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Figure 2. A null plane is a surface tangent to the light cone. The null-plane Hamiltonians map
the initial light-like surface onto some other surface and therefore describe the dynamical evolution
of the system. The energy P� translates the system in the null-plane time coordinate x+, whereas
the spin Hamiltonians Fr rotate the initial surface about the surface of the light cone.

which we take as the time variable and “longitudinal” position, respectively 3. The remain-

ing coordinates, x⇥ = (x1,x2) provide the “transverse” position. Denoting the null-plane

contravariant coordinate four-vector by x̃µ = (x+,x1,x2, x�), then one can write

x̃µ = Cµ
⌅ xµ , (2.3)

where Cµ
⌅ is defined in Appendix A. This matrix allows one to transform all Lorentz struc-

tures from the instant form to the front-form notation. In particular, the null-plane metric

tensor is given by

g̃µ⌅ = (C�1)�µ g�⇥ (C�1)⇥⌅ . (2.4)

The energy, canonical to the null-plane time variable x+ is p� = p+ , and the mo-

mentum canonical to the longitudinal position variable x� is p+ = p�. Therefore, the

on-mass-shell condition for a relativistic particle of mass m yields the null-plane dispersion

relation:

p� =
p2
⇥ + m2

2p+
. (2.5)

3This is known as the Kogut-Soper convention [20]. Our metric and other notational conventions can

be found in Appendix A.
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kinematical:

This dispersion relation reveals several interesting generic features of the null-plane for-

mulation. Firstly, the dispersion relation resembles the non-relativistic dispersion relation

of a particle of mass p+ in a constant potential. Secondly, we see that the positivity and

finiteness of the null-plane energy naively require p+ > 0. Therefore the longitudinal mo-

mentum is constrained to the open, positive half-line, which implies that pair production

is absent and the vacuum state is trivial.

2.3 The null-plane Poincaré generators

We have seen that in the null-plane description, the energy-momentum dispersion relation

takes a form that is reminiscient of non-relativistic quantum mechanics. This was originally

noted in the context of the infinite momentum frame of instant-form dynamics [21, 22]

which has a similar dispersion relation. In this section we will review the structure of the

Lorentz generators in the front form 4. The Poincaré algebra in our convention is:

[Pµ , P ⇥ ] = 0 , [Mµ⇥ , P⇤ ] = i ( g⇥⇤Pµ � gµ⇤P⇥ )

[Mµ⇥ , M⇤⌅ ] = i ( gµ⌅M⇥⇤ + g⇥⇤Mµ⌅ � gµ⇤M⇥⌅ � g⇥⌅Mµ⇤ ) , (2.6)

where Mij = ⇥ijkJk and Mi0 = Ki with Ji and Ki the generators of rotations and boosts,

respectively. Using Cµ
⇥ we can transform from the instant-form to the front-form giving

P̃µ = (P+, P 1, P 2, P�), M̃r+ = �M̃+r = Fr, M̃r� = �M̃�r = Er, M̃rs = ⇥rsJ3, and

M̃+� = �M̃�+ = K3, where we have defined

P+ = 1⇥
2
(P 0 + P 3 ) , P� = 1⇥

2
(P 0 � P 3 ) ,

Er = 1⇥
2
(Kr + ⇥rsJs ) , Fr = 1⇥

2
(Kr � ⇥rsJs ) . (2.7)

Here P+ = P� is a light-front Hamiltonian, which propagates in the light-front time x+,

while P� = P+ is the longitudinal space-like momentum.

It is straightforward to show that P+, Pr, K3, Er, and J3 are kinematical generators

that leave the null plane x+ = 0 intact. These seven generators form the stability group

of the null plane. The non-vanishing commutation relations among these generators are:

[K3 , Er ] = �i Er , [K3 , P
+ ] = �iP+

[ J3 , Er ] = i⇥rsEs , [ J3 , Pr ] = i⇥rsPs

[Er , Ps ] = �i�rsP
+ . (2.8)

By constrast, P� and Fr are the Hamiltonians; they are the dynamical generators

which move physical states away from the x+ = 0 surface. The non-vanishing commutators

among the stability group generators and the Hamiltonians are:

[K3 , P
� ] = iP� , [Er , P

� ] = �iPr

[K3 , Fr ] = iFr , [ J3 , Fr ] = i⇥rsFs

[Pr , Fs ] = i�rsP
� , [P+ , Fr ] = iPr

[Er , Fs ] = �i ( �rsK3 + ⇥rsJ3 ) . (2.9)

4Here we follow closely the development of Refs. [20, 23].
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Null-plane Poincare’ generators
where Mij = ⇤ijkJk and Mi0 = Ki with Ji and Ki the generators of rotations and boosts,
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2
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2
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Here P+ = P� is the null-plane energy while P� = P+ is the longitudinal momentum.

It is straightforward to show that P+, Pr, K3, Er, and J3 are kinematical generators

that leave the null plane x+ = 0 intact. These seven generators form the stability group of

the null plane. It is useful to classify the subgroups of the Poincaré algebra by considering

the transformation properties of the generators with respect to longitudinal boosts, which

serve to rescale the generators. Writing

[K3 , A ] = �i�A (2.8)

where A is a generator, one finds Er and P+ have � = 1, J3, K3 and Pr have � = 0,

and P� and Fr have � = �1. The Poincaré generators have subgroups G� labeled by �,

and there exist two seven-parameter subgroups S± with a semi-direct product structure

S± = G0 ⇥ G±. Therefore the stability group coincides with the subgroup S+. The

non-vanishing commutation relations among these generators are:

[K3 , Er ] = �iEr , [K3 , P
+ ] = �iP+ ;

[ J3 , Er ] = i⇤rsEs , [ J3 , Pr ] = i⇤rsPs ;

[Er , Ps ] = �i⇥rsP
+ . (2.9)

By contrast, P� and Fr are the Hamiltonians which consist of the subgroup G�1; they

are the dynamical generators which move physical states away from the x+ = 0 surface

(see fig. 1). The non-vanishing commutators among the stability group generators and the

Hamiltonians are:

[K3 , P
� ] = iP� , [Er , P

� ] = �iPr ;

[K3 , Fr ] = iFr , [ J3 , Fr ] = i⇤rsFs ;

[Pr , Fs ] = i⇥rsP
� , [P+ , Fr ] = iPr ;

[Er , Fs ] = �i ( ⇥rsK3 + ⇤rsJ3 ) . (2.10)

This algebraic structure is isomorphic to the Galilean group of two-dimensional quantum

mechanics where one identifies {P�, Er, Pr, J3, P+ } with the Hamiltonian, Galilean boosts,

momentum, angular momentum, and mass, respectively. This isomorphism is responsible

for the similarities between the front form and nonrelativistic quantum mechanics that we

noted in the dispersion relation, and was originally noted in the context of the infinite

momentum frame of instant-form dynamics [2, 3] which has a similar dispersion relation.
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2.4 Null-plane momentum states and discrete symmetries

Following Ref. [2], we consider the momentum eigenstates

| p+ , p⇤ ;⇥ , n ⌥ = | p+ , p⇤ ⌥ ⇤ |⇥ , n ⌥ . (2.17)

Here ⇥ is helicity, and n are additional variables that are needed to specify the state of a

system at rest. In particular, because J3 commutes with all kinematical generators,

J3 | p+ , p⇤ ;⇥ , n ⌥ = ⇥ | p+ , p⇤ ;⇥ , n ⌥ . (2.18)

We assume the normalization

⌃ p+⇥ , p ⇥
⇤ ;⇥⇥ , n⇥ | p+ , p⇤ ;⇥ , n ⌥ = �⇥�⇥ �n�n (2⇤)

3 2 p+ �( p+⇥ � p+ ) �2(p ⇥
⇤ � p⇤ ) .(2.19)

The completeness relation is:

1 =

⇥
dp+d2p⇤
(2⇤)32p+

�

⇥

| p+ , p⇤ ;⇥ , n ⌥ ⌃ p+ , p⇤ ;⇥ , n | . (2.20)

Generalizations to multi-particle states are straightforward.

What is special about the null-plane description is that the kinematical generators act

on states in a manner independent of the inner variables n. And of course the reduced

Hamiltonians act exclusively on the inner variables in a manner independent of the mo-

mentum. This complete separation of dynamics and kinematics will prove most useful in

what follows.

