

CLAS Collaboration Meeting

March 6-9, 2018 Jefferson Lab, Newport News, VA

Highlights from Theory Group

Jianwei Qiu

Theory Center, Jefferson Lab

March 7, 2018

JLab Theory Program

□ Focus on 3 of the 5 Research Areas identified in 2015 NSAC LRP Document:

Area 1 – QCD and the structure of hadrons and nuclei Area 3 – Nuclear structure and reactions Area 5 – Fundamental symmetries and neutrinos

□ Support JLab12 with six coherent thrusts:

3D hadron structure – LQCD: Edwards, Orginos, <u>Richards,</u> Shanahan

3D hadron structure – **Global analyses:** Accardi, <u>Melnitchouk</u>, Prokudin, Rogers

3D hadron structure – **QCD & EFTs:** Accardi, Balitsky, Melnitchouk, Prokudin, Qiu, Radyushkin, Rogers, <u>Weiss</u>

Research with high performance computing:

Lattice QCD, SciDAC4, Exascale computing, software supporting experiments, ...

Focus on GlueX & CLAS12 @ JLab & COMPASS, BES, & LHCb

Nature **534**, 487–493 (23 June 2016) | doi:10.1038/nature18011

□ New development:

(Solving old mysteries – scalar sector)

Even newer development:

ππ,KK,ηη scattering

[under review at PRD]

first calculation of coupled isospin=0 scattering

 σ as bound state, and f_0 ('980') resonance at $K\overline{K}$ threshold

tetraquark operators

Cheung, Thomas (Camb), Dudek, Edwards

JHEP 1711 (2017) 033

first systematic exploration of tetraquark operators in lattice QCD

meson-meson operators found to be sufficient in exotic flavor channels

first explicit calculation using 'spinning-hadron' formalism

Even newer development:

Two/three body systems

First development of formalism for coupled two/three-body scattering via lattice QCD

Multi-Hadron Systems from Lattice QCD

Organized workshop

Even newer development:

Two/three body systems

First development of formalism for coupled two/three-body scattering via lattice QCD

Multi-Hadron Systems from Lattice QCD

Organized workshop

Organizers: INT Workshop INT-18-70W Raul Briceno Multi-Hadron Systems from Lattice QCD Thomas Jefferson National Accelerator Facility rbriceno#flab.org February 5 - 9, 2018 Maywell Hansen **CERN** Theory Division Resonances in experiment maxwell.hansen@cern.ch Guil Stephen Sharpe University of Washington srsharpe@uw.edu David Wilson Trinity College Dublin Program Coordinator: Kimberlee Choe (206) 685-3509 Application form Gut CLAS12 pareda The application deadline has passed,

Viewpoint: A Doubly Charming Particle Briceño, Physics 10 (2017) 100

Lattice QCD prediction of the first doubly-charmed baryon is confirmed by LHCb

Seminar schedule

Joint Physics Analysis Center:

- Joint efforts between theorists and experimentalists to work together to make the best use of very precise data taken at JLab and in the world
- ♦ Established in 2013 by JLab & Indiana University agreement
- Providing strong support to CLAS12, GlueX, ... JLab experiments

□ Making successful predictions for GlueX:

□ Making successful predictions for GlueX:

□ Making successful predictions for GlueX:

□ Making successful predictions for GlueX:

Predictions for (ρ , ω , Φ) photoproduction

 ◇ Spin Density Matrix Elements: detailed polarization information → isolation of exchanges [JPAC: arXiv:1802.09403)]

□ Making successful predictions for GlueX:

Predictions for (ρ , ω , Φ) photoproduction

 ◇ Spin Density Matrix Elements: detailed polarization information → isolation of exchanges [JPAC: arXiv:1802.09403)]

Quasi two-body reactions

[JPAC: in preparation]

- \diamond Global analysis of world data
- ♦ Leading Regge pole theory
- ♦ Small number of parameters

 \diamond Compatible with data

Nuclear structure

□ Light nuclei spectra from chiral dynamics:

[Piarulli et al, Phys. Rev. Letts. 120, 052503 (2018)]

Hadron structure – JLab12 to EIC

Coherent three-pronged approaches:

Theory, Phenomenology and Lattice QCD – unique strength of JLab

Pion EM form factors:

