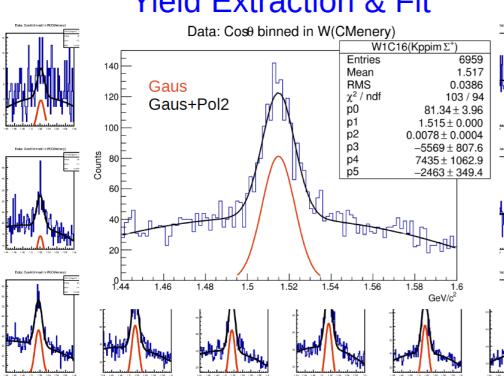
Photon Beam A Beam


Luminosity Correction

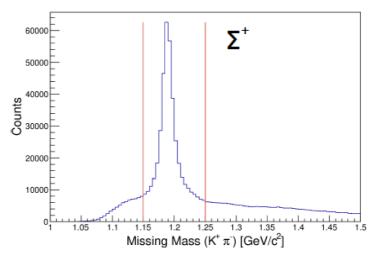
- Uniform t-distribution
- Kinematic limit (for this energy) at 0.75

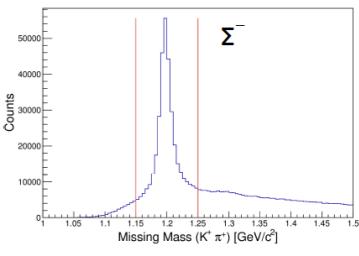

A Study of $\Lambda(1520)$ Photoproduction

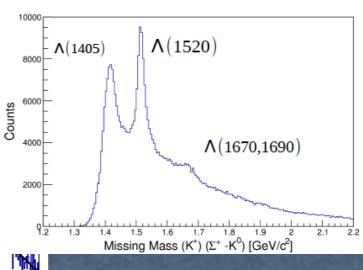
U. Shrestha, T. Chetry and K. Hicks Ohio University

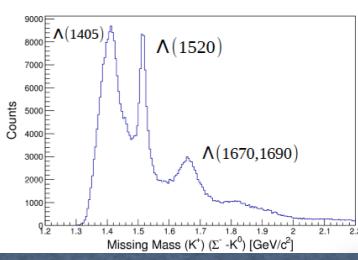


Particle	J^P	Overall status	$N\overline{K}$	$\Lambda\pi$	$\Sigma\pi$	Other channels
$\Lambda(1116)$	1/2+	***		F		$N\pi(\text{weakly})$
$\Lambda(1405)$	1/2-	****	****	О	****	` ,
$\Lambda(1520)$	3/2-	****	****	r	****	$\Lambda\pi\pi,\Lambda\gamma$
$\Lambda(1600)$	1/2+	***	***	b	**	
$\Lambda(1670)$	1/2-	****	****	i	****	$\Lambda\eta$
$\Lambda(1690)$	3/2-	****	****	$^{\mathrm{d}}$	****	$\Lambda\pi\pi$, $\Sigma\pi\pi$

