DVCS collaboration meeting January 26th 2018 Calorimeter analysis update Frédéric Georges

π^0 calibration

π^0 calibration

• Done for all kinematics (Fall 2014, Spring 2016, Fall 2016)

π^0 calibration

- Linear interpolation/extrapolation : did not work
- Exponential fit : did not work (Later realized I made a mistake in my formula. Might have worked.)
- Empirical correction :
 - Approximation : loss of gain similar for all (most of) the blocks
 - \rightarrow Variation of π^0 invariant mass proportional to the variation of π^0 calibration coefficients

→ Correction run by run of π^0 calibration coefficients by a factor $\frac{0.134977 \text{ GeV}}{\text{reconstructed }\pi^0 \text{ mass}}$

π^0 contamination subtraction

reminder

- DVMP event : $ep \rightarrow ep\pi^0$
- $\pi^0 \rightarrow \gamma \gamma$
- If 1 single γ is detected in the calorimeter : looks like a DVCS event ep → epγ
- Missing mass can be compatible with DVCS if missed γ had low energy
- Contamination must be removed

principle

- Real data : ep \rightarrow ep π^0 events identification : 2 γ in the calorimeter & invariant mass compatible with π^0
- For each detected π^0 : simulation of 5000 decays $\pi^0 \rightarrow \gamma\gamma$ (Monte-Carlo generates random γ directions and energies, projections on calorimeter surface)
- Check if γ are detected (Energy threshold, geometrical cuts) $\rightarrow 0\gamma 1\gamma 2\gamma$ cases
- Estimation of the proportion of simulated decays where a single γ is detected
- $\rightarrow \pi^0$ contamination

Description of the subtraction process

- Code basis from Camille Desnault
- Step 1 : From real data, π^0 identification
 - Reads rootfiles after clustering (ana.C).
 - Look at ntuple ntu2 : 2 clusters in the calorimeter
 - Select π^0 with "**Cut1**":
 - Energy threshold cuts on both clusters : run by run and block by block : $TriggerSim * \pi^0 coefficients * \alpha$

	$\alpha = 1$	$\alpha = elas_coe_2_same_HV / elas_coe_$	$1 \alpha = 1$
	Elastic coefficients 1	Elastic coefficients 2_same_HV	Elastic coefficients 2_new_HV
† Elasti	 c calibration 1 Elastic coef Geometrical cuts : remo 	ficients changed Elastic cal oved edges of the calorimeter (3 c	ibration 2 m (= 1 block)): -21 cm < xc < 12cm -21cm < yc < 21cm

• π^0 invariant mass cut : fitted π^0 invariant mass for a few runs of the kinematic, cut at $\pm 3\sigma$.

Description of the subtraction process

- Step 2 : For each identified π^0 : Monte-Carlo simulation of 5000 decays $\pi^0 \rightarrow \gamma \gamma$
 - Decay in the π^0 center of mass frame : polar angles θ and ϕ generated uniformly : θ between 0 and π , ϕ between 0 and 2π . Each γ has the energy $E_{\pi}/2$.
 - Lorentz boost along the π^0 momentum
 - Projection on the calorimeter (+ shower depth correction)
 - Code basis from Malek Mazouz
 - Check if γ detected : same as "Cut1"
 - Count the number of cases where $0 1 2\gamma$ are detected : $N_{0\gamma}$, $N_{1\gamma}$, $N_{2\gamma}$ out of the 5000 decays
 - For each π^0 , save $N_{0\gamma}$, $N_{1\gamma}$, $N_{2\gamma}$ and 1γ case as if real DVCS data (cf. ana.C)

Description of the subtraction process

- Step 3 : Subtraction.
 - Simulated data from the π^0 subtraction process must be **normalized** by $\frac{1}{5000} * \frac{1}{\frac{N_{2\gamma}}{5000}} = \frac{1}{N_{2\gamma}}$
 - "Cut2" : same cuts must be applied to real data and simulated subtraction data.
 - Energy threshold (preliminary : clustering energy threshold)
 - Geometrical cuts : An "octagonal" cut must be applied to account for inefficiencies of the subtraction method in the corners (to be determined)
 - Other cuts can be added...

 π^0 subtraction efficiency, from Maxime Defurne thesis

Method checking against Monte-Carlo

- Goal : reproduce the efficiency plot from Maxime Defurne's thesis to check the subtraction results against simulation.
- Used Maxime Defurne's thesis Monte Carlo simulation :
 - Generates π⁰ uniformly (polar angles + energy) & simulates a decay & projection on the calorimeter
 - Ran π⁰ subtraction on 2-γ events
 & compared results to 1-γ events

 π^0 subtraction efficiency, for kin48_2 (run 13000)

(with cut $M_x^2 < 1.35 \text{ GeV}$)

Method checking against Geant4

- Used Geant4 simulation from Rafayel (pi0_2010/no_esmear)
 - Modification to save 1-cluster events too
 - Tested a 12 GeV kinematic (run 220 ~kin48_2)
 - Tested a 6 GeV kinematic (run 9124, kin3high)
- GOOD

Cuts discussion

- Discussion on Cut1 geometrical cut : Do we cut the edges of the calorimeter (3cm) or not ?
- Pros : γ energy reconstruction on the edges of the calorimeter is biased by energy leaks.
- Cons : In the simulation, $2-\gamma$ events can be mistaken for $1-\gamma$ events

Real data :

- 1. 2 clusters detected : $2-\gamma$ event
- 2. During data analysis : 1γ is on the edge of the calorimeter : whole event discarded.
- 3. Final situation : no π^0 contamination, no event kept

• Estimation from data : 1/3 of π^0 events are in this situation

• If cut $Mx^2 < 1.35$ GeV : 0.5% only. Error seems acceptable.

Simulated subtraction data :

- 1. 2 clusters : should be a $2-\gamma$ event
- 2. But 1 γ is on the edge of the calorimeter : γ discarded. But the other γ is kept.
- 3. Final situation : 1- γ event, counted as a contaminating π^0 event
- 4. Cannot discard both γ and count a 0- γ event : false
- 5. Cannot discard whole event as if did not exist either.

 π^0 subtraction efficiency, for run 12508 (kin48_1)

 π^0 subtraction efficiency, for run 13000 (kin48_2)

Geant4 issue with kin36_1, kin36_3 and kin48_4

Conclusion : status and outlook

- π^0 calibration complete + SQL DB updated (France & Jlab)
- π^0 subtraction method validated with Maxime Defurne's Monte-Carlo simulation and Geant4 simulation
- π^0 subtraction done for all 12 GeV data (Fall 2014, Spring 2016, Fall 2016).
 - Subtraction rootfiles are available in France and can be copied at Jlab.
- TODO list (in progress) :
 - Define/choose octagonal cuts for every kinematics
 - Identify & Fix Geant4 calorimeter coverage issue for kin36_1 and kin48_4
 - hypothesis : generation phase space too small
- NEXT :
 - Accidentals subtraction (fast)
 - Geant4 & Monte Carlo simulation (acceptance): missing mass calibration + smearing
 - Cross-sections extraction