D Pion scalar radius:

$$F_{\rm s}^{\pi}\left(Q^2\right) \equiv \left\langle \pi^+\left(p_f\right) \right| \, m_{\rm d} \overline{d} d + m_{\rm u} \overline{u} u \, \left|\pi^+\left(p_i\right)\right\rangle, \qquad Q^2 = -q^2 = -(p_f - p_i)^2$$

Scalar charge radius:
$$\langle r^2 \rangle_{\rm s}^{\pi} = -\frac{6}{F_{\rm s}^{\pi}(0)} \frac{\partial F_{\rm s}^{\pi}(Q^2)}{\partial Q^2} \Big|_{Q^2=0}$$

 $m_\pi^2\,[{
m GeV^2}]$

Pion scalar radius:

Comparison of different lattice results for pion vector and scalar charge radius

HPQCD, J. Koponen et. al. Phys.Rev. D93, 054503

Form factors – Low energy EFTs

□ Accurate form factors from chiral EFT:

- Developed new first-principles method for calculating low-Q2 nucleon form factors combining chiral EFT and dispersion theory (DIχEFT). Includes ππ rescattering in t-channel through unitarity. Alarcon, Hiller Blin, Vicente Vacas, Weiss, NPA 964, 18 (2017); Alarcon, Weiss PRC 96, 055206 (2017); Alarcon, Weiss arXiv:1710.06430
- Controlled accuracy, systematic improvements
- Calculated nucleon electromagnetic FFs and transverse densities, scalar FF. Extending approach to GPDs
- Results used in experimental analysis: Low-Q2 electron scattering, proton radius extraction. Higinbotham et al. 18, Horbatsch et al. 18. JLab12 PRAD experiment

Completely multiplicative - No mix with other flavors or gluon!

Radyushkin, 2017

Pseudo-PDFs = generalization of PDFs:

♦ **Definition**: $\xi^2 < 0$

$$\mathcal{M}^{\alpha}(\nu = p \cdot \xi, \xi^{2}) \equiv \langle p | \overline{\psi}(0) \gamma^{\alpha} \Phi_{\nu}(0, \xi, \nu \cdot A) \psi(\xi) | p \rangle$$

$$\equiv 2p^{\alpha} \mathcal{M}_{p}(\nu, \xi^{2}) + \xi^{\alpha}(p^{2}/\nu) \mathcal{M}_{\xi}(\nu, \xi^{2}) \approx 2p^{\alpha} \mathcal{M}_{p}(\nu, \xi^{2})$$

$$\mathcal{P}(x, \xi^{2}) \equiv \int \frac{d\nu}{2\pi} e^{ix \nu} \frac{1}{2p^{+}} \mathcal{M}^{+}(\nu, \xi^{2})$$

♦ Interpretation:

with $\xi^{\mu} = (0^+, \xi^-, 0_{\perp})$ **Off-light-cone extension of PDFs:** $f(x) = \mathcal{P}(x, \xi^2 = 0)$

Quasi-PDFs:

$$\xi^{\mu} = (0, 0_{\perp}, \xi_z)$$

$$\tilde{q}(x, \mu^2, p_z) = \int \frac{d\nu}{2\pi} e^{ix\nu} \frac{1}{2p_z} \mathcal{M}^z (\nu = p_z \xi_z, -\xi_z^2)$$
at $Q = 2.15 \text{ GeV}$

TMDs:

Radyushkin, 2017

Pseudo-PDFs:

 \diamond Lattice calculation with $\alpha = 0$:

$$\mathcal{M}^{\alpha}(\nu = p \cdot \xi, \xi^{2}) \equiv \langle p | \overline{\psi}(0) \gamma^{\alpha} \Phi_{\nu}(0, \xi, \nu \cdot A) \psi(\xi) | p \rangle$$

$$\equiv 2p^{\alpha} \mathcal{M}_{p}(\nu, \xi^{2}) + \xi^{\alpha}(p^{2}/\nu) \mathcal{M}_{\xi}(\nu, \xi^{2}) \approx 2p^{\alpha} \mathcal{M}_{p}(\nu, \xi^{2})$$

$$\mathcal{P}(x, \xi^{2}) \equiv \int \frac{d\nu}{2\pi} e^{ix \, \nu} \mathcal{M}_{p=p^{0}}(\nu, \xi^{2}) / \mathcal{M}_{p=p^{0}}(0, \xi^{2}) \checkmark$$

Remove UV!

$$\Rightarrow \text{ Model quasi-PDFs:} \quad \text{with} \quad \xi^{\mu} = (0, 0_{\perp}, \xi_{z})$$

□ First numerical results:

Orginos, et al, PRD96, 094503 (2017)

One-loop matching recently Completed!

