# **CEBAF Accelerator Update**

Michael Tiefenback

#### CASA Accelerator Physics Experimental Liaison March 07, 2018

With grateful thanks for input from Roblin/Satogata/Benesch/Freyberger and many others



Thomas Jefferson National Accelerator Facility CLAS12 Collaboration Meeting, March 06-09, 2018



1

# **Transformer Failure – CHL**

- Spring 2018 run proceeding well up to March 05 2018
  - Both CHLs tripped off shortly after 13:30
  - Consequences and delay will be known shortly
  - Some number of days of limited maintenance/recovery
  - Possibly some time dedicated to improved setup tools
- Stay tuned for developments





# **Linacs and Accelerator Systems**

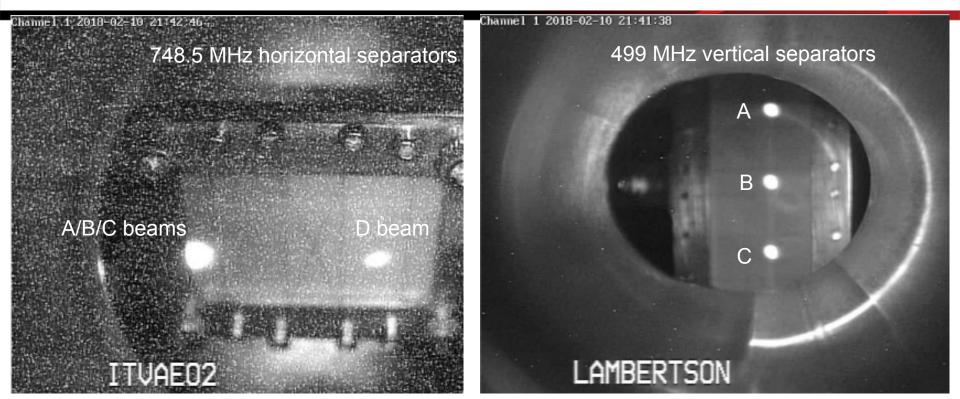
- Energy is 4% below 12 GeV nominal value
  - "Expect to hold at this energy" (A. Freyberger 3/28/17)
  - Still holding this energy (March 2018)
  - Working mitigations (such as C75 program)
- Trip rate "acceptable"
  - Marginal overhead; trip rates can be low
- 750 MHz separators are operational (becoming reliable)
- We are learning the hardware boundaries
  - Some things have had to be fixed
  - Some are being worked around
- Development of the accelerator continues
- Working at hardware limits eats "clock time" a Bad Idea



#### **CEBAF 4-Hall Operation**

#### Full 4 Hall Operations ("D+3") began Spring 2018 (table corrected from 2017 presentation)

| Condition                                                               | (D+3)                            |
|-------------------------------------------------------------------------|----------------------------------|
| Maximum number of halls receiving beam                                  | 4 halls                          |
| ABC Beam @ 5 <sup>th</sup> pass (Hall D on)                             | 249.5 MHz                        |
| <ul> <li>ABC Beam @ 5<sup>th</sup> pass (Hall D off – "_"+3)</li> </ul> | 249.5/499 MHz (when D is DOWN)   |
| ABC Beam @ lower passes                                                 | 249.5 MHz default/499 MHz option |


#### **4 Hall Configurations tested:**

- Hall D sharing chopper slit with Hall B (Early test; Limited D:B current ratio)
- Hall D sharing chopper slit with Hall A (22 µAmps to A, 0-150 nAmps to D)
- 748.5 MHz separators for 5<sup>th</sup> pass ABC / D separation
- Typically all halls will be at 249.5 MHz micro-pulse rate
- (NOTE: Other sub-harmonics are supported)