3 Chiral symmetry in the front form

3.1 Null plane charges and chiral algebra

Consider a physical system that has an SU(N)R⇤SU(N)L chiral symmetry. Let us assume

that this system has a null-plane Lagrangian formulation which allows one, by the standard

Noether procedure, to obtain the currents J̃µ
�(x) and J̃µ

5�(x). We will further assume that

the Lagrangian contains an operator that explicitly breaks the chiral symmetry in the

pattern SU(N)R ⇤ SU(N)L ⌅ SU(N)V . The general relation between currents and their

associated charges is given by

Q(n · x) =

⇥
d4y �(n · (x � y ) )n · J(y) , (3.1)

where the vector nµ selects the initial quantization surface. Therefore, the null-plane chiral

symmetry charges are

Q̃� =

⇥
dx� d2x⇤ J̃+

� (x�, ⇣x⇤) ; (3.2)

Q̃5
�(x

+) =

⇥
dx� d2x⇤ J̃+

5�(x
�, ⇣x⇤, x

+) , (3.3)
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Reduced Hamiltonians

Inverting eq. 2.22 one then finds the following expressions for the Hamiltonians:

P� =
�
1/2P+

⇥ ⇤
P 2
1 + P 2

2 + M2
⌅
;

F1 =
�
1/P+

⇥ ⇤
P1K3 + P�E1 � P2J3 � MJ2

⌅
;

F2 =
�
1/P+

⇥ ⇤
P2K3 + P�E2 + P1J3 + MJ1

⌅
. (2.23)

A striking feature of the null-plane formulation is that the fundamental dynamical objects

are the products M2 and MJr, rather than the generators themselves. Following Ref. [6],

we will refer to these objects as reduced Hamiltonians. The reduced Hamiltonians, together

with J3, commute with all kinematical generators and satisfy the algebra of U(2). This is

conveniently demonstrated by making use of the Pauli-Lubanski vector

Wµ = 1
2⇤

µ�⇥⇤P�M⇥⇤ , (2.24)

which satisfies WµPµ = 0 and the non-trivial commutation relations:

[Mµ� , W⇥ ] = i ( g�⇥Wµ � gµ⇥W� ) ; (2.25)

[Wµ , W � ] = �i⇤µ�⇥⇤W⇥P⇤ . (2.26)

One then finds general, compact expressions for the angular momentum operators:

J3 = W+/P+ , MJr = Wr � Pr W
+/P+ . (2.27)

By considering the commutation relations among Wµ, Pµ and Mµ� one confirms that

[J3 , MJr ] = i �rsMJs , [J3 , M
2 ] = 0 ;

[MJr , MJs ] = i �rsM
2J3 , [M2 , MJr ] = 0 . (2.28)

Hence, the reduced Hamiltonians together with the stability group generator J3 satisfy the

algebra of U(2), and the problem of finding a Lorentz invariant description of a relativistic

quantum mechanical system is thus equivalent to finding a representation of the three

reduced Hamiltonians which satisfy this algebra 3. Since the essence of Lorentz invariance

resides in these Lie brackets, and they require knowledge of the reduced Hamiltonians,

in theories with complicated dynamics like QCD, the formulation of the theory at weak

coupling will lack manifest Lorentz invariance, which is tied up with the detailed dynamics

of the theory, and is as complicated to achieve as finding the spectrum of the theory.

We can write a general momentum eigenstate as:

| p+ , p⇥ ;⇥ , n ⇤ = | p+ , p⇥ ⇤ ⇥ |⇥ , n ⇤ . (2.29)

Here n are additional variables that may be needed to specify the state of a system at rest,

and ⇥ is helicity, the eigenvalue of J3:

J3 | p+ , p⇥ ;⇥ , n ⇤ = ⇥ | p+ , p⇥ ;⇥ , n ⇤ , (2.30)

3Since the mass operator, M =
�
pµpµ, commutes with the spin operators, this algebra can clearly be

expressed in the canonical form: [Ji , Jj ] = i�ijkJk and [M , Ji ] = 0.
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By considering the commutation relations among Wµ, Pµ and Mµ� one confirms that

[J3 , MJr ] = i �rsMJs , [J3 , M
2 ] = 0 ;

[MJr , MJs ] = i �rsM
2J3 , [M2 , MJr ] = 0 . (2.28)

Hence, the reduced Hamiltonians together with the stability group generator J3 satisfy the

algebra of U(2), and the problem of finding a Lorentz invariant description of a relativistic

quantum mechanical system is thus equivalent to finding a representation of the three

reduced Hamiltonians which satisfy this algebra 3. Since the essence of Lorentz invariance

resides in these Lie brackets, and they require knowledge of the reduced Hamiltonians,

in theories with complicated dynamics like QCD, the formulation of the theory at weak

coupling will lack manifest Lorentz invariance, which is tied up with the detailed dynamics

of the theory, and is as complicated to achieve as finding the spectrum of the theory.

We can write a general momentum eigenstate as:

| p+ , p⇥ ;⇥ , n ⇤ = | p+ , p⇥ ⇤ ⇥ |⇥ , n ⇤ . (2.29)

Here n are additional variables that may be needed to specify the state of a system at rest,

and ⇥ is helicity, the eigenvalue of J3:

J3 | p+ , p⇥ ;⇥ , n ⇤ = ⇥ | p+ , p⇥ ;⇥ , n ⇤ , (2.30)

3Since the mass operator, M =
�
pµpµ, commutes with the spin operators, this algebra can clearly be

expressed in the canonical form: [Ji , Jj ] = i�ijkJk and [M , Ji ] = 0.
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Inverting eq. 2.22 one then finds the following expressions for the Hamiltonians:
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�
1/2P+

⇥ ⇤
P 2
1 + P 2

2 + M2
⌅
;
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�
1/P+
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⌅
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�
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⌅
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Q↵| ⌦ i 6= 0

Nambu-Goldstone realization of G
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spectrum contains Goldstone bosons
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and multiplets of SU(N)F
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h⌦| OG\ |⌦ i 6= 0

The standard picture:  Nambu-Goldstone

✓   But this picture is a matter of convention in relativistic theories 
of quantum mechanics.

❖    There is an implicit assumption.

G = SU(N)L ⇥ SU(N)R �! SU(N)F



and therefore, using eq. 2.21, we have

J3 | p+ , p⇥ ;⇤ , n ⇧ =

⇤
⇤+ i⇥rs pr

d

dps

⌅
| p+ , p⇥ ;⇤ , n ⇧ , (2.32)

which completes the catalog of the action of the stability group generators on the momen-

tum states. It is useful to write

| p+ , p⇥ ;⇤ , n ⇧ = U(p+, pr)|M/
⌃
2 , 0 ;⇤ , n ⇧ ⇤ a†n

�
p+ , p⇥ ;⇤

⇥
| 0 ⇧ , (2.33)

where a†n is an operator that creates the momentum state when acting on the null-plane

vacuum, | 0 ⇧. What is special about the null-plane description is that the kinematical

generators (with the exception of J3) act on states in a manner independent of the inner

variables n. And the reduced Hamiltonians act exclusively on the inner variables in a

manner independent of the momentum. Therefore, one may view the Poincaré algebra

by the direct sum of K and D, where K = {Er, Pr,K3, P+ } contains all stability group

generators with the exception of J3 which is grouped with the reduced Hamiltonians,

D = {J3,MJr,M2} [34].

The structure of the Poincaré algebra in the front-form is well suited to the study of

systems with complicated dynamics like QCD, as the dynamical generators are directly

related to the most important observable quantities, namely the energy and the angular

momentum of the system, while momenta and boosts are purely kinematical and therefore

easy to implement 4. The reduced Hamiltonians will have a fundamental role to play in

the description of chiral symmetry breaking on null planes.

3 Chiral symmetry in the front form

3.1 Null plane charges and chiral algebra

Consider a Lagrangian field theory that has an SU(N)R ⇥ SU(N)L chiral symmetry. Let

us assume that this system has a null-plane Lagrangian formulation which allows one,

by the standard Noether procedure, to obtain the currents J̃µ
�(x) and J̃µ

5�(x), which are

related to the symmetry currents via J̃µ
L� = (J̃µ

� � J̃µ
5�)/2 and J̃µ

R� = (J̃µ
� + J̃µ

5�)/2. We will

further assume that the Lagrangian contains an operator that explicitly breaks the chiral

symmetry in the pattern SU(N)R⇥SU(N)L ⌅ SU(N)F and is governed by the parameter

⇥⇤ such that as ⇥⇤ ⌅ 0 the symmetry is restored at the classical level. The general relation

between currents and their associated charges is given by

Q(n · x) =

⇧
d4y �(n · (x � y ) )n · J(y) , (3.1)

where the vector nµ selects the initial quantization surface, which we take to be the null

plane �⇥
n. Therefore, the null-plane chiral symmetry charges are

Q̃� =

⇧
dx� d2x⇥ J̃+

� (x�, ⌅x⇥) ; (3.2)

Q̃5
�(x

+) =

⇧
dx� d2x⇥ J̃+

5�(x
�, ⌅x⇥, x

+) , (3.3)

4By contrast, in the instant form of dynamics, the energy and the boosts are dynamical. As boosts are

not among the observables, one refers only to the one Hamiltonian corresponding to energy.
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n

n · x = n0x0 � nixi

nµ = (1, 0, 0, 0)

✓    Generally, symmetry charges are constructed from:

❖        chooses the quantization surface

i = 1, 2, 3

Chiral symmetry charges
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z

t

✓    Dynamics: evolution of parallel spaces at instants of time t

Q↵ =

Z
d3xJ0(x)



There is an alternate, physically-equivalent viewpoint

Q̃↵ =

Z
d3xJ̃+

↵

Nambu-Goldstone realization of G
ground state is symmetric

Q̃↵| 0 i = 0

spectrum contains Goldstone bosons
and multiplets of 

charges are NOT conserved

SU(N)F

h 0| OG\ | 0 i = 0 no “order parameter”