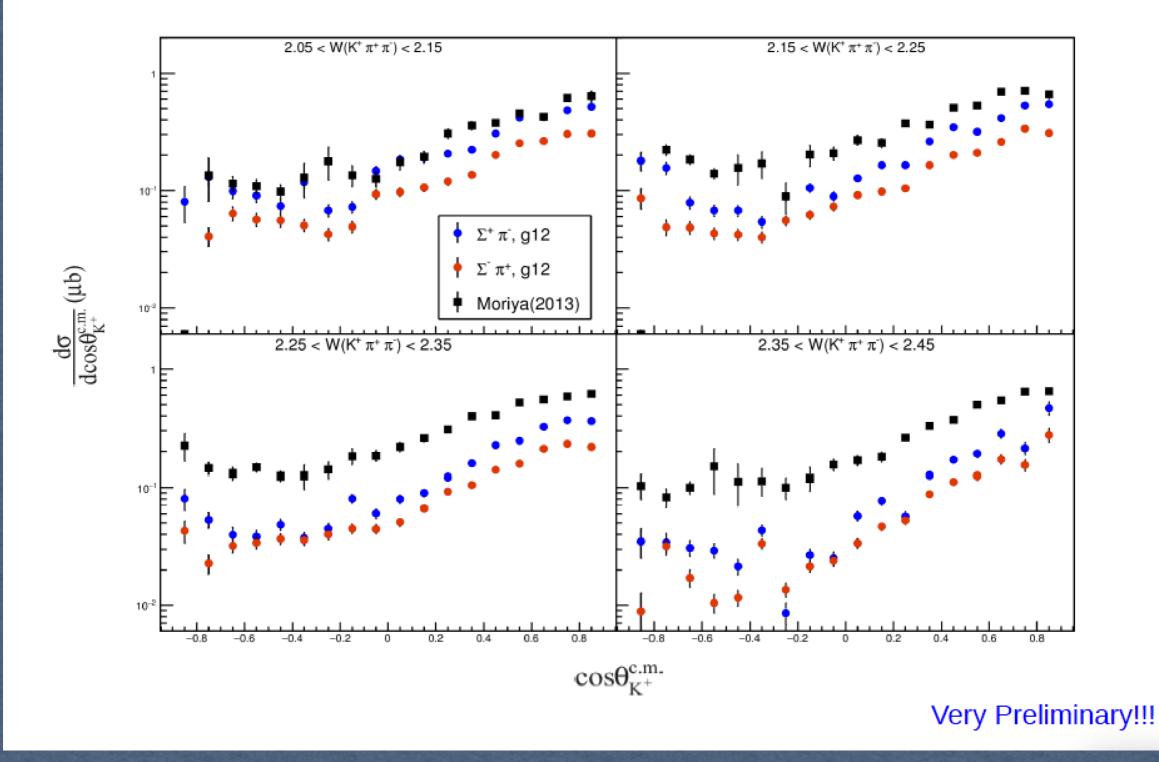

18




Yield Extraction & Fit

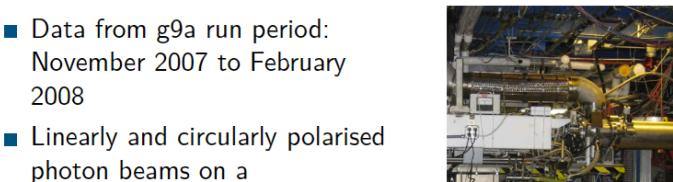


Cuts



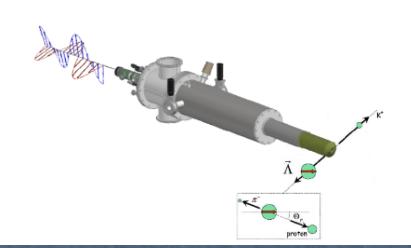
Differential Cross-section (Comparison)

Stuart Fegan George Washington University March 8th, 2018


longitudinally polarised target

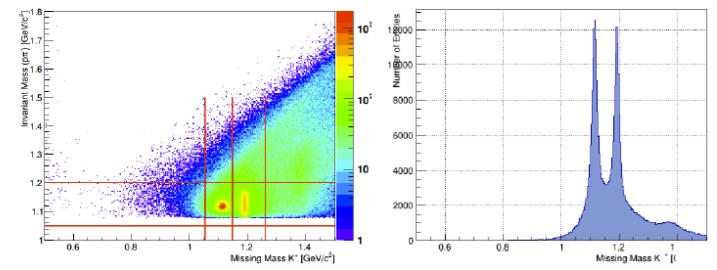
21

Looking for polarisation observables on strangeness photoproduction


$$\gamma p \to K^+ \Lambda \to K^+ p \pi^-$$
 (focus of this talk) $\gamma p \to K^+ \Sigma \to K^+ \Lambda \gamma \to K^+ p \pi^- \gamma$

- 16 observables in all, arising from the scattering amplitudes of the interaction
- "Single": σ , Σ , P, T
- Beam-Target: E, F, G, H
- Beam-Recoil: O_X , O_Z , C_X , C_Z
- Target-Recoil: T_X , T_Z , L_X , L_Z

- Linpol data from g9a: 9 coherent peak settings spanning energy range 0.7 to 2.3 GeV
- In this case, the reduced cross section can be expressed as:

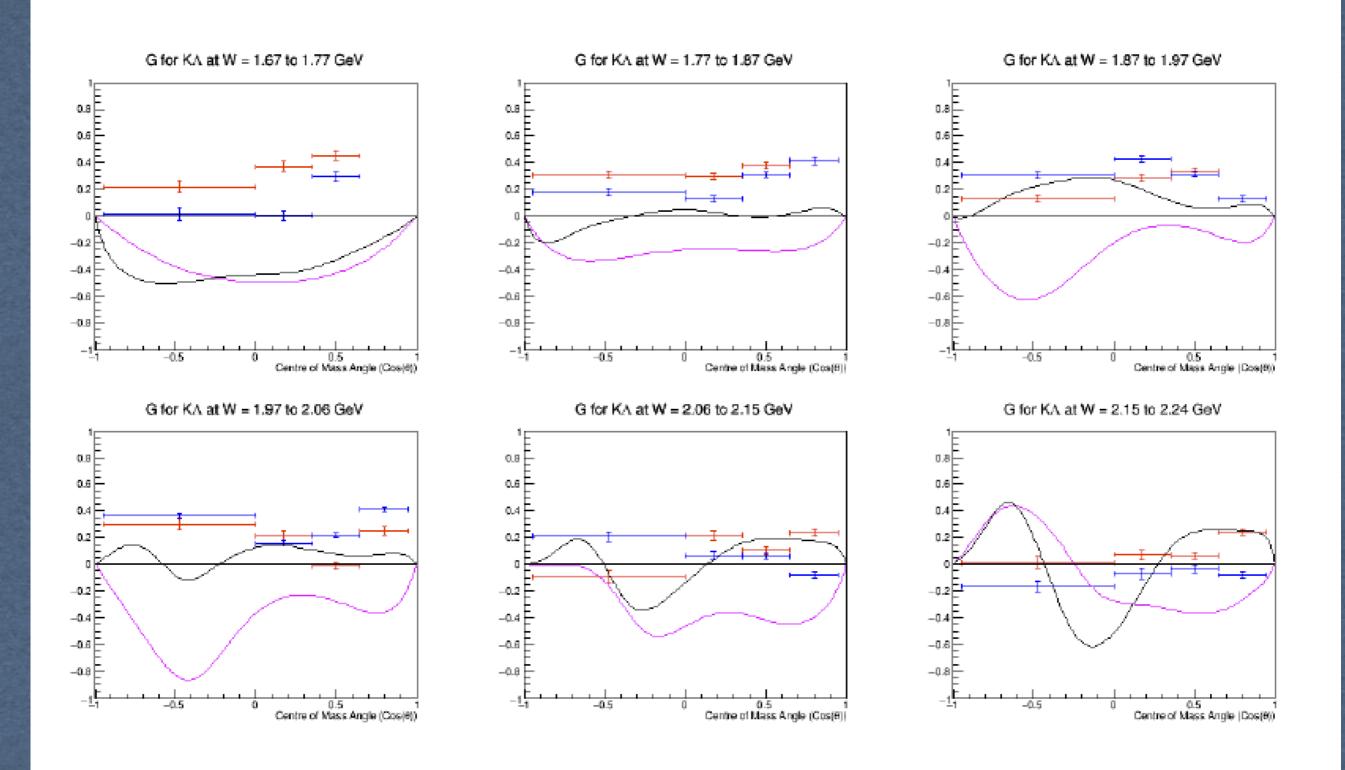

$$\frac{d\sigma}{d\Omega} = \sigma_0 \{1 - P_{lin} \Sigma cos(2\phi) + P_z(P_{lin} Gsin(2\phi))\}$$

Looking for two channels:

$$\gamma p \to K^+ \Lambda \to K^+ p \pi^-$$

 $\gamma p \to K^+ \Sigma \to K^+ \Lambda \gamma \to K^+ p \pi^- \gamma$

- Non exclusive selection, reconstructing pion from detected proton and kaon
- Lambda (and Sigma) hyperons identified via kaon missing mass and proton pion invariant mass



Recall that on a linpol beam and a longitudinally polarised target:

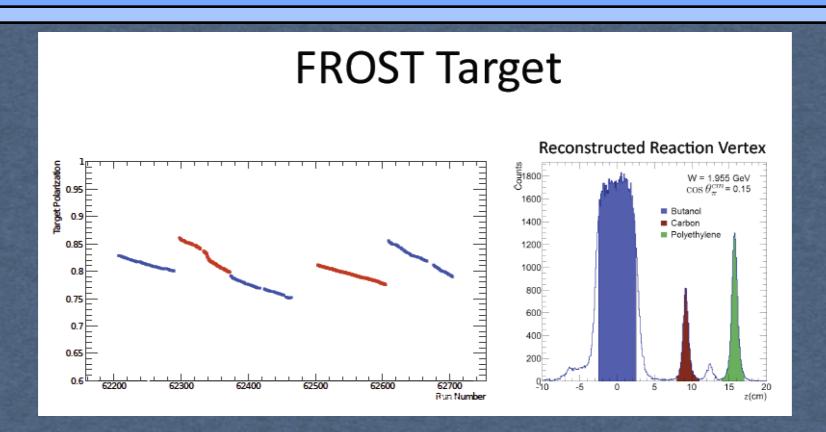
$$\frac{d\sigma}{d\Omega} = \sigma_0 \{ 1 - P_{lin} \Sigma cos(2\phi) + P_z(P_{lin} Gsin(2\phi)) \}$$

■ A $cos(2\phi) + sin(2\phi)$ fit to a PARA/PERP asymmetry can be used to extract Σ and G for each state of target polarisation

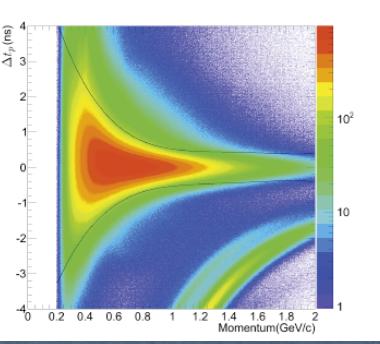
22

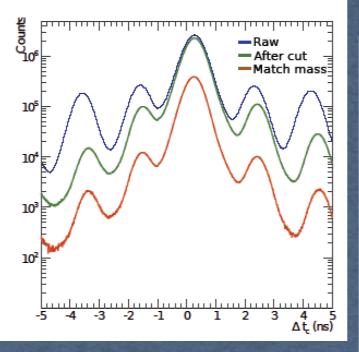
Polarization Observables T and F in the $\gamma p \to \pi^0 p$ Reaction

Hao Jiang

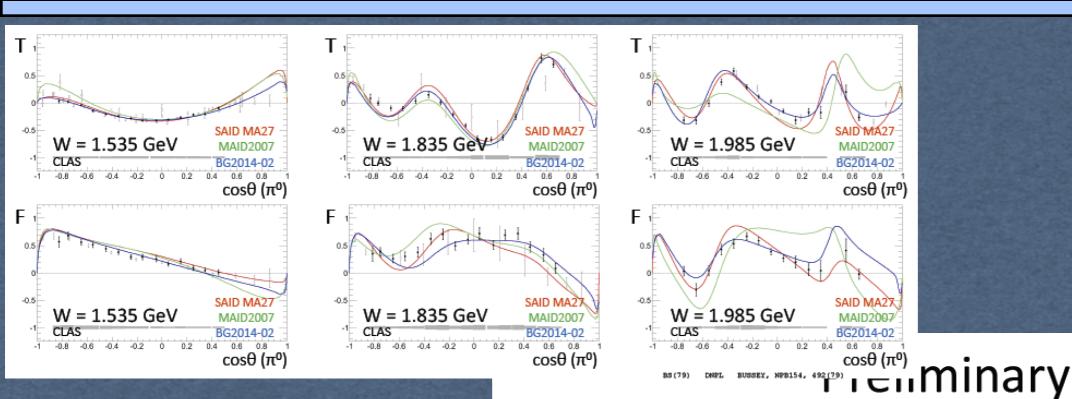

The g9b experiment

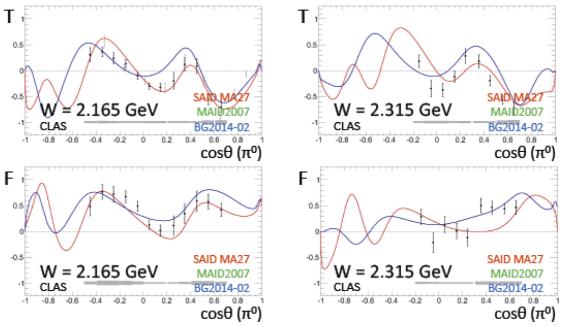
The g9b Experimental data were taken between March 2010 and August 2010 in sets of ten run groups. Only the first five run groups were used In this analysis.


