First look at DIS and SIDIS

Harut Avakian

"CLAS collaboration meeting, 8 March 2018"

- DIS and SIDIS
- DIS as monitoring tool
- Compare DIS-MC with data
- SIDIS as monitoring tool
- Pion multiplicities
- Conclusions

DIS and SIDIS at high Q²

0h DIS

 $N(P_N,S)$

Testing stage:

pQCD predictions, observables in the kinematics where theory predictions are easier to get (higher energies, 1D picture, leading twist, current fragmentation, IMF)

$$\frac{d\sigma}{dx\,dQ^2\,d\psi} = \frac{2\alpha^2}{xQ^4}\frac{y^2}{2\left(1-\varepsilon\right)}\left\{2(1-\varepsilon)xF_1(x,Q^2) + \varepsilon(1+\gamma^2)F_2(x,Q^2)\right\}$$

1h SIDIS/DVMF

Understanding stage:

non-perturbative QCD, strong interactions, fragmentation functions, quark-gluon correlations, orbital motion)

$$\frac{d\sigma}{dx\,dQ^2\,d\psi\,dz\,d\phi_h\,d|\mathbf{P}_{h\perp}|^2} = \frac{\alpha^2}{xQ^4}\,\frac{y^2}{2\,(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\left\{F_{UU,T}+\varepsilon\,F_{UU,L}\right\}.$$

Generating DIS and SIDIS

Dedicated SIDIS generator

		2	1	1	1.0	1.0 11	10.600	2212	1 0.1108596	6E-01			
1	-1.	1	11	0	0	-0.7583	-0.7440	3.9571	4.0972	0.0005	-0.0174	0.0305	1.3425
2	1.	1	211	0	0	0.8698	-0.6332	3.2529	3.4291	0.1396	-0.0174	0.0305	1.3425
		-											
		2	1	1	1.0	1.0 11	10.600	2212	1 0.4220764	4E-02			
1	-1.	2	1 11	1 0	1.0 0	1.0 11 -1.1716	10.600 0.9665	3.2259	1 0.4220764 3.5656	4E-02 0.0005	0.0016	-0.0436	-1.5889

Dedicated DIS generator (Bosted)

		•		•	,								
	1	1	1	1.0	1.0	11	10.600	2212	1 0.6224668	3E+00			
1 -1.	1	11	0	0	-0.610	9	1.3411	8.1241	8.2567	0.0005	-0.1465	0.0724	-0.0298

COATJAVA 4a.8.4

"bank": "MC::Event", "group": 41, "info": "Lund beader ban	k for the	nemerated event	n
"items": [K IUI LIIC	generated event	,
{"name":"npart",	"id":1,	"type":"int16",	"info":"number of particles in the event"},
{"name":"atarget",	"id":2,	"type":"int16",	"info":"Mass number of the target"},
{"name":"ztarget",	"id":3,	"type":"int16",	"info":"Atomic number oif the target"},
{"name":"ptarget",	"id":4,	"type":"float",	"info":"Target polarization"},
{"name":"pbeam",	"id":5,	"type":"float",	"info":"Beam polarization"},
{"name":"btype",	"id":6,	"type":"int16",	"info":"Beam type, electron=11, photon=22"},
{"name":"ebeam",	"id":7,	"type":"float",	"info":"Beam energy (GeV)"},
{"name":"targetid",	"id":8,	"type":"int16",	"info":"Interacted nucleaon ID (proton=2212, neutron=2112"},
{"name":"processid",	"id":9,	"type":"int16",	"info":"Process ID"},
{"name":"weight",	"id":10,	"type":"float",	"info":"Event weight"}
]			

G	E	MC			
			LUND Header		LUND Particles
		column	quantity	column	quantity
		1	Number of particles	1	index
		2	Number of target nucleons	2	lifetime
		3	Number of target protons	3	type (1 is active)
		4	Target Polarization	4	particle ID
		5	Beam Polarization	5	parent index
		6	beam PID (electron=11,	6	index of the first daughter
			photon=22)	7	momentum x [GeV]
		7	beam energy	8	momentum y [GeV]
		8	target nucleon ID	9	momentum z [GeV]
		9	process ID	10	E
Ζ"},		10	event weight/cross section	11	mass
				12	vertex x [cm]
				13	vertex y [cm]

14

vertex z [cm]

Mapping θ vs E': json file for online monitoring

$$\frac{d\sigma}{d\Omega dE'} = \frac{d\sigma}{d\Omega}^{Mott} \left[\frac{F_2}{\nu} + \frac{F_1}{M} \tan^2(\theta/2) \right]$$
(4.50)

