Harut Avakian (JLab)

"Deep Process Working Group Meeting"

March 8 2018

- Inclusive pions and multiplicities
- First measurements of DIS and SIDIS
- MC-generators
- Comparing DIS generated input and output
- Radiative corrections
- Data output
- Summary

The role of MC simulations

- Understand detector performance, extract acceptance and efficiency.
- Optimize the output of data for further analysis using available extraction techniques

Need realistic MC, and maximum possible granularity (dictated by technical possibilities) in relevant bins for proper acceptance account

- 1) DIS, provides possibility to look (monitor) for electron efficiency in the accessible kinematics
- 2) SIDIS multiplicities, provides important info on fragmentation and also allow monitoring electrons and hadrons
- 3) Both should be used to test the extraction of underlying physics (several PAC proposals approved)

Candidate for first SIDIS publication: $e' \pi_0 X$

JLab Oct 5

1) e'X -cross section: electron acceptance is relevant for all other measurements cons: we need the acceptance and the luminosity as well as contamination from pions under control.

2) e' π^0 X/ e'X ratio (ratio of semi-inclusive pi0 to inclusive electron)

For the ratio we just need the gamma acceptance, which could be defined using the KPP

Need: good control for neutral acceptance

From SIDIS to DIS

$$\frac{d\sigma}{dx\,dQ^2\,d\psi\,dz\,d\phi_h\,d|P_{h\perp}|^2} = \frac{\alpha^2}{xQ^4}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\left\{F_{UU,T}+\varepsilon\,F_{UU,L}\right\}.$$

$$3D \text{ SIDIS}$$

$$F_{UU,T}(x,z,Q^2) = \int d^2\vec{P}_{h,\perp}F_{UU,T}(x,z,P_{h,\perp}^2,Q^2)$$

$$\frac{d\sigma(lN\to lX)}{dx\,dQ^2\,d\psi} = \frac{1}{\nu+M}\sum_h \int E_h\,dE_h\frac{d\sigma(lN\to lhX)}{dx\,dQ^2\,d\psi\,dE_h} = \frac{\nu}{\nu+M}\sum_h \int z\,dz\frac{d\sigma(lN\to lhX)}{dx\,dQ^2\,d\psi\,dz}$$

$$1D \text{ SIDIS}$$

$$\frac{d\sigma}{dx\,dQ^2\,d\psi} = \frac{2\alpha^2}{xQ^4}\frac{y^2}{2(1-\varepsilon)}\left\{F_{UU,T}(x,Q^2) + \varepsilon F_{UU,L}(x,Q^2)\right\}.$$

$$\frac{d\sigma}{dx\,dQ^2\,d\psi} = \frac{2\alpha^2}{xQ^4}\,\frac{y^2}{2\,(1-\varepsilon)}\left\{2(1-\varepsilon)xF_1(x,Q^2) + \varepsilon(1+\gamma^2)F_2(x,Q^2)\right\} \qquad \text{DIS}$$

$$F_{UU,T}(x,Q^2) = F_T(x,Q^2) = 2xF_1(x,Q^2) = \sum_h \int z \, dz F_{UU,T}(x,z,Q^2)$$
$$F_{UU,L}(x,Q^2) = F_L(x,Q^2) = (1+\gamma^2)F_2(x,Q^2) - 2xF_1(x,Q^2) = \sum_h \int z \, dz F_{UU,L}(x,z,Q^2)$$

Generators: x-section vs weights

gemc-coatjava chain supports both x-section based and weighted generation

									-					
		2	1	1	1.0	1.0 11	10.600	2212	1	0.1108596E-	-01			
1	-1.	1	11	0	0	-0.7583	-0.7440	3.9571		4.0972	0.000	-0.0174	0.0305	1.3425
2	1.	1	211	0	0	0.8698	-0.6332	3.2529		3.4291	0.139	-0.0174	0.0305	1.3425
		2	1	1	1.0	1.0 11	10.600	2212	1	0.4220764E-	-02			
1	-1.	1	11	0	0	-1.1716	0.9665	3.2259		3.5656	0.000	0.0016	-0.0436	-1.5889
2	1.	1	211	0	0	0.1630	-0.4267	3.5986		3.6302	0.139	0.0016	-0.0436	-1.5889
2	1.	1	211	0	0	0.1630	-0.4267	3.5986		3.6302	0.139	0.0016	-0.0436	-1.5889

- Two approaches are fully compatible (2M events generated in both cases)
- Using weights for events makes the generation much faster, and most importantly provides statistics for acceptance studies in small bins.