2.2 Choice of coordinates

Consider the light-like vectors nµ and n⇥µ which satisfy n2 = n⇥2 = 0 and n · n⇥ = 1. Here

we will choose these vectors such that

nµ ⇥ 1⌅
2
(1, 0, 0,�1) , n⇥µ ⇥ 1⌅

2
(1, 0, 0, 1) . (2.1)

We will take the initial surface to be the null-plane �0
n. A coordinate system adapted to

null-planes is then given by

x+ ⇥ x · n = 1⌅
2
(x0 + x3) , x� ⇥ x · n⇥ = 1⌅

2
(x0 � x3) (2.2)

which we take as the time variable and “longitudinal” position, respectively 1. The remain-

ing coordinates, x⇤ = (x1, x2) provide the “transverse” position. Denoting the null-plane

contravariant coordinate four-vector by x̃µ = (x+, x1, x2, x�) = (x+,x⇤, x�), then one can

write

x̃µ = Cµ
⇤ xµ . (2.3)

The matrix Cµ
⇤ , given expicitly in Appendix A, allows one to transform all Lorentz tensors

from instant-form to front-form coordinates. In particular, the null-plane metric tensor is

given by

g̃µ⇤ = (C�1)�µ g�⇥ (C�1)⇥⇤ . (2.4)

The energy, canonical to the null-plane time variable x+ is p� = p+ , and the mo-

mentum canonical to the longitudinal position variable x� is p+ = p�. Therefore, the

on-mass-shell condition for a relativistic particle of mass m yields the null-plane dispersion

relation:

p� =
p2
⇤ + m2

2p+
. (2.5)

This dispersion relation reveals several interesting generic features of the null-plane for-

mulation. Firstly, the dispersion relation resembles the non-relativistic dispersion relation

of a particle of mass p+ in a constant potential. Secondly, we see that the positivity and

finiteness of the null-plane energy of a free massive particle requires p+ > 0. Only mass-

less particles with strictly vanishing momentum can have p+ = 0. This implies that pair

production is subtle, and the vacuum state is in some sense simple, with the exception of

contributions that are strictly from p+ = 0 modes.

2.3 The null-plane Poincaré generators

In this section we will review the Lie brackets of the Lorentz generators in the front form 2.

The Poincaré algebra in our convention is:

[Pµ , P ⇤ ] = 0 , [Mµ⇤ , P⌅ ] = i ( g⇤⌅Pµ � gµ⌅P⇤ )

[Mµ⇤ , M⌅⇧ ] = i ( gµ⇧M⇤⌅ + g⇤⌅Mµ⇧ � gµ⌅M⇤⇧ � g⇤⇧Mµ⌅ ) , (2.6)

1This is known as the Kogut-Soper convention [5]. Our metric and other notational conventions can be

found in Appendix A.
2Here we follow closely the development of Refs. [4–6]. See also Ref. [49].
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Chiral Symmetry

unifying framework for the derivation of the sum rules whose content can be directly tracked

to QCD symmetries.

2 Null-plane QCD constraints

2.1 Chiral symmetry and currents

Consider QCD with two degenerate flavors of light quarks. In the chiral limit of massless

quarks this theory has an SU(2)L ⌦ SU(2)R invariance

 (x) ! e
�i✓↵T↵ (x) ,  (x) ! e

�i✓↵T↵�5 (x) , (2.1)

G = SU(N)L ⌦ SU(N)R

where  (x) is the isodoublet quark field, and T↵ = ⌧↵/2. The corresponding instant-form

Noether currents are

J
µ
↵(x) =  ̄(x)�µ

T↵ (x) , J
µ
5↵(x) =  ̄(x)�µ

�5T↵ (x) . (2.2)

Both of these currents are conserved in the chiral limit.

In null-plane quantization (see Appendix A for coordinate conventions) the non-dynamical

degrees of freedom are integrated out leaving behind the dynamical gluon field and the dy-

namical quark fields,  + ⌘ ⇧
+
 , where the projection operator is defined as ⇧± ⌘ 1

2�
⌥
�

±

and �+ ⌘ � · n and �� ⌘ � · n̄. At equal null-plane time, the dynamical quark field satisfies

{ +(x) ,  
†
+(y)}|x+=y+ = 1p

2
⇧

+
�(x� � y

�)�2(x? � y?) . (2.3)

The presence of the SU(2)L ⌦ SU(2)R invariance is of course independent of the choice

of initial quantization surface and indeed in null-plane QCD the chiral transformations are

 +(x) ! e
�i✓↵T↵ +(x) ,  +(x) ! e

�i✓↵T↵�5 +(x) , (2.4)

which give rise to the front-form (tilded) Noether currents J̃
µ
(5)↵(x). While the vector currents

are independent of the choice of coordinates, J̃
µ
↵(x) = J

µ
↵(x), the instant-form and front-form

axial currents only share the + component, J̃
+
5↵(x) = J

+
5↵(x), a reflection of the fundamentally

important property that J̃
µ
5↵(x) is not conserved,

@µJ̃
µ
5↵(x) ⌘ D̃5↵(x) = F⇡M

2
⇡ ⇡̃↵(x) , (2.5)

even in the chiral limit [? ? ? ]. It is important to stress that in null-plane quantization,

the chiral limit should be taken only after taking matrix elements of the pion interpolating

operator ⇡̃↵(x). Using LSZ reduction it is easy to see that these matrix elements scale as

M
�2
⇡ [? ], which immediately implies that the matrix element of the axial-vector current

divergence is non-vanishing and independent of M⇡.

In what follows only the null-plane vector and axial-vector charge distributions,

J̃
µ
↵(x) =  ̄+(x)�µ

T↵ +(x) = J
µ
↵(x) , J̃

+
5↵(x) =  ̄+(x)�+

�5T↵ +(x) = J
+
5↵(x) , (2.6)

will be considered. For a complete catalog of notation, the reader should consult Ref. [? ].
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x
�

Vacuum

x?

Figure 1. The dots represent the projections of partons, or sources of vector and axial charge, onto the
transverse plane, specified by the coordinates x? = (x1

, x
2). The vacuum physics is at the boundary

of the longitudinal coordinate, x
�.

Here S
V,A are taken to be c-numbers, which is the minimal prescription which will satisfy the

constraints of Eqs. (2.10) and (2.11). By matching one finds5

SV =

Z
d�

2
⇢
(1)
V (�2)/�

2 ; (2.16)

SA =

Z
d�

2
⇣
⇢
(0)
A (�2) + ⇢

(1)
A (�2)/�

2
⌘

. (2.17)

Note that due to parity conservation, the mixed axial-vector commutator has no vacuum

expectation value and therefore no non-canonical modification of the current algebra is neces-

sary. Clearly the infinite-dimensional symmetry of the canonical current algebra is, in general,

modified by these extra terms that represent vacuum physics at the boundary of the longi-

tudinal coordinate (see fig. 1). Integrating over the longitudinal direction, one obtains new

purely transverse currents

F̃(5)↵(x) = F̃(5)↵(x+
,x?) =

Z
dx

�
J̃

+
(5)↵(x) (2.18)

5
Setting SV = SA gives the first spectral function sum rule [? ]. This is expected since the original

derivation obtained this relation by equating the Schwinger terms of the (instant-form) time-space current

commutators, which are felt by the ++ null-plane current commutators at the tip of the light cone.
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which satisfy the current algebra:

[ F̃↵(x) , F̃�(y) ]|x+=y+ = i f↵�� F̃�(x)�2(x? � y?) ; (2.19)

[ F̃5↵(x) , F̃�(y) ]|x+=y+ = i f↵�� F̃5�(x)�2(x? � y?) ; (2.20)

[ F̃5↵(x) , F̃5�(y) ]|x+=y+ = i f↵�� F̃�(x)�2(x? � y?) . (2.21)

These commutation relations, by construction, have no vacuum expectation value and satisfy

an su(2)L⌦su(2)R algebra at each point in the transverse plane. It is this infinite-dimensional

chiral symmetry on the transverse plane that is exploited in this paper; indeed all of the sum

rules that are derived follow from these brackets.

One immediately wonders whether, in principle, singular terms involving purely trans-

verse gradients could appear on the right-hand side of Eqs. (2.13-2.15). Such terms would lead

to a breaking of the infinite-dimensional chiral symmetry on the transverse plane indicated

by Eqs. (2.19-2.21), and leave only the global chiral symmetry satisfied by the chiral charges

that must be present after integration over the transverse coordinates. It is straightforward to

construct examples of such singular terms [? ? ]. For instance, consider the QCD Symanzik

action [? ], a continuum e↵ective field theory of lattice QCD near the continuum limit, which

in general contains a dimension-five operator, the Pauli term, which scales like the lattice

spacing and gives the quarks a (chromo)magnetic moment [? ]. This operator breaks chi-

ral symmetry in the same way as the quark mass matrix and can be shown to contribute

a transverse gradient to the right hand side of the current algebra in Eqs. (2.13-2.15). Of

course this extra term violates scaling and vanishes in the continuum limit. Here the sum

rules that are derived from Eqs. (2.19-2.21) can be viewed as a means to experimentally verify

the hypothesis that these transverse gradient terms are not present in QCD.

