

I D E A FUSION

Validation of neutrino energy estimation using electron scattering data

Student Mariana Khachatryan Supervisor Lawrence Weinstein

Outline

- □ The importance of energy reconstruction in neutrino oscillation experiments
- □ Neutrino-nucleon Charged Current interactions
- Testing neutrino beam energy reconstruction methods with electron scattering CLAS e2a experiment data

2.Disappearance experiments: Compare the fluxes of neutrinos of given type before and after oscillations (Am^2I)

(Long Baseline) Oscillation Challenge

Oscillations are basically ratios of reconstructed v energy spectra:

- Energy (x-axis): Reconstructed from the measured final state.
- Flux (y-axis): Corrected using reaction model

=> Incorrect neutrinonucleus interaction modeling can bias the extracted oscillation parameters

What can we learn from e- scattering studies?

e⁻ and neutrino interactions with matter have many similarities e- beam energy is known \longrightarrow can test energy reconstruction in selective kinematics

Goal:

- Analyze electron scattering data to study neutrino beam energy reconstruction methods for different energies and nuclei.
- Study nuclear responses (FSI, Resonance production, Multinucleon effects, etc.)
- Compare to Genie results and identify regions of phase space where simulation and data agree well

SRC FSI e-nucleus two body diagrams that lead to the same final state as that of e⁻-N QE

ίC

MEC

Energy reconstruction methods in neutrino experiments

- $E_{\nu} \text{ Reconstruction from lepton kinematics} \\ [(e,e') \text{ or } (\nu,l)] \text{ (assumes QE)} \\ E_{\nu}^{\text{kin}} = \frac{2M\varepsilon + 2ME_1 m_l^2}{2(M E_1 + |k_1| \cos \theta)}$
- $\varepsilon \approx 20$ MeV single nucleon separation energy

M-nucleon mass

- m_1 outgoing lepton mass
- k_1 lepton three momentum
- θ lepton scattering angle Problem: assumes QE

Cherenkov detectors:

- Electrons & Pions
- No protons / neutrons

SNO (Sudbury Neutrino Observatory, Canada, Ontario)

- 1000 ton heavy water D₂0 and 3000 ton normal water
 - Detect neutrinos via CCQE, NCQE and CC and NC e⁻- neutrino elastic scattering
 - 9546 PMTS

Transparent Acrylic vessel

Water Cherenkov detector

Study: Solar neutrino problem

Art McDonald was co-awarded Nobel prize in 2015

 H_20

 D_20

12m

 E_{v} Reconstruction from 'full' final state [(e,e'pX) or (v,lX)]

$$E_{\text{Calorimetric}} = E_{e}^{'} + \sum T_{p} + E_{\text{Binding}} + \sum E_{\pi}$$

 E_{Binding} – Binding energy

 T_p – kinetic energy of knock out proton

 E'_{e} – energy of scattered electron

 E_{π} – energy of produced meson We ignore the kinetic energy of A-1 system.

Tracking detectors:

- Charged particles $+\pi^0$
- Neutron detection is challenging

Electron scattering data

E2a target properties

Have analyzed ³ He , ⁴ He, ¹² C, ⁵⁶ Fe 4.461, 2.261 GeV
e2a experiment data
Other data available ³ He, ⁴ He, C, Fe 1.1 GeV

Target	$\left \text{length} \left \text{cm} \right \right $	Density $* \text{length} [\text{g/cm}^2]$
³ He	4 - 5	0.335
$^{4}\mathrm{He}$	4 - 5	0.0625
^{12}C		0.221
$56_{\rm Eo}$		0.118
CII LE		0.067
CH_2		

Good (e,e') and (e,e'p) events *10⁶ with e and p PID, vertex and fiducial cuts and W<2

	2.2GeV (e,e')	2.2GeV (e,e'p)	4.4GeV (e,e')	4.4GeV (e,e'p)			
3He	29	12	3.9	1.4			
4He	46	17	8	2.6			
12C	29	11	5	1.5			
56Fe	1.5	0.5	0.4	0.1			

CLAS detector package

3D view

 $M = m_{W^{\pm}}$ (for CC weak interaction)

Scale the electron scattering data with $1/\sigma_{Mott}$ to have 'neutrino like' data!