Comparing different DIS models

Pi0 efficiency in inbending: new vs old release

- Studies of SIDIS with pi-0 require reconstruction of electrons and photons (relatively stable in recent releases)
- Will require development of fiducial cuts for e- and photons for extraction of multiplicities

Standard input for SFs

```
"Elab": "10.6",
                                                  (JavaScript Object Notation for a single
"author": "N. Sato",
                                                  hadron production eN \rightarrow e'X)
"axis": Г
    £
        "bins": 200,
        "description": "Bjorken x",
        "max": 0.999,
        "min": 0.05023842613463728,
        "name": "a",
        "scale": "arb"
   },
    £
        "bins": 200,
        "description": "y",
                                                       Table can be generated from any
        "max": 0.999,
        "min": 0.05023842613463728,
                                                       existing program for calculation of SFs
        "name": "b",
        "scale": "arb"
                                                       for any given set of parameters, final
    }
                                                       state particles, target nucleon,
],
"generator": "JAM",
                                                       polarization states in tiny bins.
"lepton": "e-",
"reaction": "DIS",
"target": "p",
"variables": [
    "x,y,Q2,F2,FL,FL,dsig/dxdy"
iχ
                                                              F2
                                                                         FL
                                                                                     F3 dsig/dxdy
               iy
                            х
                                        y
                                                  02
     0
              191 5.2610e-02 9.5868e-01 1.0039e+00 3.0120e-01 6.0973e-02 5.4901e-04 1.6325e-03
     0
              192 5.2610e-02 9.6342e-01 1.0089e+00 3.0160e-01 6.0859e-02 5.5211e-04 1.6154e-03
     0
              193 5.2610e-02 9.6817e-01 1.0139e+00 3.0199e-01 6.0746e-02 5.5522e-04 1.5987e-03
     0
              194 5.2610e-02 9.7291e-01 1.0188e+00 3.0239e-01 6.0633e-02 5.5832e-04 1.5823e-03
     0
              195 5.2610e-02 9.7765e-01 1.0238e+00 3.0278e-01 6.0522e-02 5.6142e-04 1.5662e-03
     0
              196 5.2610e-02 9.8240e-01 1.0288e+00 3.0317e-01 6.0411e-02 5.6453e-04 1.5503e-03
     0
              197 5.2610e-02 9.8714e-01 1.0337e+00 3.0355e-01 6.0301e-02 5.6763e-04 1.5348e-03
              198 5.2610e-02 9.9188e-01 1.0387e+00 3.0394e-01 6.0192e-02 5.7074e-04 1.5196e-03
```

Jefferson Lab

Binning in DIS

With small bins x,y-binning will be much better for extraction of SFs

- 1) scale variable
- 2) fixed range
- 3) smaller change in resolution

Radiative SIDIS

Akushevich&Ilyichev in progress

 $\cdot \delta^{\star}(k_1 + p - k_2 - p_h - p_u - k)$ $e(k_1,\xi) + n(p,\eta) \to e(k_2) + h(p_h) + u(p_u) + \gamma(k)$

/

Radiative DIS

in lepton-nucleus scattering.

Figure 1: Feynman diagrams contributing to the Born and the radiative correction cross sections

Akushevich et al. http://www.jlab.org/RC/radgen/

/group/gpd/sidis/inclusive-dis-rad/generate-dis

--xgrid -> use xsec grid --sfgrid -> use F₁,F₂,F_L grids --writegrid .FALSE. dump the grid --rad 0 no radiation,1-grid,2-calc

Jefferson Lab

Radiative **DIS**

Dedicat	ed D	IS ge	ner	rato	or with rac	dgen (ge	mc input)						
	2	1	1		0.12	1.04	11 10.6	500 ZZ1Z	1 0.688268	3E-05 0.123	5496E+00	11.55 8.13	
1 -1.	1	11	0	0	-1.2610	-0.0968	1.5722	2.0177	0.0005	-0.0185	0.0768	-0.4312	
Z Ø.	1	22	1	0	0.2821	-0.0185	0.3528	0.4521	0.0000	-0.0185	0.0768	-0.4312	
	-												_
								t t					Т

Jefferson Lab

Radiative DIS

Akushevich et al. http://www.jlab.org/RC/radgen/ /group/gpd/sidis/inclusive-dis-rad/generate-dis

--rad 1 (table input, generated on flight)

Figure 1: Feynman diagrams contributing to the Born and the radiative correction cross sections in lepton-nucleus scattering.