## All Halls on 5<sup>th</sup> Pass



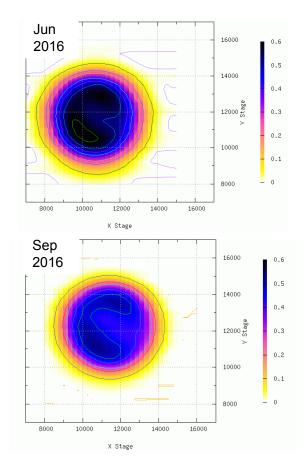
- 748.5 MHz separator system working robustly
  - Note: viewer limited beam in above pictures
- Now targeting 4-hall, high current operations





#### **Source Operation – Continuing Progress**

#### **Operations in 2016**


SSL GaAs/GaAsP SVT #5756-4 (Polarization ~ 87%) No heat/activation over Summer 2016 / Winter 2017 SADS Gun2 operating at -130 kV without any problems Charge lifetime >100C with average current 70-80 μA

#### **Operations in 2017**

Delivering up to 3 halls at a time (either 249.5 or 499 MHz) Hall A (Physics), Hall B (KPP), Hall C (KPP), Hall D (Physics)

#### **Operations in 2018**

Four (4) lasers operating simultaneously Four (4) different experiments receiving beam Maintaining ≥ 85% polarization





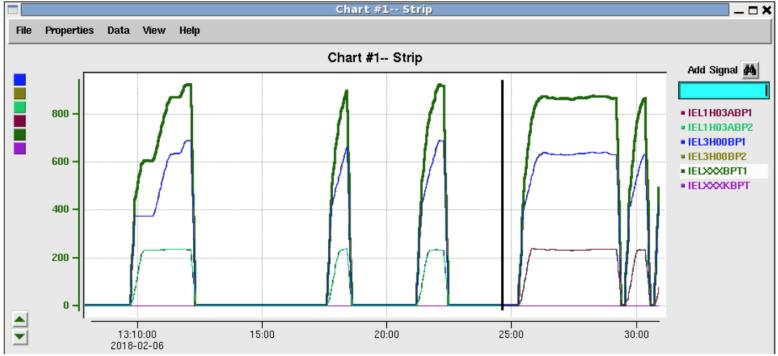


## **High Power Operations**

- Achieved 927 kW of total beam power Feb 6 2018
  - A new record for 12 GeV era with C100 cavities
  - Includes beam through 1L13 "hybrid" C75-like upgraded module

CEBAF achieves full power! 927kW of beam power, combined power of Hall-A (22.5 uA) and Hall-C (65 uA). This was held briefly until RF trips, mostly in the South Linac. RF was a bit of a challenge with Hall-C at 65 uA, and appears to be nominally ok at 60 uA (875 kW).

Note that sustained delivery above 900kW is not permitted due to the operational limit.


CLAS12 2018-03-07

#### Elog 3528144

Jefferson Lab

**CEBAF Operations** 

#### Fig. 1 [02/06/2018 13:30:55]



# 2018 RF Performance

- One pass energy gain remains at 2.1 GeV/pass
  - 100 MeV/pass lower than 12 GeV design (-5%)
  - Gradient margin is small and erodes between RF recovery periods
- Demonstrated beam delivery at administrative limit (900 kW)
  - 22 microAmperes to Hall A
  - 65 microAmperes to Hall C
- Now working to expand stability limits
  - Identify and correct limiting components (RF seems involved)
  - Improvements in coordination with improved beam optics





### **Beam Parameters Effort**

- Alex Bogacz is leading effort charged by Ops to deliver beam requirements tables for all halls
  - Similar to JC Denard table from 6 GeV era
  - All APELs soliciting input from halls
  - We are currently documenting existing 12 GeV capabilities
- Intent: Reference document for users for new proposals

