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Short-range correlated pairs prefer to be np.
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Short-range correlated pairs prefer to be np.
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Short-range correlated pairs prefer to be np.
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How does np-dominance evolve with momentum?



How does np-dominance evolve with momentum?

Scalar part of the NN interaction

Tensor interaction dominates
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How does np-dominance evolve with momentum?

Scalar part of the NN interaction

Scalar term takes over

Tensor interaction dominates
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Previous data show np dominance
OVer a narrow range.
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pp/p analysis using EG2 data

Select A(e, €'p) events in which the p comes from an SRC pair.
m Exact same procedure (exact same EVENTS!) as in:
m O. Hen et al., “Probing pp-SRC in 12C, 2"Al, 5°Fe, and 2°®Pb using
the A(e, €'p) and A(e, €'pp) Reactions” (2014)
m E. O. Cohen et al., “Extracting the center-of-mass momentum
distribution of pp-SRC pairs in 2C, 2’ Al, **Fe, and 2%Pb" (2018)
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See how often there is an additional proton in coincidence.
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pp/p analysis using EG2 data
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pp/p analysis using EG2 data
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pp/p analysis using EG2 data
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The acceptance for recoll protons is non-trivial.

300° -Em
250° |-
200° |
¢ 150° |
100° [

50°

0° ==

Simulated acceptance during EG2

o
®

©
(@)
Acceptance

I
©
~

14



The acceptance for recoil protons is non-trivial.

Where do the recoil protons go?
— What is the SRC pair center-of-mass momentum distribution?
What is that distribution longitudinal to pmiss?

What is our confidence on that acceptance?
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Erez showed that the longitudinal CM distribution
has pmiss dependence.

12C(e, €'pp) events

pcm || Pmiss [GeV/C]

-1 ! ! ! ! ! !

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pmiss [GGV/C]
16



Erez showed that the longitudinal CM distribution

has pmiss dependence.

Erez's 5-parameter model:
The CM distribution is a 3D Gaussian with w, o:

Longitudinal t0 pmiss: Transverse t0 Pmiss:

m Width: o) = al(pmiss — 0.6 GeV) + ao m Width: o
m Mean: pj = b1(pmiss — 0.6 GeV) + ba m Mean: u; =0
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Determining where the recolil protons go Is now a

problem of parameter estimation.

Pmiss = Plead —

P(BrecolBriss) = / dardardbrdbodo

P(ﬁrecoil|ﬁmi55v ai, ap, b1, bo, UL)
x P(a1, az, by, by, 01| D)
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We can use Bayes' Theorem to estimate
P(al, an, bl, b2, O-J_lD).

(D|31, an, bl, b2, (TJ_) X P(al, an, bl, bz,O—L)

- P
P(a1, a2, b1, by, 0. |D) = p(D)
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We can use Bayes' Theorem to estimate
P(al, an, bl, b2, O-J_lD).

= PD , ,b,b’ P , ,b,b,
P(alva2vb1yb2,O-J_‘D): ( |31 daz, b1 2(7;23) (al a», by ZUL)

m P(Dla1, a2, by, b, 01 ) — Likelihood

How likely are the observed data given a guess of a1, a», by, by, 0,7
] P(al, an, bl, b2, O'J_) — Prior

What is our prior confidence on a1, as, by, bo, 01?7 (not so relevant)

—

m P(D) — Evidence
Normalization, not relevant. ..
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Data-driven likelihood estimate

Given a guess of a1, ap, by, by, 0 :

For each A(e, €p) event in data:

m Randomly sample many pcys vectors using 3D Gaussian.

B Test if Precoil IS accepted using simulated maps.

For each A(e, €'pp) event in data:
m Test against pseudodata distributions from step 1.
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Data-driven likelihood estimate

Data:
Model:

al =0.185
a2 = 0.202
bl =0.713
b2 =0.278
o] = 0.151
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We still need to integrate the posterior
to find out where recolls go.

Pmiss = Plead —

\ /Blead

N\N\NNNNNP
q
\. Precoil

P(BrecolBriss) = / dardardbrdbodo

P(ﬁrecoil|ﬁmi55v ai, ap, b1, bo, UL)
x P(a1, az, by, by, 01| D)
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Markov Chain Monte Carlo will help us integrate.
Metropolis-Hastings Algorithm
m Random walk in 5D (ai, a2, b1, ba, 01 ) space
m Choose steps so that frequency ~ probability
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Each random walk point predicts an acceptance
factor.

80% - .
@
S 60% |- .
o
g
g 40% |- .
O
<
20% .
0% | | |

0.4 0.6 0.8 1
Pmiss [GeV/c]



We can apply this correction to our pp/p yields.
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We can apply this correction to our pp/p yields.

EG2 data, acceptance corrected
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Preliminary closure test

Can the algorithm reproduce model parameters of our choosing?

Recoil acceptance

100%

80%

60%

40%

20%

OO

(4
300

MCMC results

Model

400 500 600 700 800 900 1000
Pm [MeV]

28



Outstanding Issues

m Verify that the algorithm performs under closure tests.
m Estimate systematic effects

m Imperfect simulation
m Bias from the algorithm

m Verify the data handling

m Fiducial cuts on recoil protons
m — matched acceptance simulations

m Interpretation and corrections

m Transparency
m Single charge exchange
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