2.261 GeV analysis

$oldsymbol{ heta}$ and $oldsymbol{arphi}$ distributions

E2a ³He 2.261 GeV

Subtracting undetected pions to get 0 pion sample

Subtracting undetected pions

E2a ³He 2.261 GeV (e,e')

Cuts

No π_+ , π_- and no photons coming from π_0 decay

2.261 GeV

(e,e'p) E_{Calorimetric}

 $\begin{array}{l} {\sf E}_{Calorimetric} = {\sf E}_{e'} + {\sf T}_p + {\sf E}_{Binding} \\ {\sf E}_{e'} - energy \ of \ scattered \ electron \\ {\sf T}_p - kinetic \ energy \ of \ knock-out \ proton \\ {\sf E}_{binding} - Difference \ between \ binding \\ energies \ of \ A \ and \ A-1 \ nuclei \end{array}$

14

(e,e'p) E_{calorimetric}, (e,e') E_{rec} and (e,e'p) E_{rec} 2.2GeV Cuts π^+,π^- and no photons coming from π^0 decay No ⁵⁶Fe ³He ×10⁶ 6 ×10 ⁵⁶Fe ³He 16 E_{Calorimetric}(e,e'p) 100 14 E_{Calorimetric}(e,e'p) 12 80 E_{kin} (e,e' 10 60 40 E_{kin} (e,e') E_{kin} (e,e'p) 20 E_{kin} (e,e'p) 1.5 2.5 0.5 0.5 1.5 2 2.5 E_{reconstructed}[GeV] E_{reconstructed}[GeV] Ekin has Worse peak resolution than E_{Calorimetric} 2. ⁵⁶Fe is much worse than ³He 3. Same tail for $E_{kin}+E_{calorimetric}$ 4. ⁵⁶Fe predominantly tail

4.461 GeV analysis

Fraction of events reconstructed to within 5% of the beam energy

	2.2 GeV		4.4GeV	
	E _{kin} (e,e')	E _{calorimetric} (e,e'p)	E _{kin} (e,e')	E _{calorimetric} (e,e'p)
³ He	0.32	0.55	0.21	0.40
⁴ He	0.23	0.46	0.15	0.31
¹² C	0.2	0.39	0.12	0.29
⁵⁶ Fe	0.16	0.26	0.09	0.22

KamLAND, PRL 100, 221803 (2008)

- \diamond Statistical error due to the amount of the analyzed data
- Systematic error due to imperfect geometrical acceptance (to be studdied)
- \diamond Errors of the weights for subtraction of undetected pions and protons

-Statistical error due to the number of rotations is kept less than 1% with sufficient number of rotation (is not included in error calculation) -Systematic error due to the dependence of the cross section on the angle between $(\vec{p}_e, \vec{p}_{e'})$ and (\vec{q}, \vec{p}_{π}) or $(\vec{q}, \vec{p}_{\text{prot}})$ planes (is small and is being studded)

Summary

1. First use of electron data to test neutrino energy reconstruction algorithms

- use zero-pion cuts to enhance quasi-elastic event selection
- just scattered lepton (E_{kin})
 - \diamond used in Cherenkov-type neutrino detectors
- total energy of electron plus proton (E_{Calorimetric})
 - \diamond used in calorimetric neutrino detectors
- improved by a transverse momentum cut to better select QE events

2.Only 0.09-0.55 fraction of events reconstruct to within 5% of the beam energy at 2GeV

- better for lighter nuclei
- 3. Serious implications for neutrino oscillation Measurements
- 4. Tremendous interest in the neutrino community5. Analysis note in preparation, aiming for PRL6. Future work
 - extend analysis to other kinematic regions, more⁴⁰⁰ targets and energies
 - Identify regions with good and bad energy reconstruction and GENIE modeling.
 - Proposal "Electrons for Neutrinos" conditionally approved by PAC 45.

21

Number of events with pions and protons

E2a 4.461 GeV

23

Subtracting undetected pions

4.461 GeV

(e,e')

Cuts

No $\pi_{\scriptscriptstyle +}$, $\pi_{\scriptscriptstyle -}$ and no photons coming from $\,\pi_{\scriptscriptstyle 0}\,$ decay

³He

4.461 GeV

(e,e'p) E_{Calorimetric}

 $E_{Calorimetric} = E_{e'} + T_{p} + E_{Binding}$ $E_{e'}$ -energy of scattered electron T_p-kinetic energy of knock-out proton E_{binding}-Difference between binding energies of A and A-1 nuclei

⁵⁶Fe з з 9000 <u>×10</u> ×10 0= V ³He N =0 8000 π π 7000 ⁶⁰⁰⁰ Subtract undetected π Subtract undetected π and p Subtract undetected π Subtract undetected π and p 5000 4000 3000 2000 1000 0 1.5 4.5 2.5 2 2.5 3.5 1.5 3 3.5 3 2 4 4 E_{Calorimetric}[GeV] $E_{Calorimetric}[GeV]$

³He

⁵⁶Fe '

4.5