A. Radyushkin, arXiv:1801.02427

3D Hadron structure – Global analyses

First global QCD analysis of transversity distribution using Monte Carlo methodology with lattice QCD constraints

3D Hadron structure – Global analyses

□ First MC global QCD analysis of pion PDFs:

- significant reduction of uncertainties on sea quark and gluon distributions in the pion with inclusion of HERA leading neutron data
- → implications for "TDIS" (Tagged DIS) experiment at JLab

Using Fermilab DY data and HERA leading neutron production data

3D Hadron structure – NNLO

Sensitive to Boer-Mulders functions & Collins FFs – how does spin influence hadronization?

3D Hadron structure – NNLO

QCD graphs needed for a good phenomenological description of SIDIS

Stay tuned ...

Rogers, et al.

3D Hadron structure – NNLO

TMD factorization at 1st power correction level:

$$\frac{d\sigma}{d\eta d^2 q_{\perp}} = \sum_{f} \int d^2 b_{\perp} e^{i(q,b)_{\perp}} \mathcal{D}_{f/A}(x_A, b_{\perp}, \eta) \mathcal{D}_{f/B}(x_B, b_{\perp}, \eta) \sigma(ff \rightarrow H)$$
+ power corrections + Y - terms
Rapidity factorization:

$$p = \alpha p_A + \beta P_B + p_{\perp}$$
"Projectile" fields : $|\beta| < \sigma_a$
"Central" fields

$$p_B \longrightarrow 0$$
 "Target" fields : $|\alpha| < \sigma_b$

We integrate over "central" fields in the background of projectile and target fields.

Kinematical region is $s = (p_A + p_B)^2 \gg m_Z^2 \gg q_\perp^2$

Stay tuned ...

Balitsky, et al.

Hadron structure – EIC

Impulse approximation

Final-state interactions

- Developed theoretical framework for DIS on deuteron with spectator nucleon tagging at EIC, e + d -> e' + p + X.
 Strikman, Weiss arXiv:1706.02244
- Calculated final-state interactions in new approach based on space-time picture of hadron formation in DIS. Appropriate for EIC kinematics.
- Extension to polarized deuteron DIS and small-x diffractive scattering in progress Strikman, Weiss, Cosyn, Sargsian
- Enables precise measurements of neutron structure with EIC: On-shell extrapolation EIC simulations performed in 2014/15 LDRD project, PI Weiss, <u>https://www.jlab.org/theory/tag/</u>

Weiss et al

Nuclear and hadron structure + machine learning

Nuclear physics

- Exploratory studies with unphysical quark masses
- Constrain nuclear inputs for BSM searches

Proton-proton fusion and tritium β-decay [PRL 119, 062002 (2017)]

- Double β-decay
 [PRL 119, 062003 (2017), PRD 96, 054505 (2017)]
- Baryon-baryon interactions [PRD 96, 114510 (2017)]
- Gluon structure of light nuclei [PRD 96, 094512 (2017)]
- Nuclear modification of scalar, axial tensor charges [arXiv:1712.03221]

Physics About BROWSE PRESS COLLECTIONS

Theorists have used lattice-QCD caliculations to predict two weak-force-driven react

Synopsis: Strong Force Calculations for Weak Force Reactions

Hadron Structure

 Gluon structure of hadrons and nuclei and predictions for EIC

Gluon generalised form factors [PRD 95, 114515 (2017)]

Machine Learning

- First application of machine learning to accelerate numerical studies of SM
- Machine learning action parameters in lattice quantum chromodynamics [arXiv:1801.05784]

P. Shanahan et al.

Summary and outlook

Theory Center Mission:

Help motivate, promote, stimulate, support and contribute to the JLab12 program

Support with leadership to the national nuclear theory research effort

Thank you!