Using the Jakobian connecting (dx, dQ^2) with $(d\cos\theta, dE')$ with $J = 2xEE'/\nu$, we get

$$\frac{d\sigma}{dxdQ^2d\psi} = \frac{d\sigma}{d\Omega}^{Mott} \frac{\nu}{2xEE'} \left[\frac{F_2}{\nu} + \frac{F_1}{M} \tan^2(\theta/2) \right]$$
(4.51)

"model": "Nobuo_F2,FL"

"reference": "N. Sato et al"

"Beam Energy": 10.600

"lepton-polarization": "0"

"nucleon-polarization": "0"

"variables":["Generated_Counts","Reconstructed_Counts","Err.Counts","acc"

"axis":[

{"bins": 50,"min": 0.8, "max": 10.6, "scale":"lin","description":"E _e ,"}	~0.2 GeV bins
{"bins": 50,"min": 5.0,"max": 45.0,"scale":"lin","description":" $\theta_{e'}$ "}	~1-degree bins
{"bins": 120,"min": 0.0,"max": 360.0,"scale":"lin","description":",	~3-degree bins

}

```
0.13700E+03 0.67000E+02 0.81854E+01
32 1 1
                                                 0.4891
32 1 2
           0.14000E+03 0.46000E+02 0.67823E+01
                                                 0.3286
32 1 21
           0.12400E+03 0.58000E+02 0.76158E+01
                                                 0.467
32 1 22
           0.10600E+03 0.23000E+02 0.47958E+01
                                                 0.217
32
   1 41
           0.98000E+02 0.64000E+02 0.80000E+01
                                                 0.653
32 1 42
           0.11000E+03 0.45000E+02 0.67082E+01
                                                 0.409
32 1 61
           0.11200E+03 0.67000E+02 0.81854E+01
                                                 0.5982
32 1 62
           0.12300E+03 0.23000E+02 0.47958E+01
                                                 0.187
32 1 81
           0.14300E+03 0.69000E+02 0.83066E+01
                                                 0.4825
32 1 82
           0.12800E+03 0.37000E+02 0.60828E+01
                                                 0.2891
   1 101
            0.10600E+03 0.51000E+02 0.71414E+01
                                                  0.4811
32
   1 102
            0.11900E+03 0.26000E+02 0.50990E+01
                                                  0.2185
           0.47800E+03 0.50000E+01 0.22361E+01
                                                 0.0105
33 1 0
33 1 1
           0.54700E+03 0.24100E+03 0.15524E+02
                                                 0.4406
33 1 2
           0.48300E+03 0.12400E+03 0.11136E+02
                                                 0.2567
```

5 7 0 1	Monitor: Experimental σ =Exp_counts/acceptance/Gen_counts
2	
0	

Electron distributions: inbending vs outbending

Comparing old and new runs vs MC

MC with "ideal" geometry can be a primary check for software validation

Electron distributions:ratio /DIS-MC

- Enhancement at large angles of high energy particles
- More electrons at small angles for outbending (except sec-2)!!

Missing electrons: outbending

8

Photons on clas12: SIDIS LUND-MC vs data

What are all those photons?

Photons from MM?

Use DIS-MC (a single e' in the final state) to test the MM vs NoMM clas12 configurations

The number of reconstructed charge 0 events increases significantly with MM in.

Reconstructed electrons

Energy loss of electrons vs their angle in the CLAS12 outbending-gemc+coatjava 5.0.11

Pi+ efficiency in inbending: new vs old release

Comparing normalize by number of identified electrons from SIDIS-MC (dashed) Run 3480 (solid red lines-v.5a.1.0) and Run 2997 (solid black v.5a.0.11?)

SIDIS-MC: new version improves small angle reconstruction for negatives, but the number of identified pions is $\sim x2$ less than in v 5a.0.11

Pi- efficiency in inbending: new vs old release

Comparing normalize by number of identified electrons from SIDIS-MC (dashed) Run 3480 (solid red lines-v.5a.1.0) and Run 2997 (solid black v.5a.0.11?)

SIDIS-MC: new version improves small angle reconstruction, but the number of identified pi- is \sim x2 less than in v 5a.0.11

Pi0 efficiency in inbending: new vs old release

- Studies of SIDIS with pi-0 require reconstruction of electrons and photons (relatively stable in recent releases)
- Will require development of fiducial cuts for e- and photons for extraction of multiplicities

Candidate for first SIDIS publication: $e' \pi_0 X$

JLab Oct 5

1) e'X -cross section: electron acceptance is relevant for all other measurements cons: we need the acceptance and the luminosity as well as contamination from pions under control.

