

Tomographic transversity distributions and deeply exclusive meson production

Valery Kubarovsky

Jefferson Lab

CLAS Collaboration Meeting March 9, 2018

Outline

Physics motivation

- CLAS data on pseudoscalar meson electroproduction
- Transversity GPD and structure functions
- Flavor decomposition of the Transversity GPDs
- Conclusion

Structure functions and GPDs

 $\frac{d^4\sigma}{dQ^2dx_Bdtd\phi_{\pi}} = \Gamma(Q^2, x_B, E)\frac{1}{2\pi}(\boldsymbol{\sigma_T} + \epsilon\boldsymbol{\sigma_L} + \epsilon\cos 2\phi_{\pi}\boldsymbol{\sigma_{TT}} + \sqrt{2\epsilon(1+\epsilon)}\cos\phi_{\pi}\boldsymbol{\sigma_{LT}})$

Leading twist σ_{L}

$$\sigma_L = \frac{4\pi\alpha_e}{\kappa Q^2} [(1-\xi^2)|\langle \tilde{H} \rangle|^2 - 2\xi^2 Re(\langle \tilde{H} \rangle|\langle \tilde{E} \rangle) - \frac{t}{4m^2}\xi^2|\langle \tilde{E} \rangle|^2]$$

 $\sigma_{\rm L}$ suppressed by a factor coming from:

 $ilde{H}^{\pi} = rac{1}{3\sqrt{2}} [2 ilde{H}^u + ilde{H}^d]$ $ilde{H}^u$ and $ilde{H}^d$ have opposite signes

S. Goloskokov and P. Kroll S. Liuti and G. Goldstein

$$ig\langle ilde{H}ig
angle = \sum_{\lambda} \int_{-1}^{1} dx M(x,\xi,Q^2,\lambda) ilde{H}(x,\xi,t) \ ig\langle ilde{E}ig
angle = \sum_{\lambda} \int_{-1}^{1} dx M(x,\xi,Q^2,\lambda) ilde{E}(x,\xi,t)$$

The brackets <F> denote the convolution of the elementary process with the GPD F (Generalized Form Factors, GFF)

Structure functions and GPDs

 $\frac{d^4\sigma}{dQ^2dx_Bdtd\phi_{\pi}} = \Gamma(Q^2, x_B, E)\frac{1}{2\pi}(\boldsymbol{\sigma_T} + \epsilon\boldsymbol{\sigma_L} + \epsilon\cos 2\phi_{\pi}\boldsymbol{\sigma_{TT}} + \sqrt{2\epsilon(1+\epsilon)}\cos\phi_{\pi}\boldsymbol{\sigma_{LT}})$

$$\sigma_T = \frac{4\pi\alpha_e}{2\kappa} \frac{\mu_\pi^2}{Q^4} [(1-\xi^2)|\langle H_T \rangle|^2 - \frac{t'}{8m^2} |\langle \bar{E}_T \rangle|^2]$$

$$\sigma_{TT} = \frac{4\pi\alpha_e}{2\kappa} \frac{\mu_\pi^2}{Q^4} \frac{t'}{8m^2} |\langle \bar{E}_T \rangle|^2$$

Transversity GPD model

- S. Goloskokov and P. Kroll
- S. Liuti and G. Goldstein
- σ_L<<σ_T
- t-dependence at t=t_{min} is determined by the interplay between H_T and $\overline{E}_T=2\widetilde{H}_T+E_T$

²⁰¹²⁻²⁰¹⁷ π⁰/η Exclusive Electroproduction with CLAS

PRL 109, 112001 (2012)

PHYSICAL REVIEW LETTERS

week ending 14 SEPTEMBER 2012

Measurement of Exclusive π^0 Electroproduction Structure Functions and their Relationship to Transverse Generalized Parton Distributions

I. Bedlinskiy,²² V. Kubarovsky,^{35,30} S. Niccolai,²¹ P. Stoler,³⁰ K. P. Adhikari,²⁹ M. Aghasyan,¹⁸ M. J. Amaryan,²⁹ M. Anghinolfi,¹⁹ H. Avakian,³⁵ H. Baghdasaryan,^{39,41} J. Ball,⁷ N. A. Baltzell,¹ M. Battaglieri,¹⁹ R. P. Bennett,²⁹

