Quark propagation and hadron formation in the nucleus

(progress in analysis of experimental data of CLAS EG2 experiment)

Hayk Hakobyan for UTFSM group

CLAS collaboration meeting March, 2018

Experimental details

Rohacell foam scattering chamber

EG2 Experiment target in GEANT3 Solid (C, Al, Fe, Sn, Pb) target simultaneously w2th deuterium target

Liqùid D

Schematic diagram describing semi-inclusive Deep Inelastic Scattering of a lepton off a nucleon

Experimental Variables

 v – energy transferred by the electron, = initial energy of struck quark, (2 ~ 4.5) GeV here

 Q^2 – probe, (1 ~ 4) GeV² here

 z_h – energy fraction carried by hadron; 0<z_h<1

- p_T hadron momentum transverse to virtual photon direction
- Φ hadron azimuthal angle to virtual photon direction

E_{BEAM}=5 GeV (CLAS)

Hadronic multiplicity ratio

$$R_{M}^{h}(z,\nu,p_{T}^{2},Q^{2},\phi) = \frac{\left\{\frac{N_{h}^{DIS}(z,\nu,p_{T}^{2},Q^{2},\phi)}{N_{e}^{DIS}(\nu,Q^{2})}\right\}_{A}}{\left\{\frac{N_{h}^{DIS}(z,\nu,p_{T}^{2},Q^{2},\phi)}{N_{e}^{DIS}(\nu,Q^{2})}\right\}_{D}}$$

Transverse momentum dependence on 1/3 of nuclear mass number (all together in 24 kinematical region)

Acceptance correcion less than 14 %

Multiplicity Ratio Dependence on $Z_{\rm h}$ in different Q^2 and ν bins

3 pions 1 dimensional Multiplicity Ratios distributions paper

People currently involved in the analysis:

William Brooks (coordinator) Raphael Dupre Ahmed El Alaoui Hayk Hakobyan Taiysia Mineeva Sebastian Moran Orlando Soto

Several independent data analysis are performed

Two analysis notes are under review:

"Hadronization studies via pi0 electroproduction off D, C, Fe and Pb" "Study of the hadronization of the charged pions" 8

Integrated distribution comparison between Raphael and Hayk analysis

Multiplicity Ratio in function of z

Possible sources for uncertainty in the results

- Different dimensional binning in acceptance correction procedure (5 dim. - Hayk (up to 3% correction) & 4 dim. Raphael (10% correction))
- Tighter particle ID cuts in the case of Raphael's analysis for electrons and for pions.
- Vertex cut
- Different approaches in pion identification: $\Delta t - Hayk \& \Delta \beta - Raphael$
- Etc.

Acceptance correction method?

Comparison 5 dim. acceptance correction vs. 4 dim.

Vertex cut?

D² cell in GSIM

Ratio of acceptances for positive pions from the solid target to the liquid target

Comparison of different vertex cuts

Comparison MR for differents Vertex Cuts, Si Xf Cut, Acceptance Corrected.

EMC curve with different vertex cuts

EMC curve from different analysis

Normalization factors comparison

Normalization Factors

Physics generator code for simulations?

Comparison of different simulation codes

Discrepancy between Orlando's and Hayk's Simulations (%), MR Zh, 5D

Conclusions!

- Acceptance correction method (5 dim vs 4 dim) doesn't reproduce the observe uncertainty between different analysis
- Vertex cut doesn't reproduce the observed uncertainty between different analysis
- Further studies are necessary (currently on progress)

 π^0 analysis status update (1):

radiative correction for the electron off nuclear targets

Taisiya Mineeva

Inclusive electron radiative corrections in DIS

Code: EXTERNALS from D.Gaskell & al (based on the code originating in SLAC in 80s)

- First Born approximation + next-to leading order QED processes
- Mo & Tsai formalism for handling of IR divergencies: angular peaking approximation equivalent radiator method
- New: full 3D integration of radiative tails in elastic, quasielastic and dis regimes

Radiative correction (RC) factors for D,C,Fe,Pb

 $\delta_{RC} = \sigma_{Rad} / \sigma_{Born}$ $N^{e}_{corr} = N^{e}_{meas} / \delta_{RC}$

Radiative correction (RC) factors normalized to D

$$R^{e}_{corr} \sim \frac{(N^{e}_{meas}/\delta_{RC})_{D}}{(N^{e}_{meas}/\delta_{RC})_{A}} \sim N * \frac{(\delta_{RC})_{A}}{(\delta_{RC})_{D}}$$

Coulomb correction for C, Fe, Pb

Code: the same code EXTERNALS from D.Gaskell & *al* Formalism: effective momentum approximation + focusing factor

$$k'_{i} = k_{i} + \Delta k, \qquad k'_{f} = k_{f} + \Delta k, \qquad \text{e-accelerates} \qquad \text{e-decelerates}$$

$$k'_{i,f} = |\vec{k}'_{i,f}|, \qquad \Delta k = -V_{0}/c,$$

$$V_{0} = (1.5)^{*}(Z/R)^{*}(\text{hbar}^{*}c)^{*}\alpha^{*}0.775$$
Coulomb correction factor is normalized by the square of focusing factor :
$$f(0) = \left(1 - \frac{\beta}{R}\right)^{-2} \sim \left(1 - \frac{V(0)}{E}\right)^{2} \sim (k'_{i}/k_{i})^{2}$$

Aste et al., Eur. Phys. J. A 26, 167 (2005) Aste et al. Nucl.Phys. A743 :259-282 (2004) e- accelerates: $k_i' > k_i$ e- decelerates: $k_f' > k_f$

Coulomb correction (CC) for C, Fe, Pb

 $\delta_{CC} = \sigma_{QE} / \sigma_{Coul}$ N^e_{corr} = N^e_{meas} * δ_{CC}

Consensus on electron radiative corrections

- Inclusive electron RC are now calculated with EXTERNAL code for all three pion analysis
- Charged pion analysis carried by Raphael Dupré previously used RADGEN

Comparison of $(\delta_{RC})_{Pb}/(\delta_{RC})_D$ between two codes, in bins of v (color) vs x_B

Note: EXTERNALS does exact calculations, while RADGEN is based on MC and has statistical fluctuations

π⁰ analysis status update (2): systematic uncertainties

Taisiya Mineeva

Summary table of the current status on systematic uncertainties

Systematic uncertainty	$\Delta^C_{RMS}(\%)$	$\Delta_{RMS}^{Fe} \ (\%)$	Δ^{Pb}_{RMS} (%)	
Normalization type				
Target vertex cut	0.5	0.5	0.5	MIGHT CHANGE
Target leakage	0.9	0.9	0.9	
Sampling fraction cut	0.4	0.4	0.4	
Photon energy cutoff	2.1	2.1	2.2	
EC time (beta) cut	0.6	0.6	0.6	NEW
DC fiducial cuts	1.3	1.3	1.3	
Electron radiative corrections	3.3	3.3	3.3	NEW
SIDIS radiative corrections				REMAINING
Bin-by-bin basis				
Background shape	0.6	0.5	0.8	
Signal shape	2.1	2.1	4.5	
Acceptance in finite bin width	2.8	2.8	2.8	
Total in (ν, z, p_T^2)	5.6	5.6	6.9	