The decoupling of the physics of the longitudinal dimension is a remarkable and well-

known property of the null-plane formulation [? ]. It of course leads to the masking of Lorentz

invariance, as discussed in the introduction. However, the non-local light-like correlations that

are introduced by integrating out a dimension of space do not lead to conflicts with causality.

In null-plane quantization physics need not be local in x
� � y

� as (x � y)2 does not depend

on x
� � y

� when x
+ = y

+ (see footnote 4). Hence, causality is ensured by locality in the

transverse coordinates alone, as is made manifestly clear in the form of Eqs. (2.13-2.15).

2.3 Charge and moment algebras

The null-plane chiral symmetry charges are defined by

Q̃↵ =

Z
dx

�
d

2x? J̃
+
↵ (x) , Q̃5↵(x+) =

Z
dx

�
d

2x? J̃
+
5↵(x) . (2.22)

The axial-vector charge is null-plane time dependent as the axial-vector current is not con-

served. These charges generate the su(2)L ⌦ su(2)R algebra:

[ Q̃↵ , Q̃� ] = i ✏↵�� Q̃� ; (2.23)

[ Q̃5↵(x+) , Q̃� ] = i ✏↵�� Q̃5�(x+) ; (2.24)

[ Q̃5↵(x+) , Q̃5�(x+) ] = i ✏↵�� Q̃� . (2.25)
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✓    Null-plane currents from Noether procedure:

✓    Current algebra:

unifying framework for the derivation of the sum rules whose content can be directly tracked

to QCD symmetries.

2 Null-plane QCD constraints

2.1 Chiral symmetry and currents

Consider QCD with two degenerate flavors of light quarks. In the chiral limit of massless

quarks this theory has an SU(2)L ⌦ SU(2)R invariance

 (x) ! e
�i✓↵T↵ (x) ,  (x) ! e

�i✓↵T↵�5 (x) , (2.1)

G = SU(N)L ⌦ SU(N)R

where  (x) is the isodoublet quark field, and T↵ = ⌧↵/2. The corresponding instant-form

Noether currents are

J
µ
↵(x) =  ̄(x)�µ

T↵ (x) , J
µ
5↵(x) =  ̄(x)�µ

�5T↵ (x) . (2.2)

Both of these currents are conserved in the chiral limit.

In null-plane quantization (see Appendix A for coordinate conventions) the non-dynamical

degrees of freedom are integrated out leaving behind the dynamical gluon field and the dy-

namical quark fields,  + ⌘ ⇧
+
 , where the projection operator is defined as ⇧± ⌘ 1

2�
⌥
�

±

and �+ ⌘ � · n and �� ⌘ � · n̄. At equal null-plane time, the dynamical quark field satisfies

{ +(x) ,  
†
+(y)}|x+=y+ = 1p

2
⇧

+
�(x� � y

�)�2(x? � y?) . (2.3)

The presence of the SU(2)L ⌦ SU(2)R invariance is of course independent of the choice

of initial quantization surface and indeed in null-plane QCD the chiral transformations are

 +(x) ! e
�i✓↵T↵ +(x) ,  +(x) ! e

�i✓↵T↵�5 +(x) , (2.4)

which give rise to the front-form (tilded) Noether currents J̃
µ
(5)↵(x). While the vector currents

are independent of the choice of coordinates, J̃
µ
↵(x) = J

µ
↵(x), the instant-form and front-form

axial currents only share the + component, J̃
+
5↵(x) = J

+
5↵(x), a reflection of the fundamentally

important property that J̃
µ
5↵(x) is not conserved,

@µJ̃
µ
5↵(x) ⌘ D̃5↵(x) = F⇡M

2
⇡ ⇡̃↵(x) , (2.5)

even in the chiral limit [? ? ? ]. It is important to stress that in null-plane quantization,

the chiral limit should be taken only after taking matrix elements of the pion interpolating

operator ⇡̃↵(x). Using LSZ reduction it is easy to see that these matrix elements scale as

M
�2
⇡ [? ], which immediately implies that the matrix element of the axial-vector current

divergence is non-vanishing and independent of M⇡.

In what follows only the null-plane vector and axial-vector charge distributions,

J̃
µ
↵(x) =  ̄+(x)�µ

T↵ +(x) = J
µ
↵(x) , J̃

+
5↵(x) =  ̄+(x)�+

�5T↵ +(x) = J
+
5↵(x) , (2.6)

will be considered. For a complete catalog of notation, the reader should consult Ref. [? ].
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which satisfy the current algebra:

[ F̃↵(x) , F̃�(y) ]|x+=y+ = i f↵�� F̃�(x)�2(x? � y?) ; (2.19)

[ F̃5↵(x) , F̃�(y) ]|x+=y+ = i f↵�� F̃5�(x)�2(x? � y?) ; (2.20)

[ F̃5↵(x) , F̃5�(y) ]|x+=y+ = i f↵�� F̃�(x)�2(x? � y?) . (2.21)

These commutation relations, by construction, have no vacuum expectation value and satisfy

an su(2)L⌦su(2)R algebra at each point in the transverse plane. It is this infinite-dimensional

chiral symmetry on the transverse plane that is exploited in this paper; indeed all of the sum

rules that are derived follow from these brackets.

One immediately wonders whether, in principle, singular terms involving purely trans-

verse gradients could appear on the right-hand side of Eqs. (2.13-2.15). Such terms would lead

to a breaking of the infinite-dimensional chiral symmetry on the transverse plane indicated

by Eqs. (2.19-2.21), and leave only the global chiral symmetry satisfied by the chiral charges

that must be present after integration over the transverse coordinates. It is straightforward to

construct examples of such singular terms [? ? ]. For instance, consider the QCD Symanzik

action [? ], a continuum e↵ective field theory of lattice QCD near the continuum limit, which

in general contains a dimension-five operator, the Pauli term, which scales like the lattice

spacing and gives the quarks a (chromo)magnetic moment [? ]. This operator breaks chi-

ral symmetry in the same way as the quark mass matrix and can be shown to contribute

a transverse gradient to the right hand side of the current algebra in Eqs. (2.13-2.15). Of

course this extra term violates scaling and vanishes in the continuum limit. Here the sum

rules that are derived from Eqs. (2.19-2.21) can be viewed as a means to experimentally verify

the hypothesis that these transverse gradient terms are not present in QCD.

The decoupling of the physics of the longitudinal dimension is a remarkable and well-

known property of the null-plane formulation [? ]. It of course leads to the masking of Lorentz

invariance, as discussed in the introduction. However, the non-local light-like correlations that

are introduced by integrating out a dimension of space do not lead to conflicts with causality.

In null-plane quantization physics need not be local in x
� � y

� as (x � y)2 does not depend

on x
� � y

� when x
+ = y

+ (see footnote 4). Hence, causality is ensured by locality in the

transverse coordinates alone, as is made manifestly clear in the form of Eqs. (2.13-2.15).

2.3 Charge and moment algebras

The null-plane chiral symmetry charges are defined by

Q̃↵ =

Z
d

2x? F̃
+
↵ (x) , Q̃5↵(x+) =

Z
d

2x? F̃
+
5↵(x) . (2.22)

Q̃↵ =

Z
dx

�
d

2x? J̃
+
↵ (x) , Q̃5↵(x+) =

Z
dx

�
d

2x? J̃
+
5↵(x) . (2.23)
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The axial-vector charge is null-plane time dependent as the axial-vector current is not con-

served. These charges generate the su(2)L ⌦ su(2)R algebra:

[ Q̃↵ , Q̃� ] = i ✏↵�� Q̃� ; (2.24)

[ Q̃5↵(x+) , Q̃� ] = i ✏↵�� Q̃5�(x+) ; (2.25)

[ Q̃5↵(x+) , Q̃5�(x+) ] = i ✏↵�� Q̃� . (2.26)

One can also form moments of the currents. Of particular interest are the following:

d̃
r
(5)↵(x+) =

Z
dx

�
d

2x? x
r
J̃

+
(5)↵(x) , r̃

rs
(5)↵(x+) =

Z
dx

�
d

2x? x
r
x

s
J̃

+
(5)↵(x) (2.27)

d̃
r
(5)↵(x+) =

Z
d

2x? x
r
F̃

+
(5)↵(x) , r̃

rs
(5)↵(x+) =

Z
d

2x? x
r
x

s
F̃

+
(5)↵(x) (2.28)

where r, s = 1, 2 are transverse spatial indices. The null-plane time dependence of the axial

charge and of all the higher moments has been left explicit, as these operators are not con-

served [33]. This is of crucial importance for all that follows, as only operators that depend on

null-plane time will have non-vanishing matrix elements between states that exchange energy.