PHYSICAL REVIEW C 90, 025205 (2014)

Exclusive π^0 electroproduction at W > 2 GeV with CLAS

I. Bedlinskiy,¹⁹ V. Kubarovsky,^{32,27} S. Niccolai,^{18,12} P. Stoler,²⁷ K. P. Adhikari,²⁶ M. D. Anderson,³⁵ S. Anefalos Pereira,¹⁵ H. Avakian,³² J. Ball,⁶ N. A. Baltzell,^{1,31} M. Battaglieri,¹⁶ V. Batourine,^{32,21} A. S. Biselli,⁹ S. Boiarinov,³² J. Bono,¹⁰

PHYSICAL REVIEW C 95, 035202 (2017)

Exclusive η electroproduction at W > 2 GeV with CLAS and transversity generalized parton distributions

I. Bedlinskiy,²² V. Kubarovsky,^{36,31} P. Stoler,³¹ K. P. Adhikari,²⁵ Z. Akbar,¹² S. Anefalos Pereira,¹⁷ H. Avakian,³⁶ J. Ball,⁷ N. A. Baltzell,^{36,34} M. Battaglieri,¹⁸ V. Batourine,^{36,24} A. S. Biselli,^{10,5} S. Boiarinov,³⁶ W. J. Briscoe,¹⁴ V. D. Burkert,³⁶

109, 112001 (2012)

Measurement of Exclusive π^0 Electroproduction Structure Functions and their Relationship to Transverse Generalized Parton Distributions

I. Bedlinskiy,²² V. Kubarovsky,^{35,30} S. Niccolai,²¹ P. Stoler,³⁰ K. P. Adhikari,²⁹ M. Aghasyan,¹⁸ M. J. Amaryan,²⁹

• The measured cross section of π^0 electroproduction is much larger than expected from leading-twist handbag calculation. This means that the contribution of the longitudinal cross section σ_L is small in comparison with σ_T . The same conclusion can be made in a almost model independent way from the comparison of the cross sections σ_U , σ_T and σ_T .

• The data appear to confirm the expectation that pseudoscalar and, in particular, π^0 electroproduction is a uniquely sensitive process to access the transversity GPDs E_T and H_T .

Rosenbluth separation $\sigma_{\!\mathsf{T}}$ and $\sigma_{\!\mathsf{L}}$ Hall-A Jefferson Lab

 σ_{τ} (red circles) and σ_{L} (blue triangle) for Q²=1.5 GeV² x_B=0.36

 $\sigma_{_{T}}$ (red circles) and $\sigma_{_{L}}$ (blue triangle) for Q²=2 GeV² $x_{_{B}}{=}0.36$

- Experimental proof that the transverse π⁰ cross section is dominant!
- It opens the direct way to study the transversity GPDs in pseudoscalar exclusive production

Hall-A, Phys.Rev.Lett. 117,262001(2016)

$$d\sigma_{\rm U}/dt$$

$$\frac{d\sigma}{dt}(\gamma^* p \to e p \pi^0) \propto e^{bt}$$

t-slope parameter: x_B dependence

Looking to this picture we can say that the perp width of the partons with $x \rightarrow 1$ goes to zero.

Structure Functions $(\sigma_{T} + \epsilon \sigma_{L}) \sigma_{TT} \sigma_{LT}$

CLAS data and GPD theory predictions

- **Transversity GPDs** H_T and $\overline{E}_T = 2\tilde{H}_T + E_T$ dominate in CLAS kinematics.
- The model was optimized for low x_B and high Q². The corrections t/Q² were omitted
 The model successfully describes 2
- The model successfully describes CLAS data even at low Q²
- Pseudoscalar meson production provides unique possibility to access the transversity GPDs.

