Light Meson Decays

upcoming analysis reports on the decays $\eta \to \pi^0 \, \pi^+ \pi^-$ and $\omega \to \pi^0 \, e^+ e^-$

CLAS Collaboration Meeting

March 2018 | Jim Ritman

Mitglied der Helmholtz-Gemeinschaft

Light Meson Decays

WASA-at-COSY: π, η

the orginal proposal for bringing WASA to COSY :

Proposal for the wide angle shower apparatus (WASA) at COSY-Julich: WASA at COSY

WASA-at-COSY Collaboration, e-Print: nucl-ex/0411038

CLAS: π, η, ω, η'

the orginal proposal: CAA Photoproduction and Decay of Light Mesons in CLAS https://wiki.jlab.org/lmd/

class

active analyses

hadronic decays: Dalitz plot analysis					
η → π ⁰ π⁺π [.]	g12	Daniel Lersch	 analysis report in progress 		
$\omega \to \pi^0 \pi^+ \pi^-$	g12	Chris Zeoli	• PhD 2016 FSU		
$\eta' \rightarrow \eta \; \pi^+ \pi^-$	g12	Sudeep Ghosh	 analysis report submitted 		
PWA of π⁺π⁻η	g12	Cathrina Sowa	PhD 2016 RU-Bochum		
radiative decays: box anomaly, branching ratio					
$\eta' \to \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\gamma$	g11	Georgie Mbianda Njencheu	analysis report submittedPhD 2017 ODU		
$\eta \to \pi^{*}\pi^{-}\gamma$	g11	Torri Roark			
$\rho{\rightarrow} \pi^{*}\pi^{-}\gamma$	g11	Tyler Viducic			
conversion decays: electromagnetic transition form factor					
$\pi \to \gamma \; e^+ e^-$	g12	Michael Kunkel	 paper submitted on π⁰ x-section PhD 2014 ODU 		
$\omega \to \pi^0 e^+e^-$	g12	Susan Schadmand			
$\eta' \to \gamma \; e^+ e^{\scriptscriptstyle -}$	g12 CLAS12	Michaela Schever Michael Kunkel	Master 2015, RWTH Aachenproposal		
Mitglied der Helmholtz-Gemeinschaft		March 2018	Forschungszentrum		

Hadronic Decays

Decay amplitude A related to light quark mass ratios via Q² PWA to extract Q, and a,b,d,f

Recent Measurements I

Most recent result from the KLOE-Collaboration:^(f)

- η -Mesons produced via: $e^+e^- \rightarrow \Phi \rightarrow \eta \gamma$
- $\approx 4.7 \cdot 10^6 \ \eta \rightarrow \pi^+ \pi^- \pi^0$ events in the final data sample
- Fit function: Norm \times $(1 + aY + bY + cX + dX^2 + eXY + fY^3)$
- Determined asymmetries of the Dalitz Plot \Rightarrow Consistent with zero \Rightarrow No C-violation

(f) KLOE coll., JHEP, 019, (2016) Daniel Lersch (IKP1 - Juelich)

Hadronic Decays

 $\eta{\rightarrow}\pi^{+}\pi^{-}\,\pi^{0}$

Isospin breaking in the strong interaction Decay amplitude A related to light quark mass ratios via Q²

Decay amplitude via Dalitz-Plot-Analysis: A = f (X,Y)

Q from dispersive model analysis of KLOE&WASA, P. Guo et al.

Summary and Outlook

- Refined error estimation \Rightarrow Errors are in a more "reasonable" range
- Need to include into error-estimation:
 - Variation of photon beam energy range
 - Leaving out "sensitive" data points \rightarrow Turned out to have an effect on f
 - Correlation of errors
- Statistical error depends on number of Dalitz Plot bins ⇔ Finer binning?

