Acceptance Corrections: Bin-by-Bin Method vs. Matrix Conversion Method

Nikolay Markov, Brandon Clary and Kyungseon Joo University of Connecticut

> CLAS Collaboration Meeting March 8, 2018

Acceptance Corrections

Unfold true distributions from measured distributions

Acceptance Corrections

1. Bin-by-bin method

 $D_{i} = A_{i} T_{i}$ $D_{i} \text{ is } \# \text{ of measured events in } i^{-th} \text{ bin}$ $T_{i} \text{ is } \# \text{ of true events in } i^{-th} \text{ bin}$ $A_{i} \text{ is the acceptance of } i^{-th} \text{ bin}$ $where A_{i} = N_{REC} / N_{GEN} \text{ for } i^{-th} \text{ bin}$

2. Matrix Method

 $D_i = \sum M_{ij} T_j$

M_{ij} is the acceptance matrix
where Mlij=NlRECîil NlGENîj

Bin-by-Bin Method

$$\boldsymbol{D}_i = \boldsymbol{A}_i \ \boldsymbol{T}_i$$

D_i is # of measured events in i^{-th} bin T_i is # of true events in i^{-th} bin A_i is the acceptance of i^{-th} bin where

1. Ali=Nlrect | Nlgent for ith bin

2. $A \downarrow i = M \downarrow ii$ from $M \downarrow ij = N \downarrow REC^{\uparrow}i \mid N \downarrow GEN^{\uparrow}j$

3 Simple Event Generators (Inclusive scattering)

- 1. Beam energy: 10.6 GeV
- 2. W flat, [1.0: 5.0] GeV
- 3. Electron lab ϕ angle flat, [0: 360] degrees
- 4. Q² [1.0: 10.0] GeV²
 - Flat
 - 1/ Q⁴
 - sin(2*Q²) + 1.5

Generated Events

Simulation and reconstruction

- 1. GEMC 4a.2.1
- 2. Coatjava 4a.8.3
- 3. Torus 100%
- 4. Solenoid 100%
- 5. MICROMEGAS in
- 6. Electron PID:
 - EB electron id
 - Fiducial cut

Fiducial Cut

Resolutions

 σ_{Q2} = 0.02 GeV² σ_{W} = 10 MeV

sin(2*Q2) + 1.5

Acceptances and Purity

 $ACC\downarrow T = N\downarrow rec / N\downarrow gen = N\downarrow rec \uparrow gen + N\downarrow rec \uparrow migrated / N\downarrow gen$

ACC↓P = N↓recîgen / N↓gen ACC↓M = N↓recîmigrated / N↓gen

 $ACC\downarrow T = ACC\downarrow G + ACC\downarrow M$

 $Purity \downarrow = N \downarrow rec \uparrow gen / N \downarrow rec = N \downarrow rec \uparrow gen / N \downarrow rec \uparrow gen + N \downarrow rec \uparrow migrated$

: Total acceptance

: Pure acceptance

: Migrated acceptance

Acceptances vs. Models $\sigma_{Q2} = 0.02 \text{ GeV}^2$

sin(2Q2) + 1.5

Purity vs. Models

Flat Q2

Purity vs. Acceptances $\sigma_{Q2} = 0.02 \text{ GeV}^2$

sin(2Q2) + 1.5

Effects of the shape of the generated ϕ distribution

Iterative Unfolding using Bin-by-Bin Method

N. Harrison PhD Thesis for pion SIDIS

Bin Size Matters

- 1. Large bin size may result in a loss of sensivity to high frequency components or acute changes.
- 2. Small bin size may create high sensitive to bin migrations and event generator dependence.

Matrix Method

$$D_{i} = \sum M_{ij} T_{j}$$
where $M_{ij} = N_{ij} RECT_{i} / N_{ij} ENT_{j}$

Metrix Method 10 Bins

Figure: Solid black line is the generated Q^2 data, the blue line is using the matrix from the flat distribution, red is the result from the sinusoidal matrix, and the green is for the Q^{-4} distribution.

Metrix Method 50 Bins

Figure: Solid black line is the generated Q^2 data, the blue line is using the matrix from the flat distribution, red is the result from the sinusoidal matrix, and the green is for the Q^{-4} distribution.

Summary

- 1. We showed that acceptance is sensitive to event generator models due to bin-migrations even for binnings with much larger than tracking resolution bin sizes.
- 2. We need to avoid bins with very low purity values to minimize systematic errors.
- 3. We showed that matrix conversion method is less sensitive to event generator models due to bin-migrations, but it is difficult to implement it for multi-dimensional analysis.

Generated Events vs. Reconstructed Events