CLAS collaboration. I Bedlinskiy et al. Phys.Rev.Lett. 109 (2012) 112001

η Structure Functions $(\sigma_{T} + \varepsilon \sigma_{L}) \sigma_{TT} \sigma_{LT}$

Comparison π^0/η

- The statement about the ability of transversity GPD model to describe the pseudoscalar electroproduction becomes more solid with the inclusion of η data

η/π^0 ratio

 $\frac{\sigma(ep \to ep\eta)}{\sigma(ep \to ep\pi^0)}$

- The dependence on x_B and Q² is very weak.
- Chiral odd GPD models predict this ratio to be ~1/3 at CLAS kinematics
- Chiral even GPD models predict this ratio to be around 1 (at low –t).

η/π^0 ratio

 $\frac{\sigma(ep \to ep\eta)}{\sigma(ep \to ep\pi^0)}$

Structure functions and GPDs

$$\begin{aligned} \frac{d\sigma_T}{dt} &= \frac{4\pi\alpha}{2k'} \frac{\mu_P^2}{Q^8} \left[\left(1 - \xi^2\right) \left| \langle \boldsymbol{H}_T \rangle \right|^2 - \frac{t'}{8m^2} \left| \langle \bar{\boldsymbol{E}}_T \rangle \right|^2 \right] \\ \frac{d\sigma_{TT}}{dt} &= \frac{4\pi\alpha}{k'} \frac{\mu_P^2}{Q^8} \frac{t'}{16m^2} \left| \langle \bar{\boldsymbol{E}}_T \rangle \right|^2 \end{aligned}$$

Goloskokov, Kroll Transversity GPD model

$$\begin{split} \left| \langle \bar{E}_T \rangle^{\pi,\eta} \right|^2 &= \frac{k'}{4\pi\alpha} \frac{Q^8}{\mu_P^2} \frac{16m^2}{t'} \frac{d\sigma_{TT}^{\pi,\eta}}{dt} \\ \left| \langle H_T \rangle^{\pi,\eta} \right|^2 &= \frac{2k'}{4\pi\alpha} \frac{Q^8}{\mu_P^2} \frac{1}{1-\xi^2} \left[\frac{d\sigma_T^{\pi,\eta}}{dt} + \frac{d\sigma_{TT}^{\pi,\eta}}{dt} \right] \end{split}$$

- We did not separate $\sigma_{\!\mathsf{T}}$ and $\sigma_{\!\mathsf{L}}$
- However <u>in the approximation</u> of the transversity GPDs dominance, that is supported by Jlab data, $\sigma_L << \sigma_T$ we have direct access to the generalized form factors for π and η production.

$$egin{aligned} &\langle \pmb{H_T}
angle &= \Sigma_\lambda \int_{-1}^1 dx M(x,\xi,Q^2,\lambda) \pmb{H_T}(x,\xi,t) \ &\langle ar{\pmb{E}_T}
angle &= \Sigma_\lambda \int_{-1}^1 dx M(x,\xi,Q^2,\lambda) ar{\pmb{E}_T}(x,\xi,t) \end{aligned}$$

The brackets <F> denote the convolution of the elementary process with the GPD F (generalized form factors)

$$\overline{E}_{T}=2H_{T}+E_{T}$$

Q ² GeV ²	X _B
1.2	0.15
1.8	0.22
2.2	0.27
2.7	0.34

- $\overline{E}_{T} > H_{T}$ for π^{0} and η
- t-dependence is steeper for \overline{E}_{T} than for H_{T}
- Estimation of the systematic uncertainties connected with the used approximation is in progress

π^0 Generalized Form Factors

- $\overline{E}_T > H_T$
- t-dependence is steeper for \overline{E}_{T} than for H_{T}
- $|\langle E_T, H_T \rangle| \sim \exp(bt)$
- b(E_T)=1.27 GeV⁻²
- b(H_T)=0.98 GeV⁻²

GPD Flavor Decomposition

$$egin{aligned} H^{\pi}_{T} &= rac{1}{3\sqrt{2}}[2H^{u}_{T} + H^{d}_{T}]\ H^{\eta}_{T} &= rac{1}{\sqrt{6}}[2H^{u}_{T} - H^{d}_{T}] \end{aligned}$$

$$H^u_T = rac{3}{2\sqrt{2}} [H^\pi_T + \sqrt{3} H^\eta_T] \ H^d_T = rac{3}{\sqrt{2}} [H^\pi_T - \sqrt{3} H^\eta_T]$$

Similar expressions for \overline{E}_{T}

- GPDs appear in different flavor combinations for π^0 and η
- The combined π^0 and η data permit the flavor (u and d) decomposition for GPDs H_T and \overline{E}_T
- The u/d decomposition was done under <u>simple assumption</u> that the relative phase between u and d is 0 or 180 degrees.