Radiative correction become very significant for low energy scattered electron

Extraction of DIS x-section and acceptance

{											
		"model	": "Nobuo_F2,FL"								
		"refer	ence": "N. Sato et	t al"							
		"multi	plicity":"Counts"								
		"Beam	Energy": 10.600								
		"lepto	n-polarization": '	"0"							
		"nucle	on-polarization":	"0"							
		"parti	cle": "pi+"								
		"varia	bles":["N","Counts	s","Err.Counts'	',"acc","RadCo	r","xav","yav",	"qZav"				
		"axis"	:[
			{"name":"a","bi	ins": 99,"min":	: 0.05, "max":	0.95, "scale":	"lin","descr	iption":"x	_bj"}	Radiativ	e corrections
			{"name":"b","bi	ins": 99,"min":	: 0.95, "max":	13.1, "scale":	"lin","descr	iption":"Q	^Z"}	may he	significant
],										ngrimourit
		"param	eters":[
]										
}							K				
	0	0	0.81900E+03	0.33103E+07	0.11567E+06	0.18094E+00	2.5475	0.0566	0.9099	1.0248	
	0	1	0.17300E+03	0.79404E+06	0.60369E+05	0.83559E-01	3.1196	0.0583	0.9392	1.0883	
	1	0	0.14940E+04	0.45989E+07	0.11898E+06	0.43024E+00	1.7770	0.0631	0.8246	1.0334	
	1	1	0.24200E+04	0.78833E+07	0.16025E+06	0.38679E+00	2.2943	0.0637	0.8924	1.1298	
	1	2	0.74100E+03	0.25279E+07	0.92865E+05	0.18311E+00	2.7515	0.0664	0.9300	1.2276	
	2	0	0.10610E+04	0.29902E+07	0.91799E+05	0.34089E+00	1.4475	0.0725	0.7176	1.0332	
	2	1	0.21560E+04	0.54615E+07	0.11762E+06	0.44019E+00	1.5917	0.0723	0.7891	1.1339	
	2	2	0.26110E+04	0.66272E+07	0.12970E+06	0.51925E+00	2.0516	0.0722	0.8767	1.2579	
	2	3	0.15350E+04	0.41679E+07	0.10638E+06	0.29366E+00	2.5589	0.0744	0.9235	1.3654	
	2	4	0.48000E+02	0.14361E+06	0.20728E+05	0.41388E-01	3.0801	0.0768	0.9478	1.4485	
	3	0	0.82900E+03	0.23725E+07	0.82399E+05	0.30402E+00	1.3423	0.0816	0.6379	1.0341	
	3	1	0.15660E+04	0.38319E+07	0.96832E+05	0.35124E+00	1.4013	0.0816	0.6993	1.1334	
	3	2	0.20270E+04	0.42636E+07	0.94699E+05	0.44952E+00	1.5274	0.0814	0.7773	1.2578	
	3	3	0.24600E+04	0.49319E+07	0.99437E+05	0.54600E+00	1.8039	0.0814	0.8531	1.3798	
	3	4	0.22240E+04	0.48486E+07	0.10281E+06	0.43699E+00	2.3514	0.0822	0.9135	1.4934	

- Acceptance can be used to correct distributions for monitoring
- DIS output can be generated using input F₁,F₂ or F₂,F_L or directly x-sections

Recovering generated input from generated set

- Reasonable agreement with generated input (filled symbols \rightarrow N. Sato)
- Extract the EBC-bins from actual data using acceptance from MC