|                                                                                                                                                                                                                                        |                                                                                                                                | · · ·                                                                                    |                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                                                                                                                                                                                                              | Nominal Value and Range                                                                                                        | stability (during 8 hours)<br>(note 1)                                                   | helicity correlated unbalance<br>averaged over 1 hour                                                                        |
| $\begin{array}{c c} A: \sigma_{x  and  y} = 50 \ to \ 200 \mu m; \\ B: 50 < \sigma_{x  and  y} < 250 \ \mu m; \\ C: \sigma_{x  and  y} = 100 \ to \ 500 \mu m; \\ A \& C \ may \ request \ specific \ size: \\ (note \ 2) \end{array}$ |                                                                                                                                | A & C: 25% of requested value;<br>B: any value within nominal range                      | A & C: 100% of nominal size;<br>Β: 60 μm                                                                                     |
| angular divergence at the target                                                                                                                                                                                                       | σ <sub>x'</sub> , σ <sub>y'</sub> < 100 μr                                                                                     | 50% of value                                                                             | 100% of beam divergence tolerand                                                                                             |
| Beam position                                                                                                                                                                                                                          | any value requested by experiment within 3 mm of optics axis                                                                   | drifts A: < 50% of spot size;<br>B: < 120 μm; C: < 250 μm;<br>transients A, B, C: < 1 mm | A & C < 10 μm;<br>B < 60 μm                                                                                                  |
| Beam direction                                                                                                                                                                                                                         | any value requested by experiment<br>within 1 mr of optics axis to dump<br>center <50 µr (1/2 beam divergence<br>tolerance) 10 |                                                                                          | 100% of beam divergence tolerand                                                                                             |
| Energy (average)                                                                                                                                                                                                                       | multipass operation: 0.63 to 5.75<br>GeV; 1 pass 1 hall dedicated<br>operation: 0.33 GeV to 0.63 GeV                           | GeV; 1 pass 1 hall dedicated B: △E/E < 5E-4 100% of energy spread to                     |                                                                                                                              |
| Energy Spread (1o)                                                                                                                                                                                                                     | A & C: σ <sub>E</sub> /E < 5E-5 for E>1GeV<br>B: σ <sub>E</sub> /E < 4E-4                                                      | A & C: σ <sub>E</sub> /E < 5E-5 for E>1GeV<br>B: σ <sub>E</sub> /E < 4E-4                | Х                                                                                                                            |
| Parameter Nominal Value and Range                                                                                                                                                                                                      |                                                                                                                                | stability (during 8 hours)<br>(note 1)                                                   | helicity correlated unbalance<br>averaged over 1 hour                                                                        |
| Background (Beam halo) close to the<br>target                                                                                                                                                                                          | A, B, C: < 1 E-4 outside of a 5 mm<br>radius (notes 3 & 4)                                                                     | any value within the nominal range                                                       | 100% of nominal halo tolerance                                                                                               |
| CW average current (Note: 5 & 6)<br>CW average current (Note: 5 & 6)<br>A + C < 180 μA ; A + C < 800 KW<br>A or C < 180 μA (single hall)                                                                                               |                                                                                                                                | within +/- 5% of nominal value<br>(includes high frequency fluctuations)                 | A < 200 ppm; B & C< 1000 ppm<br>3 Halls: excursions of 5 second<br>samples up to 5 times the nomina<br>value are acceptable. |
| Polarization (current range to be<br>determined between physics and<br>Accelerator Divisions)                                                                                                                                          | > 70% all halls with currents up to 100 $\mu A$ in A or C                                                                      | polarization > 70%                                                                       | Х                                                                                                                            |