In extracting the physical content from commutators of operators, matrix elements between

physical states must be taken and the insertion of a complete set of states in the product of

operators will be non trivial only if both operators depend on null-plane time. Hence, the

matrix elements between physical momentum states of Eq. (2.24) and Eq. (2.25) are trivial

and simply give information about the isospin transformation properties of matrix elements

of charges, whereas the matrix element of Eq. (2.26) is highly non-trivial and provides pow-

erful constraints on the manner in which chiral charge spreads out among the hadrons in the

broken phase via pion-hadron scattering. Other non-trivial commutators among the moments

and charges follow simply from the current algebra, Eqs. (2.19-2.21). The simplest non-trivial

vector-vector commutator is:

[ d̃r
↵(x+) , d̃

s
�(x+) ] = i ✏↵�� r̃

rs
� (x+) . (2.29)

This commutator provides constraints on the moments of the hadronic vector form factors

via Compton scattering. The simplest non-trivial axial-vector commutator is:

[ Q̃5↵(x+) , d̃
r
�(x+) ] = i ✏↵�� d̃

r
5�(x+) , (2.30)

which provides constraints on the moments of the hadronic axial-vector form factors via pion

photoproduction. A second mixed axial-vector commutator,

[ Q̃5↵(x+) , r̃
rs
� (x+) ] = i ✏↵�� r̃

rs
5�(x+) , (2.31)

constrains the axial radii of hadrons via pion electroproduction. This identification of non-

trivial Lie brackets continues to hold for the commutator of any two null-plane-time-dependent

– 9 –

The axial-vector charge is null-plane time dependent as the axial-vector current is not con-

served. These charges generate the su(2)L ⌦ su(2)R algebra:

[ Q̃↵ , Q̃� ] = i ✏↵�� Q̃� ; (2.24)

[ Q̃5↵(x+) , Q̃� ] = i ✏↵�� Q̃5�(x+) ; (2.25)

[ Q̃5↵(x+) , Q̃5�(x+) ] = i ✏↵�� Q̃� . (2.26)

One can also form moments of the currents. Of particular interest are the following:

d̃
r
(5)↵(x+) =

Z
dx

�
d

2x? x
r
J̃

+
(5)↵(x) , r̃

rs
(5)↵(x+) =

Z
dx

�
d

2x? x
r
x

s
J̃

+
(5)↵(x) (2.27)

d̃
r
(5)↵(x+) =

Z
d

2x? x
r
F̃

+
(5)↵(x) , r̃

rs
(5)↵(x+) =

Z
d

2x? x
r
x

s
F̃

+
(5)↵(x) (2.28)

where r, s = 1, 2 are transverse spatial indices. The null-plane time dependence of the axial

charge and of all the higher moments has been left explicit, as these operators are not con-

served [33]. This is of crucial importance for all that follows, as only operators that depend on

null-plane time will have non-vanishing matrix elements between states that exchange energy.

In extracting the physical content from commutators of operators, matrix elements between

physical states must be taken and the insertion of a complete set of states in the product of

operators will be non trivial only if both operators depend on null-plane time. Hence, the

matrix elements between physical momentum states of Eq. (2.24) and Eq. (2.25) are trivial

and simply give information about the isospin transformation properties of matrix elements

of charges, whereas the matrix element of Eq. (2.26) is highly non-trivial and provides pow-

erful constraints on the manner in which chiral charge spreads out among the hadrons in the

broken phase via pion-hadron scattering. Other non-trivial commutators among the moments

and charges follow simply from the current algebra, Eqs. (2.19-2.21). The simplest non-trivial

vector-vector commutator is:

[ d̃r
↵(x+) , d̃

s
�(x+) ] = i ✏↵�� r̃

rs
� (x+) . (2.29)

This commutator provides constraints on the moments of the hadronic vector form factors

via Compton scattering. The simplest non-trivial axial-vector commutator is:

[ Q̃5↵(x+) , d̃
r
�(x+) ] = i ✏↵�� d̃

r
5�(x+) , (2.30)

which provides constraints on the moments of the hadronic axial-vector form factors via pion

photoproduction. A second mixed axial-vector commutator,

[ Q̃5↵(x+) , r̃
rs
� (x+) ] = i ✏↵�� r̃

rs
5�(x+) , (2.31)

constrains the axial radii of hadrons via pion electroproduction. This identification of non-

trivial Lie brackets continues to hold for the commutator of any two null-plane-time-dependent

– 9 –

✓ Symmetry generators:

where the axial charges have been given explicit null-plane time dependence as they are not

conserved due to the explicit breaking operator in the Lagrangian. These charges satisfy

the SU(N)R ⇥ SU(N)L chiral algebra,

[ Q̃� , Q̃⇥ ] = i f�⇥⇤ Q̃⇤ , [ Q̃�
5 (x

+) , Q̃⇥ ] = i f�⇥⇤ Q̃⇤
5(x

+) ; (3.4)

[ Q̃�
5 (x

+) , Q̃⇥
5 (x

+) ] = i f�⇥⇤ Q̃⇤ . (3.5)

We further assert that both types of chiral charges annihilate the vacuum. That is,

Q̃� | 0 ⌅ = Q̃�
5 | 0 ⌅ = 0 . (3.6)

This is the statement that the front-form vacuum is invariant with respect to the full

SU(N)R ⇥ SU(N)L symmetry. In particular, this implies that there can be no vacuum

condensates that break SU(N)R ⇥ SU(N)L on a null-plane. This may seem to be an odd

assumption, since the chiral charge is directly related to the axial-vector current through

eq. 3.3, and in general one would expect that this current has a Goldstone boson pole

contribution, in turn implying that the chiral charges acting on the vacuum state excite

massless Goldstone bosons. Below we will confirm the assertion, eq. 3.6, by using standard

current-algebra polology to show that indeed the Goldstone boson pole contribution to the

null-plane axial-vector current is absent.

3.2 Symmetries of the reduced Hamiltonians

Mixed commutators among the Poincaré generators and internal symmetry generators can

be expressed generally as [13]:

[Q�(n · x) , Pµ] = �i nµ
⇧

d4y �(n · (x � y ) ) ⌅⌃J
⌃
�(y) ; (3.7)

[Q�(n · x) , Mµ⌃ ] = i

⇧
d4y �(n · (x � y ) ) (nµy⌃ � n⌃yµ) ⌅⇧J

⇧
�(y) . (3.8)

From these expressions one then obtains the mixed commutator between the Pauli-Lubanski

vector and the internal symmetry charges:

[Q�(n · x),W⌃ ] =
i
2⇤⌃⌅⌥�

⇧
d4y�(n · (x� y))

⇤
M ⌅⌥n� �

�
n⌅y⌥ � n⌥y⌅

⇥
P �

⌅
⌅⇧J

⇧
�(y). (3.9)

Using these expressions, one finds the commutation relations between null-plane chiral

charges and the reduced Hamiltonians:

[ Q̃5
�(x

+) , M2] = �2i P+
⇧

dx� d2x⇥ ⌅µJ̃
µ
5�(x

�, ⇧x⇥, x
+) ; (3.10)

[ Q̃5
�(x

+) , MJr] = i ⇥rs P
+
⇧

dx� d2x⇥ �s ⌅µJ̃
µ
5�(x

�, ⇧x⇥, x
+) , (3.11)

where �s ⇤ Es � P+xs. Here and in what follows, we are assuming that SU(N)F is un-

broken and therefore ⌅µJ̃
µ
� = 0 and the reduced Hamiltonians commute with the SU(N)F

charges:

[ Q̃� , M
2] = [ Q̃� , MJr] = 0 . (3.12)
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✓ Current moments:

❖ Not conserved!

❖No symmetry breaking condensate!
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Chiral symmetry breaking on a null-plane

Internal Symmetry
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massless Goldstone bosons. Below we will confirm the assertion, eq. 3.6, by using standard

current-algebra polology to show that indeed the Goldstone boson pole contribution to the

null-plane axial-vector current is absent.