2) e' π^0 X/ e'X ratio (ratio of semi-inclusive pi0 to inclusive electron)

For the ratio we just need the gamma acceptance, which could be defined using the KPP

Need: good control for neutral acceptance

Conclusions

- Realistic MC is crucial for understanding of detector performance and physics analysis
- Inclusive electron cross sections is well known and can provide possibility to look (monitor) for electron efficiency in the accessible kinematics
- Semi-inclusive cross sections are relatively well known and multiplicities (number of pions per DIS electron) can be used for monitoring
- Validation of software is crucial
 - include the set of constants used in the reconstruction
 - include in the release of the chain reconstruction (with plots) of
 a) single tracks
 - b) simple lund file

.

- c) a data file with some good events (exclusive multiparticle,...)
- d) keep also the gemc and hipo files (1-2K events)
- Use DIS sample to compare old and new releases to evaluate changes

Support slides...

Photons from MM?

Use DIS-MC (a single e' in the final state) to test the MM vs NoMM clas12 configurations

The number of reconstructed charge 0 events increases significantly with MM in.

MC reconstruction of DIS

Worse resolutions for polar and azimuthal angles in new releases

Resolutions from old and new reconstruction

Electron distributions:ratio run2667/DIS-MC

DIS-MC (with RC)

Significantly less electrons at small angles!!

Avakian, JLab March 8

Electron distributions:ratio run3210/DIS-MC

DIS-MC (with RC)

More electrons at small angles for outbending!!

Avakian, JLab March 8

MM effects in MC:noMM vs MM

MM effects in MC 7<E<8GeV,5<0<15

Significant energy loss >10 MeV

- Much worse angular resolutions
- Wrong angles (radiation?)

https://userweb.jlab.org/~avakian/tmp/mm-effect.tar.gz

5<E<6GeV,12<θ<15

Significant energy loss from MM ~4 MeV

5<E<6GeV,15<θ<17

Significant energy loss from MM ~2-3 MeV

5<E<6GeV,17<θ<19

Significant energy loss from MM ~2-3 MeV

4<E<5GeV,21<θ<23

Significant energy loss from MM ~6 MeV

4<E<5GeV,29<θ<31

Significant energy loss from MM >15 MeV

Electron energies

Significantly more electrons at low energies

Extraction of DIS x-section and acceptance

{											
		"model	": "Nobuo_F2,FL"								
		"refer	ence": "N. Sato et	t al"							
		"multi	plicity":"Counts"								
		"Beam	Energy": 10.600								
		"lepto	n-polarization": '	"0"							
		"nucle	on-polarization":	"0"							
		"parti	cle": "pi+"								
		"varia	bles":["N","Counts	s","Err.Counts'	","acc","RadCo	r","xav","yav",	"q2av"				
		"axis"	:[
			{"name":"a","bi	ins": 99,"min":	: 0.05, "max":	0.95, "scale":	"lin","descr	iption":"x	_bj"}	Radiativ	e corrections
			{"name":"b","bi	ins": 99,"min":	: 0.95, "max":	13.1, "scale":	"lin","descr	iption":"Q	^2"}	may he	significant
],										synncan
		"param	eters":[
]										
}							K				
	0	0	0.81900E+03	0.33103E+07	0.11567E+06	0.18094E+00	2.5475	0.0566	0.9099	1.0248	
	0	1	0.17300E+03	0.79404E+06	0.60369E+05	0.83559E-01	3.1196	0.0583	0.9392	1.0883	
	1	0	0.14940E+04	0.45989E+07	0.11898E+06	0.43024E+00	1.7770	0.0631	0.8246	1.0334	
	1	1	0.24200E+04	0.78833E+07	0.16025E+06	0.38679E+00	2.2943	0.0637	0.8924	1.1298	
	1	2	0.74100E+03	0.25279E+07	0.92865E+05	0.18311E+00	2.7515	0.0664	0.9300	1.2276	
	2	0	0.10610E+04	0.29902E+07	0.91799E+05	0.34089E+00	1.4475	0.0725	0.7176	1.0332	
	2	1	0.21560E+04	0.54615E+07	0.11762E+06	0.44019E+00	1.5917	0.0723	0.7891	1.1339	
	2	2	0.26110E+04	0.66272E+07	0.12970E+06	0.51925E+00	2.0516	0.0722	0.8767	1.2579	
	2	3	0.15350E+04	0.41679E+07	0.10638E+06	0.29366E+00	2.5589	0.0744	0.9235	1.3654	
	2	4	0.48000E+02	0.14361E+06	0.20728E+05	0.41388E-01	3.0801	0.0768	0.9478	1.4485	
	3	0	0.82900E+03	0.23725E+07	0.82399E+05	0.30402E+00	1.3423	0.0816	0.6379	1.0341	
	3	1	0.15660E+04	0.38319E+07	0.96832E+05	0.35124E+00	1.4013	0.0816	0.6993	1.1334	
	3	2	0.20270E+04	0.42636E+07	0.94699E+05	0.44952E+00	1.5274	0.0814	0.7773	1.2578	
	3	3	0.24600E+04	0.49319E+07	0.99437E+05	0.54600E+00	1.8039	0.0814	0.8531	1.3798	
	3	4	0.22240E+04	0.48486E+07	0.10281E+06	0.43699E+00	2.3514	0.0822	0.9135	1.4934	
	-	_									