#### **BEAM REQUIREMENTS (10/31/01)**



**CEBAF Operations** 

Jefferson Lab

## **12 GeV Out-year Beam Requirements**

| Hall | Emittance            | Energy Spread | Spot Size                              | Halo                          |
|------|----------------------|---------------|----------------------------------------|-------------------------------|
|      | $\sigma$             |               | $\sigma$                               |                               |
|      | (nm-rad)             | (%)           | <b>(</b> μm)                           |                               |
|      |                      | < 0.05        | $\sigma_x < 400$                       |                               |
| Α    | $\varepsilon_x < 10$ | (12 GeV)      | $\sigma_y < 200$                       | $< 1 	imes 10^{-4}$ †         |
|      | $\varepsilon_y < 5$  | < 0.003       | $(\sigma_y < 100)$                     |                               |
|      | -                    | (2-4 GeV)     | (2-4 GeV)                              |                               |
| I    |                      |               |                                        |                               |
| В    | $\varepsilon_x < 10$ | <0.1          | $\sigma_x < 400$                       | < 2 $	imes$ 10 <sup>-4†</sup> |
|      | $\varepsilon_y < 10$ |               | $\sigma_y <$ 400                       |                               |
| С    | $\varepsilon_x < 10$ | < 0.05        | $\sigma_x < 500$                       | < 2 $	imes$ 10 <sup>-4†</sup> |
|      | $\varepsilon_y < 10$ |               | $\sigma_y < 500$                       |                               |
|      |                      |               | At Radiator:                           |                               |
| D    | $\varepsilon_x < 50$ | <0.5          | $\sigma_x < 1550, \ \sigma_v < 550$    | $< 1\%^{\ddagger}$            |
|      | $\varepsilon_v < 10$ |               | At Collimator                          |                               |
|      |                      |               | $\sigma_{x} <$ 540, $\sigma_{y} <$ 520 |                               |

<sup>†</sup> Ratio of the integrated non-Gaussian tail to Gaussian core.

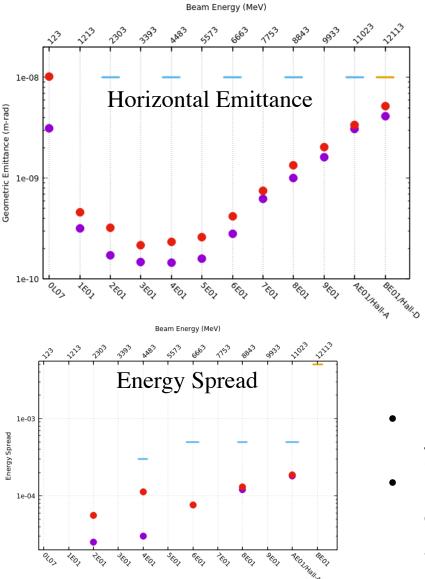
<sup>‡</sup> Ratio of Halo background event rate to physics event rate.



Thomas Jefferson National Accelerator Facility CLAS12 Collaboration Meeting 07 Mar 2018



## Potential Hall B 11 GeV Beam Envelope







Thomas Jefferson National Accelerator Facility CLAS12 Collaboration Meeting 07 Mar 2018



#### Beam Parameters at 12 GeV (2.2 GeV/pass)





- Beam parameters at 12 GeV meet outyear specification.
- Growth in emittance/energy spread due to synchrotron radiation effects agrees well with expectations.





# **Commissioning Request from HallB**

| Parameter               | Requirement        | Unit                                                                                        |
|-------------------------|--------------------|---------------------------------------------------------------------------------------------|
| Energy (GeV)            | 10.6, 6.4 & 2.2    | The 2.2 GeV, 1-pass, may not be needed if required measurements can be performed at 6.4 GeV |
| δρ/ρ                    | < 10 <sup>-4</sup> | Not possible at all energies, marginally feasible 4 <sup>th</sup> pass                      |
| Current (nA)            | 1 to 160           | The production running will be at ~ 75 nA                                                   |
| Current stability       | <5%                | for > 5 nA                                                                                  |
| σxy (μm)                | < 300              | As measured by 2H01A harp Not presently allowed to be<br>"required;" but is achievable      |
| Position stability (µm) | < 100              | On 2H01 and 2H00 (> 30nA) BPMs with feedback                                                |
| Divergence (µrad)       | < 100              | Collective or microscopic? Any rasterization involved?                                      |
| Beam Halo (><br>±5σ)    | < 10 <sup>-5</sup> | As measured by 2H01A harp                                                                   |
| Charge<br>asymmetry     | < 0.1%             | Measured with SLM and halo rates, and controlled by hall                                    |
| 60Hz harmonics          | < 10%              | of the total power, measured with SLM and halo rates                                        |





## Input for Revised Beam Property Table

- Is it helpful to CLAS12 users to specify an energydependent beam radius? Or is a single value such as 300 microns adequate?
  - Reasonably easily achievable values range from ~80 microns in x and y below 6 GeV to 150-200 microns at 11 GeV
- What resolution is useful to you?
  - Asking for what you don't need wastes clock time
  - I would plot radius vs. energy and treat 6 GeV at 3-pass as not much different from 6 GeV at 5-pass (which won't occur often).
  - For experimental planning, ask about parameters you need that are somehow harder than table values
- Please let me know what is useful to you.