Suggested standard input for SFs:SIDIS Example

```
#!{
                                                                                (JavaScript Object Notation for a single
#!
     "model": "VGD Fuu 01",
                                                                                hadron production eN \rightarrow e'hX)
     "description": "Cahn contribution to cos",
#!
#!
     "reference": "M. Boglione, S. Melis & A. Prokudin Phys. Rev. D 84, 034033 2011",
#!
     "web-source": "http://aaa.html",
#!
    "formula": "$sf1=-2*d/b*a*a*(1-a)^p0*c^p1*(1-c)^p2*c*p3/p4*exp(-d*d/(p4+c*c*p3)/p4$",
#!
    "moment": "$A {uu}\\cos\\phi$",
    "lepton-polarization": "0",
#!
    "nucleon-polarization": "0",
#!
    "particle": "pi+",
#!
    "variables": ["AuuCos2","AuuCos2-Err"],
#!
                                                                                                              2 more
#!
      "axis": [
       { "name": "a", "bins": 40, "min": 0.025, "max": 0.995, "scale": "arb", "description": "Bjorken x"}
#!
                                                                                                              variables
        { "name": "b", "bins": 40, "min": 20.00, "max": 4.70, "scale": "arb", "description": "Q^2"},
#!
       { "name": "c", "bins": 40, "min": 0.025, "max": 0.995, "scale":"lin", "description":"z,hadron frac. energy"},
#!
#!
       { "name": "d", "bins": 40, "min": 0.00, "max": 2.00, "scale":"lin", "description":"P<sub>T</sub>, transverse momentum"}
#!
#!
     "parameters": [
#!
        {"name":"p0", "value": 1.0},
#!
         {"name":"p1", "value": 0.2},
        {"name":"p2", "value": 0.1},
#!
                                                                           Multiple files for all relevant
        {"name":"p3", "value": 0.33, "description":"average k T2"},
#!
#!
         {"name":"p4", "value": 0.16, "description":"average pt T2"}
                                                                           combinations of involved
#!
                                                                           parameters
#! }
                 -0.01285 0.00200
 0
    0
        0
             0
                                            Table can be generated from any existing program for
                 -0.03736 0.00200
    0 0 1
 0
             2
 0
    0 0
                 -0.05850 0.00200
                                            calculation of SFs for any given set of parameters, final
             3
 0
     0
         0
                -0.07459 0.00200
                                            state particles, target nucleon, polarization states.
         0
             4
                 -0.08467 0.00200
 0
     0
```


Standard output for data

ι															
	"m	ode	I": "I	Nob	uo_Fuu_01"										
	"de	escri	iptic	on": '	"F_uu,T"										
	"re	fere	nce	": "N	I. Sato et al"										
	"m	ultip	olicit	v":"(Counts"										
	"Be	eam	En	, erav	/": 10.600										
	"le	otor	າ-ກດ	lariz	ration": "0"										
	"ni	iclea	on-r	ola	rization" [•] "0"										
	"na	artic	۲ ۵۰۱ ۱۵۳۰	"ni+	"										
	"vs	ariah	יסי. אםפי	ייק ייזיי	ounte" "acc" "vav	" "ven" "za	w" "ntav" '	"vav" "nha	av" "nt/zav	/" "ota"					
	vc"	inat vic"·l	r	.[0		, yav , za	iv, plav,	yav , prie	av, puzav	, ela					
	ax	(15.j	 "no:	~~"·	"o" "hino": 10 "mi	". O OF ""	nov": 0 55	"	"lin" "dooo	rintion"."	(L;")				
		í	nai "	ne.	a, DINS. 10, III	11.0.05, 1 		, scale . "	iiii , uesc		(_DJ }				
		{	nar "	ne::	"D", "DINS": 7, "MIR	1": 1.00, "m	iax 8.0,	scale	in","descr		<u>^2</u> `}				
		{	"nar	me":	"C","bins": 7, "mir	1": 0.20, "m	ax": 0.9,	"scale":"li	in","descri	ption":"z"	}				
		{	"nar	ne":	"d","bins": 15,"mi	n": 0.00, "r	nax": 1.5	, "scale":"	lin","desci	ription":"P	I"} 📩	kaa	n hina	in nhi	
		{	"nar	me":	"e","bins": 36,"mi	n": 0.0,"m	nax": 360.	0,"scale":	"lin","desc	ription":"F	PHI"}	VEE	h nuis	in prii	
]	,														
	"pa	aram	nete	rs":[
]															
}															
11	1	1	4	0.9	999900E+02 (0.0141 0.	0994 1.	0424 0.	2636 0.	0708 0.	5271 0.	5492 0.	2686 -0.	.5311	
1	1	1	1	5	0.110602E+03	0.0191	0.0937	1.0067	0.2710	0.0818	0.5404	0.8707	0.3000	-0.5052	
1	1	1	1	35	0.655700E+02	0.0090	0.0969	1.1218	0.2447	0.0310	0.5820	5.9564	0.1266	-0.5818	
1	1	1	1	36	0.619600E+01	0.0012	0.0913	1.0703	0.2268	0.0029	0.5896	6.1982	0.0136	-0.5068	
1	1	1	2	4	0.604000E+03	0.0311	0.0985	1.0670	0.2055	0.1918	0.5446	0.6019	0.9336	0.1294	
1	1	1	2	7	0.911300E+03	0.0385	0.0927	1 2218	0 2506	0 1408	0.6631	1 1898	0.5642	-0.3208	
•	•	•	-	•	0.0110000	0.0000	0.00-1		0.2000		0.0001		0.00 i E	0.0200	