3.2 Symmetries of the reduced Hamiltonians
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be expressed generally as [13]:
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where �s ⇤ Es � P+xs. Here and in what follows, we are assuming that SU(N)F is un-

broken and therefore ⌅µJ̃
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� = 0 and the reduced Hamiltonians commute with the SU(N)F
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Poincare Symmetry

Inverting eq. 2.22 one then finds the following expressions for the Hamiltonians:

P� =
�
1/2P+

⇥ ⇤
P 2
1 + P 2

2 + M2
⌅
;

F1 =
�
1/P+

⇥ ⇤
P1K3 + P�E1 � P2J3 � MJ2

⌅
;

F2 =
�
1/P+

⇥ ⇤
P2K3 + P�E2 + P1J3 + MJ1

⌅
. (2.23)

A striking feature of the null-plane formulation is that the fundamental dynamical objects

are the products M2 and MJr, rather than the generators themselves. Following Ref. [6],

we will refer to these objects as reduced Hamiltonians. The reduced Hamiltonians, together

with J3, commute with all kinematical generators and satisfy the algebra of U(2). This is

conveniently demonstrated by making use of the Pauli-Lubanski vector

Wµ = 1
2⇤

µ�⇥⇤P�M⇥⇤ , (2.24)

which satisfies WµPµ = 0 and the non-trivial commutation relations:

[Mµ� , W⇥ ] = i ( g�⇥Wµ � gµ⇥W� ) ; (2.25)

[Wµ , W � ] = �i⇤µ�⇥⇤W⇥P⇤ . (2.26)

One then finds general, compact expressions for the angular momentum operators:

J3 = W+/P+ , MJr = Wr � Pr W
+/P+ . (2.27)

By considering the commutation relations among Wµ, Pµ and Mµ� one confirms that

[J3 , MJr ] = i �rsMJs , [J3 , M
2 ] = 0 ;

[MJr , MJs ] = i �rsM
2J3 , [M2 , MJr ] = 0 . (2.28)

Hence, the reduced Hamiltonians together with the stability group generator J3 satisfy the

algebra of U(2), and the problem of finding a Lorentz invariant description of a relativistic

quantum mechanical system is thus equivalent to finding a representation of the three

reduced Hamiltonians which satisfy this algebra 3. Since the essence of Lorentz invariance

resides in these Lie brackets, and they require knowledge of the reduced Hamiltonians,

in theories with complicated dynamics like QCD, the formulation of the theory at weak

coupling will lack manifest Lorentz invariance, which is tied up with the detailed dynamics

of the theory, and is as complicated to achieve as finding the spectrum of the theory.

We can write a general momentum eigenstate as:

| p+ , p⇥ ;⇥ , n ⇤ = | p+ , p⇥ ⇤ ⇥ |⇥ , n ⇤ . (2.29)

Here n are additional variables that may be needed to specify the state of a system at rest,

and ⇥ is helicity, the eigenvalue of J3:

J3 | p+ , p⇥ ;⇥ , n ⇤ = ⇥ | p+ , p⇥ ;⇥ , n ⇤ , (2.30)

3Since the mass operator, M =
�
pµpµ, commutes with the spin operators, this algebra can clearly be

expressed in the canonical form: [Ji , Jj ] = i�ijkJk and [M , Ji ] = 0.
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SU(N)R ⌦ SU(N)L �! SU(N)F

where the axial charges have been given explicit null-plane time dependence as they are not

conserved due to the explicit breaking operator in the Lagrangian. These charges satisfy

the SU(N)R ⇥ SU(N)L chiral algebra,

[ Q̃� , Q̃⇥ ] = i f�⇥⇤ Q̃⇤ , [ Q̃�
5 (x

+) , Q̃⇥ ] = i f�⇥⇤ Q̃⇤
5(x

+) ; (3.4)

[ Q̃�
5 (x

+) , Q̃⇥
5 (x

+) ] = i f�⇥⇤ Q̃⇤ . (3.5)

We further assert that both types of chiral charges annihilate the vacuum. That is,

Q̃� | 0 ⌅ = Q̃�
5 | 0 ⌅ = 0 . (3.6)

This is the statement that the front-form vacuum is invariant with respect to the full

SU(N)R ⇥ SU(N)L symmetry. In particular, this implies that there can be no vacuum

condensates that break SU(N)R ⇥ SU(N)L on a null-plane. This may seem to be an odd

assumption, since the chiral charge is directly related to the axial-vector current through

eq. 3.3, and in general one would expect that this current has a Goldstone boson pole

contribution, in turn implying that the chiral charges acting on the vacuum state excite

massless Goldstone bosons. Below we will confirm the assertion, eq. 3.6, by using standard

current-algebra polology to show that indeed the Goldstone boson pole contribution to the

null-plane axial-vector current is absent.

3.2 Symmetries of the reduced Hamiltonians

Mixed commutators among the Poincaré generators and internal symmetry generators can

be expressed generally as [13]:

[Q�(n · x) , Pµ] = �i nµ
⇧

d4y �(n · (x � y ) ) ⌅⌃J
⌃
�(y) ; (3.7)

[Q�(n · x) , Mµ⌃ ] = i

⇧
d4y �(n · (x � y ) ) (nµy⌃ � n⌃yµ) ⌅⇧J

⇧
�(y) . (3.8)

From these expressions one then obtains the mixed commutator between the Pauli-Lubanski

vector and the internal symmetry charges:

[Q�(n · x),W⌃ ] =
i
2⇤⌃⌅⌥�

⇧
d4y�(n · (x� y))

⇤
M ⌅⌥n� �

�
n⌅y⌥ � n⌥y⌅

⇥
P �

⌅
⌅⇧J

⇧
�(y). (3.9)

Using these expressions, one finds the commutation relations between null-plane chiral

charges and the reduced Hamiltonians:

[ Q̃5
�(x

+) , M2] = �2i P+
⇧

dx� d2x⇥ ⌅µJ̃
µ
5�(x

�, ⇧x⇥, x
+) ; (3.10)

[ Q̃5
�(x

+) , MJr] = i ⇥rs P
+
⇧

dx� d2x⇥ �s ⌅µJ̃
µ
5�(x

�, ⇧x⇥, x
+) , (3.11)

where �s ⇤ Es � P+xs. Here and in what follows, we are assuming that SU(N)F is un-

broken and therefore ⌅µJ̃
µ
� = 0 and the reduced Hamiltonians commute with the SU(N)F

charges:

[ Q̃� , M
2] = [ Q̃� , MJr] = 0 . (3.12)
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✓    Immediately implies Goldstone’s theorem.



The axial-vector charge is null-plane time dependent as the axial-vector current is not con-

served. These charges generate the su(2)L ⌦ su(2)R algebra:

[ Q̃↵ , Q̃� ] = i ✏↵�� Q̃� ; (2.24)

[ Q̃5↵(x+) , Q̃� ] = i ✏↵�� Q̃5�(x+) ; (2.25)

[ Q̃5↵(x+) , Q̃5�(x+) ] = i ✏↵�� Q̃� . (2.26)

One can also form moments of the currents. Of particular interest are the following:

d̃
r
(5)↵(x+) =

Z
dx

�
d

2x? x
r
J̃

+
(5)↵(x) , r̃

rs
(5)↵(x+) =

Z
dx

�
d

2x? x
r
x

s
J̃

+
(5)↵(x) (2.27)

where r, s = 1, 2 are transverse spatial indices. The null-plane time dependence of the axial

charge and of all the higher moments has been left explicit, as these operators are not con-

served [33]. This is of crucial importance for all that follows, as only operators that depend on

null-plane time will have non-vanishing matrix elements between states that exchange energy.

In extracting the physical content from commutators of operators, matrix elements between

physical states must be taken and the insertion of a complete set of states in the product of

operators will be non trivial only if both operators depend on null-plane time. Hence, the

matrix elements between physical momentum states of Eq. (2.24) and Eq. (2.25) are trivial

and simply give information about the isospin transformation properties of matrix elements

of charges, whereas the matrix element of Eq. (2.26) is highly non-trivial and provides pow-

erful constraints on the manner in which chiral charge spreads out among the hadrons in the

broken phase via pion-hadron scattering. Other non-trivial commutators among the moments

and charges follow simply from the current algebra, Eqs. (2.19-2.21). The simplest non-trivial

vector-vector commutator is:

[ d̃r
↵(x+) , d̃

s
�(x+) ] = i ✏↵�� r̃

rs
� (x+) . (2.28)

This commutator provides constraints on the moments of the hadronic vector form factors

via Compton scattering. The simplest non-trivial axial-vector commutator is:

[ Q̃5↵(x+) , d̃
r
�(x+) ] = i ✏↵�� d̃

r
5�(x+) , (2.29)

which provides constraints on the moments of the hadronic axial-vector form factors via pion

photoproduction. A second mixed axial-vector commutator,

[ Q̃5↵(x+) , r̃
rs
� (x+) ] = i ✏↵�� r̃

rs
5�(x+) , (2.30)

constrains the axial radii of hadrons via pion electroproduction. This identification of non-

trivial Lie brackets continues to hold for the commutator of any two null-plane-time-dependent

operators that are constructed from the vector and axial-vector charge distributions. Hence
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The axial-vector charge is null-plane time dependent as the axial-vector current is not con-
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d̃
r
(5)↵(x+) =

Z
dx

�
d

2x? x
r
J̃

+
(5)↵(x) , r̃

rs
(5)↵(x+) =

Z
dx

�
d

2x? x
r
x

s
J̃

+
(5)↵(x) (2.27)
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Note that the dependence on helicity has been removed as the sum rule holds for � = ±1/2.

In this form, the sum rule is particularly physically intuitive. It shows that in the presence of

spontaneous chiral symmetry breaking, the axial-vector charge is not conserved and therefore

the axial form factor at zero momentum transfer deviates from its unbroken value by the

axial-vector charge induced matrix elements that connect the nucleon to all other hadronic

states. Using the conventions of Appendix B, the sum rule can be expressed for ⇡p scattering

in the variable ⌫ as

4F
2
⇡

⇡

Z 1

0

d⌫

⌫2
Im D

�(⌫, 0) + g
2
A = 1 , (3.12)

and finally, using the optical theorem,

2F
2
⇡

⇡

Z 1

⌫̄T

d⌫̄

⌫̄

h
�

⇡�p(⌫̄) � �
⇡+p(⌫̄)

i
+ g

2
A = 1 . (3.13)

This is the AW sum rule for pion-nucleon scattering in the chiral limit [8, 9]. Here ⌫̄T is the

physical threshold. Without the benefit of �PT, the original papers made various attempts

at extrapolating away from the chiral limit (see also Ref. [45]). The leading, universal chiral

corrections to the sum rule are obtained in Ref. [46] using �PT, which in addition performs

an updated analysis of the sum rule and finds excellent agreement with experiment.

