

Kaon TDIS Simulation Studies Status Update

Rachel Montgomery <u>TDIS Collaboration Meeting</u>, <u>Jefferson Lab</u>, 22/02/18

n m

Canna.

10001 100/1

Electron arm – SuperBigbite

- e- scattering from kaon cloud of hyperon
- Access to kaon SF (world first)
- Probe strangeness content in nucleon
- Evolution of PDFs important to include not only valence quarks, but also sea and glue at hadronic scale
- Improve understanding of background processes in πTDIS
- Measure semi-inclusive H(e,e'∧)X
- W²=8-18GeV², Q²=1-3GeV², x_{Bj}=0.05-0.2
- Λ^0 momenta similar to proton in π TDIS
- Set up same as for πTDIS
- SBS for DIS e'
- mTPC for Λ⁰
- Λ^0 uncharged, creates no track in mTPC
- mTPC detects p, π in $\Lambda^0 \rightarrow p\pi$ -, to reconstruct Λ^0
- (Λ⁰ τ~2.632x10⁻¹⁰s, mean ct 7.89cm)

- Example Λ⁰ kinematics from kTDIS EG (K. Park)
- EG specifically written for kTDIS H(e,e'\Lambda)X reaction. Details of EG physics included found in proposal
- Λ⁰ from EG input to simulations and resulting p, π⁻ tracks studied
- Vertex distributed randomly along entire length of target

- Events from kTDIS EG have now been input to mTPC GEMC sim (geometry from M. Carmignotto)
- Significant fraction of low momentum pions "spiral"
- "Curvature" of pion track will help ID
- Track reconstruction will assist accidental rejection, since e.g.:
 - Λ(pπ) decay angle back to back in CM frame
 - Time/position vertex correlations in pπ tracks, along with e' vertex

- Example p, π - kinematics after Λ decay in mTPC geometry

Transverse Momentum Resolution

- Fractional momentum resolution $\delta p_{\perp}/p_{\perp}$ estimated for p, π tracks
- $\delta p_{\perp}/p_{\perp}$ ~ ($8p_{\perp}$ / (0.3BL)) * σ_x
- $\sigma_x \sim (\text{strip resolution/number strips hit per track})$
- strip resolution ~ 5mm/sqrt(12)
- Resolution from multiple scattering not estimated for now
- Possible future study may be important for final gas selection

Transverse Momentum Resolution

- Differences in path lengths, "spiralling" of π
- Subsequent studies required a min path length of 60mm
- Time of arrival of drift e on readout plane and time resolution of readout should be ok to resolve the π spiral path
- Max electron distance 50mm, assume roughly 2µs drift time achievable
- (p track mean time 0.5ns; π mean time 1ns)

- Solenoid field affects acceptance of the kTDIS events
- Proton acceptance appears to have the larger influence on efficiency
- Although, as expected, transverse momentum resolution superior for higher field
- Since increase in efficiency is not a large effect, larger field strength is optimal
- Next step would be to check similar scan for $\pi TDIS$ in mTPC

Field (T)	Efficiency p [%]	Efficiency π [%]	Efficiency (pπ) [%]	Efficiency (pπ) w/ path>cut [%]
4.5	42.5	54.7	32.2	8.0
4.0	42.6	55.5	32.7	8.5
3.5	42.9	56.1	33.1	8.5
3.0	42.8	55.9	33.1	8.5
2.5	42.9	56.3	33.3	8.5

Energy Deposit by p and π - in Gas Volume

- dE/dx resolution is outstanding to be studied further, as a function of momentum
- Situation could be improved for π. Increasing Z of gas will increase dE/dx, but want Z as low as possible, also will depend on/trade-off w/ gain GEMs
- Distributions at 250MeV/c for proton slightly higher than RTPC behaviour due to different He pressure

Drift Gas and Ionisation

Mean dE/dx for p and π @250MeV in He@STP from mTPC= ~314eV/ mm and ~36eV/mm (~1208 and 138 primary e^{-5}

R. Montgomery, TDIS Collaboration Meeting, 22/02/18

- Applying software cut on Λ^0 invariant mass from $p\pi$ reconstruction may reduce inclusion of background events
- Toy MC to give rough idea of where Λ^0 reconstruction sits beside other processes
- ROOT TGenPhaseSpace generator to generate n-body event
- Based on EdGen generator from CLAS HASPECT collaboration
- Reaction simulated over all phase space
- Output: 4-mom of outgoing particles
- Models:
 - phase space single E for e-beam
 - Breit-Wigner mass models from PDG for particles
- Apply momentum resolution smearing
 - randomly sampled smearing from Gaussian with σ =mom resolution
- No reaction mechanism cross-section weighting made!
- Looked at:
 - Λ⁰→pπ⁻
 - $\Delta^0 \rightarrow p\pi^-$ (next most competing process in π TDIS)
 - $(\Sigma^0 \rightarrow \Lambda^0 \gamma \rightarrow p \pi^- \gamma)$
 - Σ^0 not relevant for mTPC, since γ would not be detected

Toy MC Event Generator

- Initial look at invariant mass of $(p\pi)$ with path lengths >60mm in mTPC
- Next step will be to include mis-identification from accidentals

Momentum Smearing [%]	Width Λ [σ, MeV]	Peak Resolution [%]
0	9.32	1.97
0.1	9.33	1.97
1.0	9.47	2.00
3.0	10.53	2.23
10.0	18.63	3.94

 $\Lambda^0 \rightarrow p\pi^-$

3%

10%

No Smearing

- Currently studying inclusion of mis-identified background/accidentals
- Expect inclusion of background p/π to smear invariant mass peaks
- Working on sampling double differential x-sections calculated from EPC/Wiser models for electroproduction of p, π
- J.W. Lightbody, J.S. O'Connell (<u>https://doi.org/10.1063/1.168298</u>)
- Need to weight appropriately in relation to kTDIS events
- Example, inclusion of equally weighted background protons with similar kinematics to expected background protons and reconstruction with π from Λ decay

- Studies of kTDIS events in new mTPC geometry are on-going
- Pions from lambda decay typically have longer path lengths than protons
- Reducing the solenoid field increases p/π- acceptance, however at the cost of transverse momentum resolution
- Improvement of dE/dx resolution for pions must be studied further; binning >mm
- M(pπ) reconstructed in "perfect" case within new mTPC geometry
- First look indicates resolution of about a few % seems reasonable, but requires background study to confirm
- Study into background generation using EPC/Wiser models for proton and pion electroproduction is underway
- Next step is to look at how to combine these events with kTDIS EG events, with the correct weighting, and looking at resulting invariant mass reconstruction for the lambda
- Suggestions/comments/questions welcome...

Toy MC Event Generator