Group	Run range	E_e (GeV)	Events	f (Hz)	Target pol.	Field	
1	62207 - 62289	3.082	723.1 M	240	.8380 (+)	(+)	
2	62298 - 62372	3.082	894.9 M	240	.8680 (-)	(+)	
3	62374 - 62464	3.082	1129.7 M	240 or 30	.7975 (+)	(+)	
4	62504 - 62604	3.082	1307.1 M	240	.8176 (-)	(-)	
5	62609 - 62704	3.082	972.6 M	240 or 30	.8579 (+)	(-)	
	runs <u>not</u> used in this analysis						
6	63508 - 63525	2.266	138.2 M	943	.7758 (+)	(+)	
7	63529 - 63542	2.266	166.8 M	240 or 943	.5657 (-)	(-)	
8	63543 - 63564	2.266	321.7 M	943	.7461 (+)	(+)	
9	63566 - 63581	2.266	249.6 M	943	.7064 (-)	(-)	
10	63582 - 63598	2.266	242.3 M	240	.4846 (+)	(+)	


$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} (1 + P_t P_{\gamma} F \cos \varphi + P_t T \sin \varphi)$$

		Photon beam	
	unpolarized	circularly polarized	linearly polarized
Target			
unpolarized	$d\sigma/d\Omega$		Σ
longitudinally	_	E	G
transversely	T	F	H, P


Proton Identification and Photon Selection


Systematic Uncertainties

Item	$\sigma(T)$	$\sigma(F)$
Beam-Charge asymmetry	_	0.2%
Degree of beam polarization	_	3%
Degree of target polarization	4%	4%
Target-polarization orientation φ_0	< 0.001	< 0.001
Accidental background	2%	2%
Proton misidentification	2%	2%
Background subtraction	± 0.012	± 0.015
Run-group acceptance changes	± 0.015	_
Total	$4.9\% \pm 0.019$	$5.7\% \pm 0.015$

Observables T and F in $\gamma p \to \pi^0 p$

Observables were extracted for 37 bins in W from 1.43 GeV to 2.54 GeV.

Released

Gamma n --> KY from g14

PI:R.Schumacher

RC:W.Briscoe (Chair), B.McKinnon, A.DAngelo

2pi Electroproduction from e 16

27

PI:A.Trivedi

RC: Philip Cole (Chair), Daria Sokhan ,Victor Mokeev

Status: started on Oct, I round in I month, response on Feb I, APPROVED

New since last meeting

Vector-Meson Photoproduction decaying to Multitrack-Final States using CLAS-g12 Data

PI: Z.Akbar

RC: John Price (Chair), Susan Schadmand, Eugene Pasyuk

Status: started on Jan 1,1 round almost done

Determination of E double polarization observable for the reaction gn—>K+Sigma- from g14

PI: N.Zachariou

RC: Annalisa DAngelo (Chair), Michael Dugger, Maurik Holtrop

Status: started on Nov 9, I round in ~2 months, quick response from the PI, II round close to be distributed

Search for Csi* Photoproduction from Threshold to 3.3 GeV

PI: K.Hicks

RC: David Ireland (Chair), Carlos Salgado, Yordanka Ilieva

Status: started on Oct 15, I round in I month, waiting for PI response

In progress

Photoproduction of the 3π mesons in the reaction $\gamma p \to \pi + \pi + \pi - n$ with CLAS detector at 6 GeV/c

PI:P.Eugenio

RC: D.Glazier (chair), A.Filippi, M.Dugger

Status: 2nd round, response received, almost done

Dalitz Plot Analysis of eta' to eta pi pi – from CLAS g12 Data Set

PI:S.Ghosh

RC:V.Crede (chair), A.Rizzo, E.Pasyuk

Status: Started in July'17; first round of comments on Sept 17: no response from the PI since then. Is the

analysis dead ?????