•Table may contain generated (for given beam energy) or reconstructed (for given detector configuration) event counts

• Some bins miss due to phase space limitations and detector acceptance

s

Summary

- Inclusive electron cross sections well known, can be extracted and compared with world data and existing parameterizations
- pi0-multiplicities can be extracted and used in studies of fragmentation functions
- Developed DIS generator has flexible input (x-sections, structure functions, grids, functional forms) can generate events in (x,y) and (x,Q²) space both in weighting and x-section modes, as well as with and without radiative effects.
- EBC files created from generated/reconstructed DIS events Tables files (/work/clas12/avakian/eva/)produced from simulation can be used to correct for acceptance and radiative corrections.
- Extraction procedures based on DIS input tested.
- Need realistic MC, and maximum possible granularity (dictated by technical possibilities) in relevant bins for proper acceptance account
- Understand detector performance and define fiducial region
- Optimize the output of data for further analysis using available extraction techniques

Support slides...

Implementation

- "Solid" : one program controlling the flow starting from SF calculations up to extraction of TMDs
 - advantages
 - self consistent, flexible, simpler to validate internally
 - takes number of parameters and variables and processes the full chain
 - -- disadvantages

Complex, hard to link different contributors, hard to check, add new SFs

- "Modular" : many programs (may be in different languages) communicating through JSON input/output files.
 - advantages
 - easier to write, different people can contribute at different stages
 - disadvatages

harder to run the full chain in consistent way, validation is not trivial

In both cases we need a collaboration of theorists, experimentalists and software experts to run the full chain

Reconstruction using clas12

Using DIS generator+gemc 4a.2.2 +coatjava v. 4a.8.4

Phase space and acceptance

Limitations in energy and angle deform the phase space

Generators: x-section vs weights

full kinematics (2M events)

• Two approaches are fully compatible (2M events generated in both cases)

Estimating systematics

Steps for Extraction and Validation procedure

- 1) make sure we can recover the underlying 3D PDFs (TMD/GPD...) PDF from <u>generated</u> for a given beam energy sample
- 2) make sure we can recover the underlying 3D PDFs (TMD/GPD...) from <u>reconstructed</u> for a given detector configuration sample
- 1) add radiative effects
- add other SFs to see the effect of Cahn on extraction of the F_UU,T and check the extraction of cos and cos2 moments
- 3) add/eliminate evolution effects with HT effects and see if we can indeed separate them
- 4) add F_UU,L part (HERMES is using R in their multiplicities) and see the effect of disregarding it in the extraction.
- big list of systematic checks....

Recovering generated input from reconstructed set

- Acceptance can be defined using the weighted generator set
- Both MCs after reconstruction recover the generated input in most of the kinematics.)

F2 Nobuo vs CJ15

Difference more significant at small Q²

Reconstruction using clas12

Using DIS generator+gemc 4a.2.2 +coatjava v. 4a.8.4

Generators for MC simulations

- Full event generators (PYTHIA, PEPSI, LEPTO)
- Dedicated event generators (e' X,e' hX,e' hhx,...)