Parameter	-a	b	С	d	f
KLOE(08)	1.090(5)(⁺⁸ _19)	0.124(6)(10)	0.0	0.057(6)(+7 6)	0.14(1)(2)
WASA	1.144(18)	0.219(19)(47)	0.0	0.086(18)(15)	0.115(37)
KLOE(16)	1.104(5)(2)	0.142(3)(⁺⁵ _4)	0.0	0.073(3)(⁺⁴ _3)	0.154(6)(⁺⁴ _5)
G12	1.102(20)(13)	0.127(18)(5)	0.011(7)(7)	0.106(19)(5)	0.248(45)(10)

Conversion Decays

Reactions of hadrons with virtual photons

- intrinsic structure of hadrons
 - transition form factors
 - validity of vector meson dominance
- background for physics beyond the standard model
 - rare decays
 - e.g. $\pi \rightarrow ee$
 - g-2 anomalous magnetic moment of the muon
 - light-by-light scattering

Theory confronts Experiment

Role of hadronic decays for g-2

Conversion Decays

Mitglied der Helmholtz-Gemeinschaft

Conversion Decays

Transition Form Factors

form factor: divide experimental q² distribution by QED

 $\Lambda \simeq m_{\rho} (\Lambda^{-2} = b_{AB})$ 'standard' VMD, b~1.69/GeV²

status of the ω - π transition form factor

- A2 results are in better agreement with theoretical calculations, compared to earlier experiments
- statistical accuracy of the present data points at large m (ee) masses does not allow a final conclusion

Mitglied der Helmholtz-Gemeinschaft

March 2018

analysis strategy cut-based analysis

e⁺e⁻ detection and missing particle

missing pion:

- missing mass is pion mass
- missing energy finite

missing photon:

- missing mass zero
- missing energy finite

missing nothing:

- missing mass zero
- missing energy zero

missing mass cut is crucial

ω→πee

η(´)**→**γee

ρ/ω→ee

March 2018

CLAS-g12 analysis^{*} $\omega \rightarrow \pi ee$ candidates

- smooth background
 - \leftarrow fit and subtract in-peak background (competing decays) ← simulations
- photon conversion from $\pi \rightarrow \gamma \gamma$
 - * based on dilepton analysis of M.C.Kunkel

- \leftarrow simulations, small ee masses

 10^{3}

 10^{2}

10

sideband background subtraction

in-peak background

0.4 0.5 0.6 dilepton mass M(ee) /GeV

Mitglied der Helmholtz-Gemeinschaft

March 2018

simulations for in-peak background reveal:

- external conversion at small masses
- combinatorics at large masses

dilepton mass distribution

dilepton mass distribution

- (both) background types subtracted
- efficiency corrected
- integrated over tagger range
 1.1-5.5GeV

trend:

 no extreme excess beyond standard VMD?

issues:

- limited statistics at high-mass end
- combinatorics

towards TFF:

- divide by QED reconstructed simulation
- event-wise un-weighting by flux

$\eta' \rightarrow \gamma ee$: Exploratory Analysis

- CLAS g12 experiment
- data analysis: g12 procedures
- Cut based analysis
- q-factor signal extraction: evaluate <u>smooth background</u> event-by-event
- > 359 event candidates
- > 82 events (signal weight)

CLAS6 not competitive with BESIII (observed signal events 864 ± 36)

decays of light mesons

- CLAS g12 experiment
 - π^0 , η , η' , and ω decays
 - planning new analysis
 - use of kinematic fit
 - statistics
 - combinatorics
- CLAS12 campaigns:
 - η^\prime decays proposed
 - other proposals to come

physics landscape needs the results

pi0 xtras

Exclusive π⁰ Photoproduction

PhD thesis M.C.Kunkel paper submitted

cross section scales with s.e-7 consistent with perturbative QCD quark counting rules

angular distribution consistent with Regge-based model

eta xtras

Recent Measurements II

Result from the WASA-at-COSY Collaboration:^(d)

- η -Mesons produced via: $pd \rightarrow {}^{3}\text{He}\eta$
- $\approx 120 \, {\rm k} \, \eta \to \pi^+ \pi^- \pi^0$ events in the final data sample
- Translate each pair (X,Y) into a global bin i(X, Y)
 → Obtain one dimensional Dalitz Plot
- Fit function: Norm \times $(1 + aY + bY + cX + dX^2 + eXY + fY^3)$
- (d) WASA-at-COSY coll., Phys. Rev., C90(045207), 2014

Daniel Lersch (IKP1 - Juelich)