Exclusive pi- Electroproduction off the Neutron in Deuterium in the Resonance Region

PI:Y.Tian

RC: Nikolay Markov (Chair), Mikhail Bashkanov, Eugene Isupov

Status: Ist round in August, waiting for response from PI ???

Polarization Observables T and F in the $\vec{p}(\gamma, \pi 0)$ Peaction

PI:H.Jiang

RC: Barry Ritchie (Chair), Volker Crede, Bryan McKinnon

Status: no info received from March; presentation at the HSWG ????

Radiative decay of eta' to pi+ pi- gamma from gll data set

PI:G. Mbianda Njencheu

RC: R. Schumacher, S. Schadmand, A. Celentano

Status: no response in many months ??????

PI: R.Tucker (ArizonaU) et al.

RC: K.Livingston, J.Price, Xiangdong Wei

Sterted July 2016

Status: on-hold, still on-hold but authors are alive, paused for a while, still on-hold, ...

Measurement of Sigma in pi- photoproduction on the neutron from the g13b dataseta

PI: D.Sokhan (GlasgowU) et al.

RC: Eugene Pasyuk (Chair), Nicholas Zachariou, Paul Mattione

Started Jul 2016

Status: waiting for comment from author, ????

Pentaquark search in g10 by using the MMSA method

PI: Kenneth Hicks et al.

RC: Stepan Stepanyan (Chair), Lei Guo, Bryan McKinnon

Started Aug 2015

Status: NO progress

KLambda and KSigma from FROST

PI: N.Walforf et al.

RC: S.Strauch, M.Holtrop, P.Mattione,

Started May 2015

I round of comments in May 2015, waiting for a revised

Status: stalled for a long while, now it seems to be

resurrected, unfortunately NO, no news ...

Exclusive Photo-Production Measurement of K+Sigma*- off Quasi-Free Neutrons in Deuterium

PI: H.Lu (SCU) et al.

RC: N.Zachariou, M.Dugger, D.MacGregor

Started in 2012 (!) Status: ?????????

CLAS Working Groups Joint Session

		vvoi izii. S oi ouipo Joinio ocosion	
14:30 - 16:00	CLAS WG	Ss Joint Session: CLAS12 physics and analyses	▼
	Remote con	nection: https://bluejeans.com/825591695	
	Conveners:	 Dr. Marco Battaglieri (INFN-GE), Mr. Marco Contalbrigo (INFN Ferrara), Dr. Michael Wood (Canisius College), Latifa Elouadrhiri (Jefferson Lab) 	s
	Location:	CEBAF Center (F113)	
	14:30 Fi	rst look at CLAS12 data from online and offline data processing 30'	
	S	peaker: Francois-Xavier Girod (JLab)	
	15:00 Aı	nalysis of elastic scattering at 2.2 GeV 20'	⊽
	Sp	peaker: Nick Markov (University of Connecticut)	
	15:20 CI	LAS12 kinematic corrections 20'	
	S	peakers: Joshua Artem Tan, Stefan Diehl	
	15:40 D i	iscussion 20'	
16:00 - 16:30	Coffee Br	reak	
16:30 - 18:10	CLAS WG	Ss Joint Session: CLAS12 physics and analyses	
	Remote con	nection: https://bluejeans.com/825591695	3
	Conveners:	: Dr. Marco Battaglieri (INFN-GE), Mr. Marco Contalbrigo (INFN Ferrara), Dr. Michael Wood (Canisius College), Latifa Elouadrhiri (Jefferson Lab)	5
	16:30 No	ormalized electron yields 20'	
	Sp	peaker: Andrey Kim (UCONN)	
	16:50 Fi	irst look at DIS and SIDIS 20'	
	Sp	peaker: Dr. Harut Avagyan (Jefferson Lab)	
	17:10 Aı	nalysis of low-q, quasi-real processes 20'	
	Sp	peaker: Dr. Derek Glazier (University of Glasgow)	
	17:30 Aı	nalysis of ep->eppi0 from CLAS12 2.2 GeV data and comparison with CLAS e1e 20'	
	Sp	peaker: Ken Hicks (Ohio University)	
	17:50 D i	iscussion 20'	