- Acceptance can be used to correct distributions for monitoring
- DIS output can be generated using input F₁,F₂ or F₂,F_L or directly x-sections

Generating DIS and SIDIS

Full event generator (PEPSI)

		N _{tracks}	А	Ν	l-p	ol N-p	ol I-ID E _b	_{eam T} T-I	ID proces	ss-ID x-se	ction		
		13	1	1	0.0	1.0	11 10.600	2212	1 0.805275	9E+05			
1	-1.	21	11	0	0	0.0000	0.0000	10.6000	10.6000	0.0005	0.0000	0.0000	0.0000
2	1.	21	2212	0	0	0.0000	0.0000	0.0000	0.9383	0.9383	0.0000	0.0000	0.0000
3	0.	21	22	1	0	-0.9974	-0.7292	3.5178	3.4109	-1.5059	0.0000	0.0000	0.0000
4	-1.	1	11	1	0	0.9974	0.7292	7.0822	7.1891	0.0005	0.0000	0.0000	0.0000
5	1.	13	2	0	6	-1.0092	-0.9040	3.2382	3.5102	0.0056	0.0000	0.0000	0.0000
6	0.	13	2103	2	0	0.0117	0.1747	0.2796	0.8389	0.7713	0.0000	0.0000	0.0000
7	1.	12	2	5	9	-1.0092	-0.9040	3.2382	3.5102	0.0056	0.0000	0.0000	0.0000
8	0.	11	2103	6	9	0.0117	0.1747	0.2796	0.8389	0.7713	0.0000	0.0000	0.0000
9	0.	11	92	7	10	-0.9974	-0.7292	3.5178	4.3492	2.2391	0.0000	0.0000	0.0000
10	۲.	11	2224	9	12	-0.7729	-1.0806	3.4710	3.9069	1.2047	0.0000	0.0000	0.0000
11	-1.	1	-211	9	0	-0.2245	0.3514	0.0468	0.4422	0.1396	0.0000	0.0000	0.0000
LZ	1.	1	2212	10	0	-0.5843	-0.9049	2.3668	2.7645	0.9383	0.0000	0.0000	0.0000
13	1.	1	211	10	0	-0.1886	-0.1757	1.1042	1.1425	0.1396	0.0000	0.0000	0.0000

$$\frac{d\sigma}{dx\,dQ^2\,d\psi\,dz\,d\phi_h\,d|\mathbf{P}_{h\perp}|^2} = \frac{\alpha^2}{xQ^4}\,\frac{y^2}{2\,(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\left\{F_{UU,T}+\varepsilon\,F_{UU,L}\right\}.$$

Dedicated (inclusive pion generator)

	•			•		•		,							
		2	1	1	1.0	1.0	11	10.600	2212	1	0.1108596E	-01			
	1 -1.	1	11	0	0	-0.7583	3 -	-0.7440	3.9571		4.0972	0.0005	-0.0174	0.0305	1.3425
	21.	1	211	0	0	0.8698	3 -	-0.6332	3.2529		3.4291	0.1396	-0.0174	0.0305	1.3425
		2	1	1	1.0	1.0	11	10.600	2212	1	0.4220764E	-02			
	1 -1.	1	11	0	0	-1.1716	5	0.9665	3.2259		3.5656	0.0005	0.0016	-0.0436	-1.5889
	2 1.	1	211	0	0	0.1630) .	-0.4267	3.5986		3.6302	0.1396	0.0016	-0.0436	-1.5889
- 1															
	$\frac{d\sigma}{dx dQ^2}$	$\frac{2}{d\psi}$	$=\frac{a}{a}$	$\frac{2\alpha}{cQ}$	$\frac{2}{4}$ 2	$\frac{y^2}{(1-x)^2}$	ε)	$\left\{2(1 + 1)\right\}$	$-\varepsilon x$	F	$f_1(x, Q^2)$	$+ \epsilon(1$	$(+\gamma^2)F_2$	(x,Q^2)	}

