Determination of double polarization observable E for $\gamma d \rightarrow K^+ \Sigma^-(p)$

Nicholas Zachariou

University of Edinburgh

Outline

- Determination of E
- g14 Run period
- Reaction reconstruction
- Systematic studies
- Results

 $\tau_{\Sigma^-} = 0.1475 \text{ ns}$ $\Sigma^- \rightarrow n\pi^- \quad \text{BR: } 99.85\%$

K

 π

 \vec{n}

 $n_{\text{-}}$

Determination of E

$$\frac{d\sigma}{dt} = \left(\frac{d\sigma}{dt}\right)_{0} [1 - P_{lin}\Sigma\cos(2\phi) + P_{x}(-P_{lin}\mathbb{H}\sin(2\phi) + P_{\odot}\mathbb{F}) + P_{y}(\mathbb{T} - P_{lin}\mathbb{P}\cos(2\phi)) + P_{z}(P_{lin}\mathbb{G}\sin(2\phi) - P_{\odot}\mathbb{E})],$$

$$\frac{d\sigma}{dt} = \left(\frac{d\sigma}{dt}\right)_0 [1 - P_z P_\odot \mathbb{E}].$$

 $\begin{array}{lll} Y^{\rightrightarrows} & \sim & cF^{\rightrightarrows}[1-|P_z||P_{\odot}|\mathbb{E})]A(\Omega,p,\ldots) \\ Y^{\rightleftarrows} & \sim & cF^{\rightleftarrows}[1+|P_z||P_{\odot}|\mathbb{E})]A(\Omega,p,\ldots) \end{array}$

$$P_{\odot} = P_{el} \frac{4x - x^2}{4 - 4x + 3x^2}$$
, with $x = \frac{E\gamma}{E_{el}}$

$$\begin{split} & \mathbb{M} \text{ethod 1} \\ & \mathbb{E} = \frac{1}{|P_z||P_{\odot}|} \frac{Y^{\overrightarrow{\leftarrow}} - Y^{\overrightarrow{\rightarrow}}}{Y^{\overrightarrow{\leftarrow}} + Y^{\overrightarrow{\rightarrow}}}. \\ & \sigma_{\mathbb{E}} = \frac{2}{|P_z||P_{\odot}|} \sqrt{\frac{Y^{\overrightarrow{\leftarrow}}Y^{\overrightarrow{\rightarrow}}}{(Y^{\overrightarrow{\leftarrow}} + Y^{\overrightarrow{\rightarrow}})^3}}. \end{split}$$

Method 2

$$\log L = b + \sum_{i=1}^{Y^{\rightrightarrows}} \log(1 - |P_z^i| |P_{\odot}^i| \mathbb{E}) + \sum_{i=1}^{Y^{\rightrightarrows}} \log(1 + |P_z^i| |P_{\odot}^i| \mathbb{E})$$

g14 Run Period

- Run December 1, 2011 May 27 2012
- Frozen-spin Hydrogen-Deuteride (HDice)
- Circularly and linearly polarized photon beam

Period	Beam Energy	Beam Pol	Run Range	Events	Target Pol
	(MeV)	(%) [2]		(10^6)	(%) [2]
Silver 1	2280.96	81.7	68021-68092	830	$+25.6\pm0.7$
Silver 2a	2280.96	81.7	68094-68123	393	$+23.0\pm0.6$
Silver 2b	2280.96	76.2	68124 - 68176	777	$+23.0\pm0.6$
Silver 3	2280.96	76.2	68188 - 68230	250	(+20.9)?
Silver 4	2280.96	76.2	68232 - 68305	820	(-17.2)?
Silver 5	2280.96	88.8	68335 - 68526	4832	(-15.5)?
Gold 2a	2541.31	88.2	69227-69254	470	$+26.8\pm0.9$
Gold 2b	2541.31	83.4	69255-69364	1626	$+26.8\pm0.9$
Empty A	3355.75	82.4	68995-69036	660	0.0
Empty B	3355.75	82.4	69038-69044	120	0.0

SKIM

1 positive kaon 1 negative pion Based on wide beta cuts Any number of neutrals

[2] CLAS Analysis Note 2016-104, 2016

Analysis: Particle ID

Based on 2 independent measurements of particles speed

Analysis: Particle ID

• Based on 2 independent measurements of particles speed

Analysis: Photon selection

• Photon-reconstructed track coincidence time at vertex

Analysis: Photon selection

• Photon-reconstructed track coincidence time at vertex

Analysis: Particle misidentification

• Large fraction of positive pions is misidentified as kaons

$$m_{calc}^2 = p^2 (\frac{1}{\beta^2} - 1.0)$$

Analysis: Reaction reconstruction

Analysis: Reaction reconstruction

Analysis: Background studies

- Generated data for 5 different reactions with equal weights
 - Fermi distribution of target nucleon
- Processed through GSIM
- Reconstructed in identical way as real data

Reaction Reconstruction cuts

 Reaction 0: 48%

 Reaction 1: 0.1%

 Reaction 2: 0.2%

 Reaction 3: 1.4%

 Reaction 4: 0.1%.

Analysis: Empty target subtraction

- Due to low statistics a kinematic independent dilution factor was determined.
- Studies using wide kinematic bins showed statistically insignificant variations of the dilution factor

Systematic studies

- Estimation of systematic uncertainties:
 - Variation of nominal cuts
 - Comparison between extracted observables
 - Difference and spread of difference reflects *upper estimate* of systematic uncertainty

Source	σ^{sys}
Kaon PID	0.013
Pion PID	0.024
Photon Selection	0.06
Particle Misidentification	0.005
Λ/Σ^0 separation	0.055
Kaon decayed events	0.048
Σ^* background subtraction	0.047
z-vertex cut	0.025
Fiducial cuts	0.029
Method of extraction observable	0.005
Total Absolute Systematic	0.11
Target Polarization	6%
Photon Polarization	3.4%
Empty target subtraction	1.0%
Total Scale Systematic	6.9%

Systematic studies

 Λ/Σ^0 separation

Results

Summary

- First draft of paper will be completed soon
- In contact with theorist for inclusion of the data to PWA
- Analysis review initiated on November 9 2017
- First round of comments provided on January 4th 2018 with no major issues
- Reply from author and updated note was released to committee members on January 12th
- Second round of comments (and hopefully final) will be released soon.