# **Unscheduled Tuning: What? Why?**

- Something goes wrong during beam delivery
- No system shows a fault
- Beam doesn't go where/how intended
  - Vacuum
  - Focusing/Bending/Steering magnets
  - Linac accelerating RF
  - Injector bunch formation RF
  - Cathode drive laser
  - Unrecognized drifts in other systems
- Beam-based diagnosis: time-consuming, inefficient
- Robust Q/A can help prevent lost time
  - Let's do that.





# **DC Systems: Better Calibration**

- Calibration of voltage read-backs
  - Voltage historically secondary to current
  - Accurate resistance measurement
  - Flags installation error and in-service faults
- Better system monitoring  $\rightarrow$  early error detection
- Follow-on to previous system improvements
- Systematic measurement of magnet resistances
  - Noise alarm (flicker in readback)
  - Voltage tracking after establishing set point
  - Targeted at detection of in-situ degradation





# What Else Can Go Wrong?

- "Trim" magnet racks mis-placed P/S cards
  - Yesterday a power supply card was found in an "empty" slot (very unusual)
  - An "unpowered" steering corrector was active
  - Adjacent correctors had been set to compensate
  - Invisible to the control system
  - Diligent hands-on examination uncovered it
- Degraded labeling contributes to wiring errors
  - Beam-based discovery is expensive
  - In situ inductance measurements can find most faults
  - Several miswired quads have been identified/fixed
  - Optics tools are being reworked to target point faults





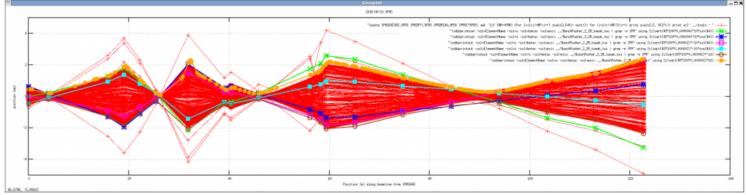
## Summary

- 12 GeV Experimental program under way
- 12 GeV beam milestones:
  - Simultaneous 4-hall operation
  - Attainment of 900 kW beam power administrative limit
- Accelerator Operations continues to dial in 12 GeV performance
  - Combined effort with CASA, SRF, Engineering, Facilities
- CASA improving optics analysis, setup procedures, diagnostic tools
  - Fielding more effective beam-based optics characterization
  - Coordinating with DC Power to identify and correct magnet errors
- Availability Challenges Remain
  - New systems issues: Box supplies, magnet buses
  - End-of-life issues: SRF Window failures, SC1 2K cold-box
  - Performance Plan being initiated
    - Critical spares shortages being addressed by procurements
    - End-of-life/obsolescence to be addressed by replacement
    - Initiating "C75" program to restore acceleration margin
    - Cavity reconditioning *in situ* to reduce field emission

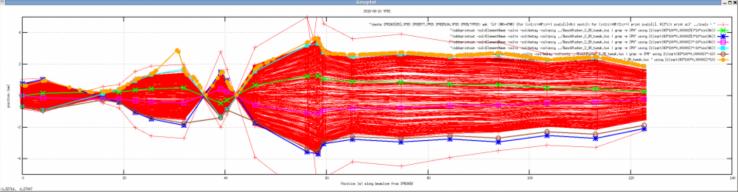


# **Supplemental Slides**

Examples of rayTrace diagnostics for visualizing the beam and comparing against models