Dedicated DIS generator

	2	1	1		0.12	1.04	11 10.	600 2212	1 0.688268	83E-05 0.123	5496E+00	11.55 8	8.13
1 -1.	1	11	0	0	-1.2610	-0.0968	1.5722	2.0177	0.0005	-0.0185	0.0768	-0.431	12
Z Ø.	1	22	1	0	0.2821	-0.0185	0.3528	0.4521	0.0000	-0.0185	0.0768	-0.431	12

0 (twist-4)

Generating DIS and SIDIS

Dedicated SIDIS generator

		2	1	1	1.0	1.0 11	10.600	2212	1 0.1108596	6E-01			
1	-1.	1	11	0	0	-0.7583	-0.7440	3.9571	4.0972	0.0005	-0.0174	0.0305	1.3425
2	1.	1	211	0	0	0.8698	-0.6332	3.2529	3.4291	0.1396	-0.0174	0.0305	1.3425
		-											
		2	1	1	1.0	1.0 11	10.600	2212	1 0.4220764	4E-02			
1	-1.	2	1 11	1 0	1.0 0	1.0 11 -1.1716	10.600 0.9665	3.2259	1 0.4220764 3.5656	4E-02 0.0005	0.0016	-0.0436	-1.5889

Dedicated DIS generator (Bosted)

		•		•	,							
	1	1	1	1.0	1.0 1	10.600	2212	1 0.6224668	8E+00			
1 -1.	1	11	0	0	-0.6109	1.3411	8.1241	8.2567	0.0005	-0.1465	0.0724	-0.0298

COATJAVA 4a.8.4

"bank": "MC::Event", "group": 41, "info": "Lund header bank for the generated event",						
"items": [
{"name":"npart",	"id":1,	"type":"int16",	"info":"number of particles in the event"},			
{"name":"atarget",	"id":2,	"type":"int16",	"info":"Mass number of the target"},			
{"name":"ztarget",	"id":3,	"type":"int16",	"info":"Atomic number oif the target"},			
{"name":"ptarget",	"id":4,	"type":"float",	"info":"Target polarization"},			
{"name":"pbeam",	"id":5,	"type":"float",	"info":"Beam polarization"},			
{"name":"btype",	"id":6,	"type":"int16",	"info":"Beam type, electron=11, photon=22"},			
{"name":"ebeam",	"id":7,	"type":"float",	"info":"Beam energy (GeV)"},			
{"name":"targetid",	"id":8,	"type":"int16",	"info":"Interacted nucleaon ID (proton=2212, neutron=2112"},			
{"nome":"processid"	"id" • 9	"type":"int16"	"info":"Process ID"}			
{"name":"weight",	"id":10,	"type":"float",	"info":"Event weight"}			

GEMC

	LUND Header	LUND Particles	
column	quantity	column	quantity
1	Number of particles	1	index
2	Number of target nucleons	2	lifetime
3	Number of target protons	3	type (1 is active)
4	Target Polarization	4	particle ID
5	Beam Polarization	5	parent index
6	beam PID (electron=11,	6	index of the first daughter
	photon=22)	7	momentum x [GeV]
7	beam energy	8	momentum y [GeV]
8	target nucleon ID	9	momentum z [GeV]
9	process ID	10	E
10	event weight/cross section	11	mass
		12	vertex x [cm]
		13	vertex y [cm]
		14	vertex z [cm]

DIS input from theory and phenomenology

Study the effect of F_UU,L (accounted in DIS and ignored in SIDIS)

- Different Q²-dependent factors contribute.
- Separation is important for DIS, but will be critical for SIDIS

Comparing generated ouput with input

Even with uniform distribution in x, the generated distribution is not uniform and depends on initial cuts on electron angle and energy

Kinematic distributions

 $e\pi X$ events compared with $e\pi X$ events from PYTHIA tuned to data

Simple event generator should be "reasonable"

DIS generator

CLAS12-MC vs theory: defining variables

Consistency check for z and P_T

$$P_{h} \cdot k_{f} = \frac{1}{2} M_{hT} M_{fT} \left(e^{y_{f} - y_{h}} + e^{y_{h} - y_{f}} \right)$$

and

$$P_h \cdot k_i = \frac{1}{2} M_{hT} M_{iT} (e^{y_i - y_h} - e^{y_h - y_i}).$$

 $R(y_{\rm h}, z_{\rm h}, x_{\rm bj}, Q) = \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}},$

for which we identify