Types of event generators:

- 1) Providing events with cross section
 - 1) pros: easier defined systematics, can be directly compared with data
 - 2) cons: require huge statistics to provide acceptance functions for kinematic edges with reasonable error bars.
- 2) Phase space with realistic x-sections provided as weight factors.
 - pros: acceptance for all acceptable kinematics can be provided with small error bars, much faster, easy to incorporate different models
 - 2) cons: more efforts to define systematics, need weighting

Generating DIS and SIDIS

Full event generator (PEPSI)

		N _{tracks}	А	Ν	l-p	ol N-p	ol I-ID E _b	_{eam T} T-I	ID proces	ss-ID x-se	ction		
		13	1	1	0.0	1.0	11 10.600	2212	1 0.805275	9E+05			
1	-1.	21	11	0	0	0.0000	0.0000	10.6000	10.6000	0.0005	0.0000	0.0000	0.0000
2	1.	21	2212	0	0	0.0000	0.0000	0.0000	0.9383	0.9383	0.0000	0.0000	0.0000
3	0.	21	22	1	0	-0.9974	-0.7292	3.5178	3.4109	-1.5059	0.0000	0.0000	0.0000
4	-1.	1	11	1	0	0.9974	0.7292	7.0822	7.1891	0.0005	0.0000	0.0000	0.0000
5	1.	13	2	0	6	-1.0092	-0.9040	3.2382	3.5102	0.0056	0.0000	0.0000	0.0000
6	0.	13	2103	2	0	0.0117	0.1747	0.2796	0.8389	0.7713	0.0000	0.0000	0.0000
7	1.	12	2	5	9	-1.0092	-0.9040	3.2382	3.5102	0.0056	0.0000	0.0000	0.0000
8	0.	11	2103	6	9	0.0117	0.1747	0.2796	0.8389	0.7713	0.0000	0.0000	0.0000
9	0.	11	92	7	10	-0.9974	-0.7292	3.5178	4.3492	2.2391	0.0000	0.0000	0.0000
10	۲.	11	2224	9	12	-0.7729	-1.0806	3.4710	3.9069	1.2047	0.0000	0.0000	0.0000
11	-1.	1	-211	9	0	-0.2245	0.3514	0.0468	0.4422	0.1396	0.0000	0.0000	0.0000
LZ	1.	1	2212	10	0	-0.5843	-0.9049	2.3668	2.7645	0.9383	0.0000	0.0000	0.0000
13	1.	1	211	10	0	-0.1886	-0.1757	1.1042	1.1425	0.1396	0.0000	0.0000	0.0000

$$\frac{d\sigma}{dx\,dQ^2\,d\psi\,dz\,d\phi_h\,d|\mathbf{P}_{h\perp}|^2} = \frac{\alpha^2}{x\,Q^4}\,\frac{y^2}{2\,(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\left\{F_{UU,T}+\varepsilon\,F_{UU,L}\right\}.$$

Dedicated (inclusive pion generator)

	•			•		•		,							
	2		1	1	1.0	1.0	11	10.600	2212	1	0.1108596E	-01			
	1 -1.	1	11	0	0	-0.7583	-	0.7440	3.9571		4.0972	0.0005	-0.0174	0.0305	1.3425
	21.	1	211	0	0	0.8698	-	0.6332	3.2529		3.4291	0.1396	-0.0174	0.0305	1.3425
	2		1	1	1.0	1.0	11	10.600	2212	1	0.4220764E	-02			
	1 -1.	1	11	0	0	-1.1716		0.9665	3.2259		3.5656	0.0005	0.0016	-0.0436	-1.5889
	21.	1	211	0	0	0.1630	- 1	0.4267	3.5986		3.6302	0.1396	0.0016	-0.0436	-1.5889
-										_					_
	$\frac{d\sigma}{dx dQ^2 d}$	$d\psi$	$=\frac{4}{a}$	$\frac{2\alpha}{cQ}$	$\frac{2}{4}$ 2	$\frac{y^2}{2(1-x)^2}$	ε)	$\left\{ 2(1 \right\}$	$-\varepsilon x$	F	$f_1(x, Q^2)$	$+ \varepsilon(1$	$1 + \gamma^2)F_2$	(x,Q^2)	}

Dedicated DIS generator

	2	1	1		0.12	1.04	11 10.	600 2212	1 0.688268	83E-05 0.123	5496E+00	11.55	8.13
1 -1.	1	11	0	0	-1.2610	-0.0968	1.5722	2.0177	0.0005	-0.0185	0.0768	-0.43	12
20.	1	22	1	0	0.2821	-0.0185	0.3528	0.4521	0.0000	-0.0185	0.0768	-0.43	12