# Example: MQA2R09 wiring error

- Resistance (barely) within range
- Use rayTrace differential orbit data to diagnose
- Identified long-standing 15% focusing strength error



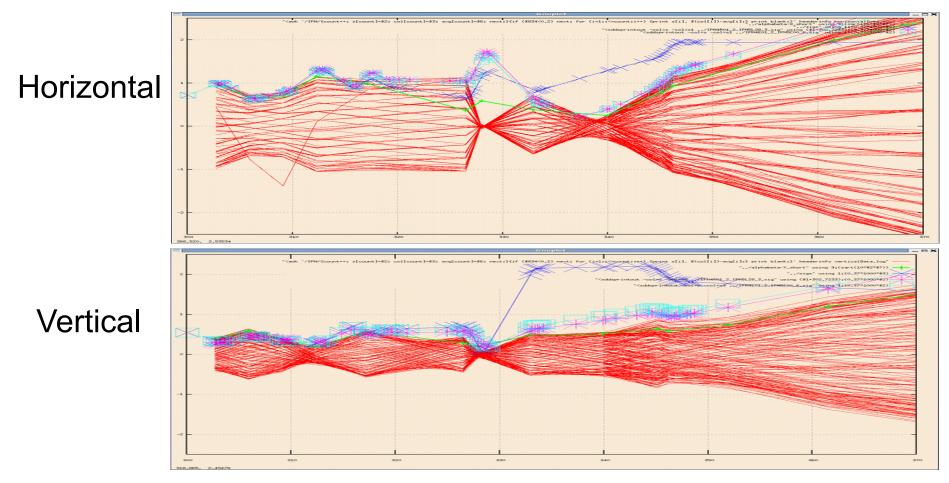








#### Thomas Jefferson National Accelerator Facility


CLAS12 Collaboration Meeting, March 06-09, 2018

20



# Example: MQK4R08 wiring error

- Use rayTrace differential orbit data to diagnose
- Identified focusing strength error

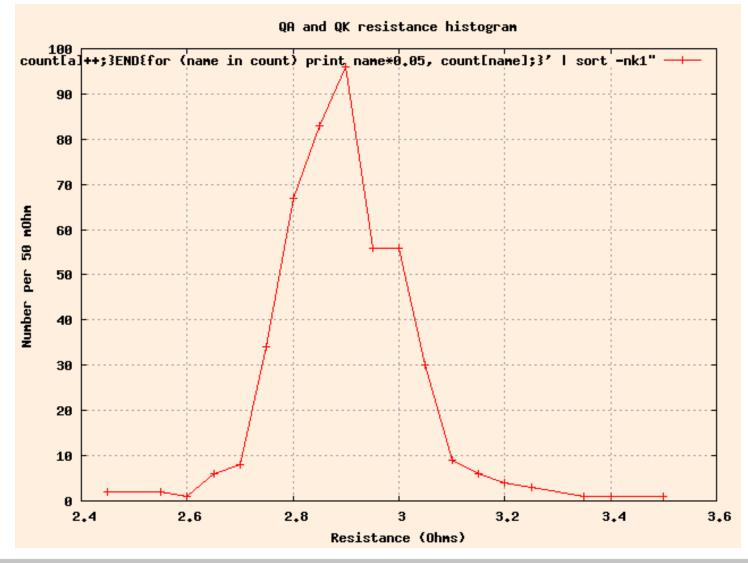




Thomas Jefferson National Accelerator Facility CLAS12 Collaboration Meeting, March 06-09, 2018



21


# **Confirmed quadrupole wiring faults**

- MQABT03 (Hall D line)
- MQA2R09 (West Recombiner at 2<sup>nd</sup> pass NL injection)
- MQK4R08
- MQA3S03
- MQA2T07
- MQK7R08A





# **Reported Resistance of QA/QK Quads**





Thomas Jefferson National Accelerator Facility



CLAS12 Collaboration Meeting, March 06-09, 2018