Flavor Decomposition of the Transversity GPDs

 $Q^2=1.8 \text{ GeV}^2$, $x_B=0.22$

- <H_T>^u and <H_T>^d have different signs for u and dquarks in accordance with the transversity function h₁ (Anselmino et al.)
- |<E_T>|^d and |<E_T>|^u seem to have the same signs
- Decisions shown with positive values of uquark's GPDs only

Impact parameter distributions for *u* and *d* quarks

- u and d qurks spatial distributions are different
- u quarks are more compact in comparison with q quarks

π^0 Electroproduction off <u>Neutron</u>

Neutron Deutron

The neutron cross sections

- dominated by $\sigma_{\!\mathsf{T}}$ and $\sigma_{\!\mathsf{TT}}$
- σ_{L} and σ_{LT} are compatible with zero
- It is in good agreement with the previous measurement off a proton
- The data are in a a fair agreement with the theoretical expectations based on the transversity GPDs

• Data, Hall-A Phys. Rev. Lett. 118,222002 (2017)

Theory, S. Goloskokov and P. Kroll, Eur. Phys. J. A47, 112

٠

Flavor decomposition:n and p

$$H_T^p = \frac{1}{3\sqrt{2}} (2H_T^u + H_T^d)$$
$$H_T^n = \frac{1}{3\sqrt{2}} (H_T^u + 2H_T^d)$$

$$\begin{split} H^p_T &= \frac{1}{3\sqrt{2}} (2H^u_T + H^d_T) \\ H^n_T &= \frac{1}{3\sqrt{2}} (H^u_T + 2H^d_T) \\ H^\eta_T &= \frac{1}{\sqrt{6}} (2H^u_T - H^d_T) \end{split}$$

Proton, neutron and η data Will solve the problem of unknown phase between u and d GFF

From GFF to GPD

- The access to GPDs through DVMP is indirect because cross section does not depend on GPDs, but on Generalized Form Factors (GFFs), i.e. integrals of GPDs. Weighted
- GFF (or CFF in DVCS) form factors are an intermediate step towards GPD extraction
- The way to go is the global fit of experimental observables using GPD models with parameters. It may include DVCS and DVMP experimental data set.
- The DVCS community made an impressive steps in this direction. We can do similar attempts for the transversity GPDs.
- There are several models on the market that provide such a parameterization (PK,SL,SG,GG,CW..)
- The Jlab pseudoscalar electroproduction data(cross section on different target, asymmetries etc) gives the unique opportunity to access the critical parameters of the transversity GPDs.

Transverse Densities for u and d Quarks in the Nucleon

Future developments

 CLAS12 is taking data with proton target. Next in a queue – deuteron target.

• Cross sections:

• Asymmetries:

$$ep
ightarrow ep(\pi^0, \eta)$$

 $en
ightarrow en(\pi^0, \eta)$
 $\mathcal{A}_{LU} - beam \ spin$
 $\mathcal{A}_{UL} - target \ spin$
 $\mathcal{A}_{LL} - beam \ target$

Summary

- Jlab π^0 and η data supports the dominance of the transversity GPDs H_T and \overline{E}_T in the processes of the pseudoscalar meson electroproduction
- The generalized form factors $<H_T>$ and $<E_T>$ are directly connected to the structure functions σ_T and σ_{TT} within handbag approach
- The combined π^0 and η proton and neutron data will provide the way for the flavor decomposition of transversity GPD
- We are taking data with proton target. New CLAS12 data are around the corner. Stay tuned!
- The next generation of experiments will bring along data that will seriously constrain models and lead to GPD extraction with high reliability.

The End