0 (twist-4)

Generating DIS and SIDIS

Dedicated SIDIS generator

		2	1	1	1.0	1.0 11	10.600	2212	1 0.1108596	6E-01			
1	-1.	1	11	0	0	-0.7583	-0.7440	3.9571	4.0972	0.0005	-0.0174	0.0305	1.3425
2	1.	1	211	0	0	0.8698	-0.6332	3.2529	3.4291	0.1396	-0.0174	0.0305	1.3425
		2	1	1	1.0	1.0 11	10.600	2212	1 0.4220764	4E-02			
1	-1.	1	11	0	0	-1.1716	0.9665	3.2259	3.5656	0.0005	0.0016	-0.0436	-1.5889
2	1.	1	211	0	0	0.1630	-0.4267	3.5986	3.6302	0.1396	0.0016	-0.0436	-1.5889

Dedicated DIS generator (Bosted)

	1	1	1	1.0	1.0 11	10.600	2212	1 0.6224668	8E+00			
1 -1.	1	11	0	0	-0.6109	1.3411	8.1241	8.2567	0.0005	-0.1465	0.0724	-0.0298

COATJAVA 4a.8.4

"bank": "MC::Event", "group": 41,			
"info": "Lund header ban	k for the	generated event	" ,
"items": [
{"name":"npart",	"id":1,	"type":"int16",	"info":"number of particles in the event"},
{"name":"atarget",	"id":2,	"type":"int16",	"info":"Mass number of the target"},
{"name":"ztarget",	"id":3,	"type":"int16",	"info":"Atomic number oif the target"},
{"name":"ptarget",	"id":4,	"type":"float",	"info":"Target polarization"},
{"name":"pbeam",	"id":5,	"type":"float",	"info":"Beam polarization"},
{"name":"btype",	"id":6,	"type":"int16",	"info":"Beam type, electron=11, photon=22"},
{"name":"ebeam",	"id":7,	"type":"float",	"info":"Beam energy (GeV)"},
{"name":"targetid",	"id":8,	"type":"int16",	"info":"Interacted nucleaon ID (proton=2212, neutron=2112"},
{"name" · "processid"	"id" .9	"type":"int16"	"info":"Process ID"}
{"name":"weight",	"id":10,	"type":"float",	"info":"Event weight"}
]			

GEMC LUND Header column quantity 1 Number of particles

1	Number of particles	1	index
2	Number of target nucleons	2	lifetime
3	Number of target protons	3	type (1 is active)
4	Target Polarization	4	particle ID
5	Beam Polarization	5	parent index
6	beam PID (electron=11,	6	index of the first daughter
	photon=22)	7	momentum x [GeV]
7	beam energy	8	momentum y [GeV]
8	target nucleon ID	9	momentum z [GeV]
9	process ID	10	E
10	event weight/cross section	11	mass
		12	vertex x [cm]
		13	vertex y [cm]
		14	vertex z [cm]

column

LUND Particles

quantity

DIS input from theory and phenomenology

Study the effect of F_UU,L (accounted in DIS and ignored in SIDIS)

- Different Q²-dependent factors contribute.
- Separation is important for DIS, but will be critical for SIDIS

Comparing generated ouput with input

Even with uniform distribution in x, the generated distribution is not uniform and depends on initial cuts on electron angle and energy

Jefferson Lab

Kinematic distributions

 $e\pi X$ events compared with $e\pi X$ events from PYTHIA tuned to data

Simple event generator should be "reasonable"

DIS generator

CLAS12-MC vs theory: defining variables

Consistency check for z and P_T

$$P_{h} \cdot k_{f} = \frac{1}{2} M_{hT} M_{fT} \left(e^{y_{f} - y_{h}} + e^{y_{h} - y_{f}} \right)$$

and

$$P_h \cdot k_i = \frac{1}{2} M_{hT} M_{iT} (e^{y_i - y_h} - e^{y_h - y_i}).$$

for which we identify $R(y_h, z_h, x_{bj}, Q) \ll 1$: collinear to outgoing quark,

 $R(y_{\rm h}, z_{\rm h}, x_{\rm bj}, Q) = \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}},$

Jefferson Lab