3.2 Vector-Vector

General case

We will proceed with a derivation of the sum rules relevant to forward Compton scattering.

This derivation parallels that of the last section however it is complicated by the presence of

the higher moments. Consider the matrix element between hadronic momentum states of the

commutator, Eq. (2.28):

h h
0
, �

0 ; p
0 |[ d̃r

↵(x+) , d̃
s
�(x+) ]| h , � ; p i = i ✏↵�� h h

0
, �

0 ; p
0 |r̃rs

� (x+)| h , � ; p i . (3.14)

As has been shown above, this commutator can be decomposed into circular harmonics ` =

0, ±2. Therefore, in general there are non-trivial sum rules for �� = ` = 0, ±2. As in the

previous case, the Born contribution will first be extracted from the LHS. One finds

h h
0
, �

0 ; p
0 | d̃r

↵(x+) | h , � ; p i = (2⇡)3�( q
+ )[ i@r

p0 �
2(q? ) ]h h

0
, �

0 ; p
0 | J̃+

↵ (0) | h , � ; p i ,(3.15)

where we are using the notation @
r
p ⌘ @/@p

r. And the Born contribution to the LHS is

1

2p+
(2⇡)3�( q

+ )

Z
d

2p00
? [ i@r

p0 �
2(p0

? � p00
? ) ][ i@s

p00 �
2(p00

? � p? ) ]

⇥
X

h00

h h
0
, �

0 ; p
0 | J̃+

↵ (0) | h00
, �

00 ; p
00 ih h

00
, �

00 ; p
00 | J̃+

� (0) | h , � ; p i � c.t . . (3.16)
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Using the optical theorem (see Appendix B) this sum rule can be expressed in terms of a

di↵erence of total cross-sections for isovector photons:

1

3
hr2iV

1 =

✓
V

2mN

◆2

+
1

2⇡2↵

Z 1

⌫̄T

d⌫̄

⌫̄

⇣
2�

V
1/2(⌫̄) � �

V
3/2(⌫̄)

⌘
. (3.23)

This is the Cabbibo-Radicatti (CR) sum rule [47]. Here �
V
I is the total cross-section for an

isovector photon scattering from a proton to a final hadronic state with isospin I. Early

analyses of this sum rule were given in Ref. [48–50] which confirmed the sum rule at the

ten-percent level. Given the significant recent experimental progress in measuring the various

photoproduction multipoles that dominate this sum rule, it would be interesting to perform

an updated analysis of the CR sum rule.

For the symmetric part one finds,

Z 1

⌫̄T

d⌫̄

⌫̄

⇥
W3(↵�)(⌫̄, 0) + ⌫̄W4(↵�)(⌫̄, 0)

⇤
= 1

2⇠
T
n

F
V
2↵(0)

2mN
,

F
V
2�(0)

2mN

o
⇠ . (3.24)

Again using results from Appendix B the sum rule can be expressed in terms of a di↵erence

of total cross-sections:

✓
V

2mN

◆2

=
1

2⇡2↵

Z 1

⌫̄T

d⌫̄

⌫̄

�
�

V
P (⌫̄) � �

V
A (⌫̄)

�
. (3.25)

This is the (isovector) GDH sum rule [6, 7] 8. Here �
V
P (�V

A ) is the total cross-section for an

isovector photon scattering from a nucleon to a final hadronic state with total isospin 1/2

and 3/2 in the parallel (antiparallel) helicity state 3/2 (1/2). Of all the sum rules that we

consider, this one has received the most attention9, although its basis for validity is clearly

no di↵erent from that of the CR sum rule. The derivation given here in terms of moments

of currents parallels that given in Ref. [39]. Current-algebra derivations that follow from

consideration of the currents themselves rather than their moments are given in Refs. [52–

54]. These derivations require consideration of the o↵-forward Compton amplitude.

3.3 Axial-Vector I

General case

Now we will consider the simplest non-trivial commutators of mixed axial-vector type. As

the associated scattering processes are inherently non-diagonal, the sum rules will be for the

absorptive parts of scattering amplitudes. Consider first the matrix element between hadronic

momentum states of the commutator, Eq. (2.29):

h h
0
, �

0 ; p
0 |[ Q̃5↵(x+) , d̃

r
�(x+) ]| h , � ; p i = i ✏↵�� h h

0
, �

0 ; p
0 |d̃r

5�(x+)| h , � ; p i . (3.26)

8
Note that the isoscalar sum rule as well as the GDH sum rules for the nucleons themselves are obtained

by choosing the appropriate currents.
9
For reviews, see Refs. [40, 51].
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Again using results from Appendix B the sum rule can be expressed in terms of a di↵erence

of total cross-sections:
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As the axial charge is a scalar and the dipole operator changes the helicity of a state by one

unit, this commutator decomposes to circular harmonics ` = ±1. Therefore, the sum rule

necessarily involves helicity flip and �� = ` = ±1. Following the now familiar procedure, the

Born contribution to the LHS is:

1

2p+
(2⇡)3�( q

+ )[ i@r
p0 �

2(q? ) ]

⇥
X

h00

h
h h

0
, �

0 ; p
0 | J̃+

5↵(0) | h00
, �

00 ; p
0 ih h

00
, �

00 ; p
0 | J̃+

� (0) | h , � ; p i

� h h
0
, �

0 ; p
0 | J̃+

� (0) | h00
, �

00 ; p ih h
00
, �

00 ; p | J̃+
5↵(0) | h , � ; p i

i
(3.27)

and the RHS is

(2⇡)3�( q
+ )[ i@r

p0 �
2(q? ) ]i ✏↵��h h

0
, �

0 ; p
0 | J̃+

5�(0) | h , � ; p i . (3.28)

The continuum contribution is:

(2⇡)3�( q
+ ) �

2(q? )hh0
, �

0|(2⇡)3
D̃5↵(0)� (P+ � p

+) �
2 (P? � p?) J̃

r
�(0)

(P� � p0�) (P� � p�)
|h , �i � c.t . (3.29)

and therefore here we define

w
h0h;r
�0�;↵�(p, p

0
, q) ⌘ h h

0
, �

0 ; p
0 | (2⇡)3 D̃5↵(0)�4 (q + p � P ) J̃

r
�(0) | h , � ; p i �

h h
0
, �

0 ; p
0 | (2⇡)3 J̃

r
�(0)�4 (q + p � P ) D̃5↵(0) | h , � ; p i . (3.30)

And finally the general form of the structure-function sum rule is
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Nucleon sum rule

Using the photoproduction conventions of Appendix B, the nucleon sum rule can be written

as

Z 1

�1

d⌫̄

⌫̄2
Cr

↵�(p, p
0
, q)|q+=q?=0 = �2i⇠

T
n

G
A
↵ (0),

F
V
2�(0)

2mN

o
⇠ ēr

? (3.32)

where ēr
? is defined in Appendix A. This then gives

gA
V

2mN
=

4F⇡

e⇡

Z 1

⌫̄T

d⌫̄

⌫̄
Im A

+
1 (⌫̄, 0) . (3.33)
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Matching to the electroproduction amplitudes in Appendix B, only a single amplitude con-

tributes,

gA

6

⇣
hr2iV

1 � hr2iA
⌘

=
4F⇡

e⇡

Z 1

⌫̄T

d⌫̄

⌫̄
Im A

�
6 (⌫̄, 0) . (3.39)

This is a second sum rule first found by Fubini, Furlan and Rossetti (FFR2) [15, 49, 55].

A recent analysis of this remarkable sum rule that constrains the nucleon axial radius is

given in Ref. [60, 61], which incorporate chiral corrections. The sum rule compares very

favorably with experiment and is highly non-trivial as substantial cancellations take place

among contributions from distinct regions of the integral.

4 Symmetries of the S-matrix

4.1 Regge model expectations

The sum rules found above imply that the imaginary parts of the relevant forward scattering

amplitudes vanish in the Regge limit. Indeed, as described in the introduction, it is well

known that all of the sum rules can be derived by writing down an appropriate unsubtracted

dispersion relation and assuming the asymptotic behavior suggested by the Regge model.