CLAS Collaboration Meeting

Recent Measurements and Theoretical Predictions

Parameter:		— a	b	d	f
Exp.	KLOE (08) ^(a)	$1.090(5)(^{+8}_{-19})$	0.124(6)(10)	$0.057(6)(^{+7}_{-16})$	0.14(1)(2)
	WASA ^(d)	1.144(18)	0.219(19)(47)	0.086(18)(15)	0.115(37)
	KLOE (16) ^(f)	1.104(3)(2)	$0.142(3)(^{5}_{-4})$	$0.073(3)(^{+4}_{-3})$	$0.154(6)(^{+4}_{-5})$
Theor.	ChPT (NNLO) ^(b)	1.271(75)	0.394(102)	0.055(57)	0.025(160)
	NREFT ^(c)	1.213(14)	0.308(23)	0.050(3)	0.083(19)
	PWA ^(e)	1.116(32)	0.188(12)	0.063(4)	0.091(3)
	PWA ^(g)	1.077(29)	0.170(8)	0.060(2)	0.091(3)

(a) KLOE coll., JHEP, 05, (2008)

(b) J. Bijnens and K. Ghorbani., JHEP, 11, (2007)

(d) WASA-at-COSY coll., Phys. Rev., C90(045207), 2014

(c) S- P. Schneider et al., JHEP, 028, (2011)

(e) Peng Guo et al., Phys. Rev., D92(05016), (2015) (f) KLOE coll., JHEP, 019, (2016)

(g) Peng Guo et al., arXiv: 1608.01447v3, (2017)

- WASA-at-COSY: $Q = 21.4 \pm 1.1^{(e)}$
- KLOE: $Q = 21.7 \pm 1.1^{(g)}$
- Dalitz Plot Analysis and determination of Q for $\gamma p \rightarrow p\eta [\eta \rightarrow \pi^+ \pi^- \pi^0]$ with the CLAS G12 data set

Daniel Lersch (IKP1 - Juelich)

CLAS Collaboration Meeting

05.10.2017 6 / 19

omega xtras

simulation ω decays

PLUTO event generator

incl. Bremsstrahlung beam profile and ω angular distribution

event cut:

=2 g7leptons, event vertex, TOF, pass all acceptance cuts, pi0 missing mass

decay chain	thrown events	BR of chain	events after event cut	after normalization	
$\begin{array}{l} \omega \rightarrow \pi \; ee \rightarrow 2\gamma \\ ee \end{array}$	2.19995e+06	7.60937e-04	4597	494.7	signal (need QED, too)
$\begin{array}{l} \omega \rightarrow \pi_{D} \: ee \rightarrow \gamma \\ 2(ee) \end{array}$	1.93004e+07	9.0398e-06	26861	3.8	
$\omega \to \pi \; \gamma \to 3 \gamma$	2.14984e+07	8.18254e-02	1148	1339.7	need more stats
$\begin{array}{l} \omega \rightarrow \pi_D \: \gamma \rightarrow 2 \gamma \\ e e \end{array}$	1.9999e+07	9.72072e-04	2548	38.0	
$\omega \to ee$	1.99998e+07	7.28e-05	3858	2.9	need ρ/ω line shape
$\omega \to \eta \; \gamma \to \!\! 3\gamma$	2.00004e+07	1.81286e-04	148	0.4	
$\label{eq:main_decomposition} \begin{split} & \omega \to \eta_D \; \gamma \to 2 \gamma \\ & ee \end{split}$	2.00004e+07	3.174e-06	3209	0.2	

ρ-ω interference

PoS Hadron2013 (2013) 176 JLAB-PHY-13-1839

based on same data CLAS g12 experiment

targeted channel $\gamma + p \rightarrow p + ee$ (in the ρ regime)

event selection via

- PID dilepton
- missing mass MM(ee)=M(p)

interference causes low-mass tail

$\omega{\rightarrow}\pi ee \ efficiency \ correction$

background subtracted signal: integrated over tagger range 1.1-5.5GeV

PLUTO event generator for CLAS includes Bremsstrahlung and ω cross section

TFF other mesons xtras

(OLD) WORLD DATA SET: CONVERSION DECAYS

L.G. Landsberg, Electromagnetic decays of light mesons IHEP in 1978—1980 on the "Lepton-G" spectrometer

for *ω* meson, clearly additional mechanisms apart from standard VMD (black curves are fits to the data)

• confirmed by NA60 AA reactions, S. Damjanovic, PLB 677 (2009) 260

• confirmed by NA60 pA reactions, A.Uras, J.Phys. Conf.Ser.270(2011) 012038

different experimental approach: elementary reactions, using di-electrons

NEW DATA SETS: ω AND Φ