Specializing to nucleon targets, Regge lore suggests the following Regge-limit behavior of the

amplitudes for which sum rules have been derived:

T[↵�](⌫̄, 0) ��!
⌫̄!1

⌫̄
↵⇢(0) (4.1)

for pion scattering,

T1[↵�](⌫̄, 0)��!
⌫̄!1

⌫̄
↵⇢(0)�2 ; (4.2)

T3(↵�)(⌫̄, 0)��!
⌫̄!1

⌫̄
↵̃P (0)�1 ; (4.3)

T4(↵�)(⌫̄, 0)��!
⌫̄!1

⌫̄
↵̃P (0)�2 (4.4)

for Compton scattering on the nucleon and

A1(↵�)](⌫̄, 0)��!
⌫̄!1

⌫̄
↵!(0)�1 ; (4.5)

A6[↵�](⌫̄, 0)��!
⌫̄!1

⌫̄
↵a1 (0)�1 (4.6)

for pion photo/electroproduction on the nucleon. Here, ↵M (t) (with M = ⇢, !, a1) and

↵̃P (t) are the leading odd- and even-signature Regge trajectories of definite G-parity, respec-

tively [15, 16], corresponding to the appropriate quantum numbers exchanged in the t-channel

of the process [62]. Su�ce it to say that in all six cases, the intercepts are expected to be such
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interest to express the constraints placed by QCD directly on the Regge-limit amplitudes.
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4.2 Dispersive representation
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⌫̄ at large

⌫̄ [10, 11, 63]. This scattering amplitude therefore satisfies a subtracted dispersion relation
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where P denotes principal value. At ⌫̄ = 0 the scattering amplitude is real and given by
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Now if Im t(⌫̄) vanishes asymptotically, which has been found for the amplitudes relevant to

the five sum rules derived above, then the limit ⌫̄s ! 1 can be taken and one finds
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where t(1) is the Regge limit amplitude. This is the basic dispersion relation which underlies

all of the sum rules that have been derived above.

4.3 Regge limit amplitudes
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Now taking t(⌫̄) ! T[↵�](⌫̄, 0)/⌫̄ and matching Eq. (4.10) and Eq. (4.9) directly gives the

Regge-limit value of the amplitude10
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The AW sum rule then follows directly from the axial-vector charge algebra. If one evaluates

this expression in the single-particle approximation using Eqs. (2.47) and (2.48), one recovers

the result found originally by Weinberg [3] who derived the pion-hadron scattering amplitude

from the most general chiral Lagrangian and extracted the leading term in the high-energy

10
In addition one gets the correct (chiral-limit) low-energy theorem: D�

(⌫, 0)/⌫|⌫=0 = (1� g2A)/2F
2
⇡ .
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expansion. This is gratifying as it demonstrates that these results are independent of the

choice of quantization surface, as of course must be the case.

The Regge-limit Compton amplitudes are derived in similar fashion, giving
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The second result is homogeneous as the omitted term in the moment algebra is antisymmetric

in the isospin indices. Hence the CR and the GDH sum rules follow from the current algebra

on the transverse plane and in particular, Eq. (2.19). It is important to stress that these sum

rules are consequences of more than the symmetry algebra obeyed by the charges; they rely

on the infinite dimensional symmetry implied by the current algebra.

The pion photo/electroproduction Regge-limit amplitudes are
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The first result is homogeneous as the omitted term is antisymmetric in the isospin indices.

From these Regge-limit amplitudes, the FFR1 and FFR2 sum rules follow, respectively, from

the infinite dimensional symmetry implied by current algebra on the transverse plane, and in

particular, Eq. (2.20).

Eqs. (4.11-4.15), are the most important results of this paper as they are explicit ex-

pressions of Regge-limit amplitudes as matrix elements of QCD operators. As pointed out in

the discussion of Section 2.2, if the Regge-limit amplitudes for Compton scattering and/or

photo/electroproduction were found to be non-vanishing experimentally, that would indicate

the presence of additional terms in the current algebra which involve transverse gradients11.

The existence of such terms would break the infinite-dimensional chiral symmetry on the

transverse plane and leave only the global symmetry. From the perspective of the closed

algebra of Eqs. (2.36-2.38), if these brackets are augmented to include central extensions,

then the Regge-limit amplitudes are related to the matrix elements of these extensions. As

evidenced by the experimental success of the sum rules, these terms are e↵ectively absent.

While obtained in the chiral limit, the Regge-limit equations are expected to remain valid

as the light-quark mass matrix is turned on, and therefore, together with dispersion theory,

11
In the language of the Regge model, this corresponds to a fixed pole.
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Regge limit amplitudes
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Gell-Mann-Oakes-Renner relation:  instant form
SU(N)L. We can compute the vacuum energy in the low-energy e⇥ective field theory; i.e.

chiral perturbation theory (⇤PT) [63, 64], as well. And therefore,

M ⇧E0
⇧M = M ⇧E⇤PT

0

⇧M , (4.12)

where E⇤PT
0 is the ⇤PT vacuum energy. In the non-linear realization of the chiral group

the Goldstone boson field may be written as U(x) = exp (i⇥�(x)T�/F⇥), and the leading

quark mass contribution to the ⇤PT Lagrangian is

L⇤PT
QCD = v tr

⇤
UM† + U †M

⌅
+ . . . , (4.13)

with v = M2
⇥ F

2
⇥/M and with M⇥ the Goldstone boson mass. One then obtains the Gell-

Mann-Oakes-Renner formula [38].

�M ⇥� | ⌅̄⌅ |� ⇤ = N M2
⇥ F

2
⇥ + . . . . (4.14)

It will be a principle goal in what follows to determine what takes the place of this relation

in null-plane QCD.

4.2 Null plane representation

The QCD Lagrangian in the null-plane coordinates is obtained by generalizing the results

given in Appendices B and C to the interacting case 8. The QCD equations of constraint

for the non-dynamical degrees of freedom are

⌅� =
1

2i
⇥
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⇤
�i�r
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⌅ 1
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(4.15)

for the redundant quark degrees of freedom, and

⇧+A�
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1

⇧+
Dr

ab⇧
+Ar

b � g
1

⇧+
⌅̄+�

+ta⌅+ , (4.16)

for the redundant gauge degrees of freedom. The null-plane QCD Lagrangian can then be

expressed in terms of the dynamical degrees of freedom as

L̃QCD = i⌅̄+�
+⇧�⌅+ � i

2 ⌅̄+�
r�+�sDr 1
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. (4.17)

The price to pay for working with the physical degrees of freedom in the null-plane co-

ordinates is a loss of manifest Lorentz covariance, as well as the appearance of operators

which that appear to be non-local in the longitudinal coordinate. As in the instant-form,

one should view this Lagrangian as providing a perturbative definition of QCD at large

8We follow the notation and conventions of Ref. [49].
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where g is the strong coupling constant, and indices a, b, . . . are taken as adjoint indices of

the SU(3)-color gauge group. The Lagrangian is invariant with respect to baryon number

and singlet axial transformations

⌅ ⌅ e�i⇤⌅ , ⌅ ⌅ e�i⇤⇥5⌅ , (4.3)

with associated currents

Jµ = ⌅̄�µ⌅ , Jµ
5 = ⌅̄�µ�5⌅ , (4.4)

and with divergences

⇧µJ
µ = 0 , ⇧µJ

µ
5 = 2i⌅̄M �5⌅ � g2

16⇤2
⇥µ⌅⇧⌃ tr (Fµ⌅F⇧⌃) , (4.5)

where the singlet axial symmetry is of course anomalous. In addition, the Lagrangian is

invariant with respect to the symmetry transformations

⌅ ⌅ e�i⇤�T�⌅ , ⌅ ⌅ e�i⇤�T�⇥5⌅ , (4.6)

where the T� are SU(N) generators (see appendix). By the standard Noether procedure

one defines the associated currents,

Jµ
� = ⌅̄�µT�⌅ , Jµ

5� = ⌅̄�µ�5T�⌅ , (4.7)

respectively, with divergences

⇧µJ
µ
� = �i⌅̄ [M , T� ]⌅ , ⇧µJ

µ
5� = i⌅̄ {M , T� } �5⌅ . (4.8)

Therefore, with N degenerate flavors the QCD Lagrangian is SU(N)F invariant and in the

chiral limit where M vanishes, there is an SU(N)R ⇤ SU(N)L chiral symmetry generated

by the currents Jµ
L� = (Jµ

� � Jµ
5�)/2 and Jµ

R� = (Jµ
� + Jµ

5�)/2.

The energy-momentum tensor may be written as

Tµ⌅ = �gµ⌅LQCD � Fµ⇧
a F ⌅

a ⇧ +
i

2
⌅̄

�
Dµ�⌅⌅ . (4.9)

From the energy-momentum tensor we can form the Hamiltonian,

P 0 =

�
d3xT 00 . (4.10)

Here we will assume that chiral symmetry is spontaneously broken through the formation

of the condensate

M ⌃� | ⌅̄⌅ |� ⌥ = M ⌃� | ⇧T
00

⇧M |� ⌥ = M ⇧E0
⇧M ⇧= 0 , (4.11)

where we have used the Feynman-Hellmann theorem, |� ⌥ represents the (complicated)

instant-form QCD vacuum state, and E0 is the QCD vacuum energy. It is straightforward

to show that the condensate transforms as the (N̄,N)⇥(N, N̄) representation of SU(N)R⇤
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How can this relation arise in the front 
form where there are no symmetry 

breaking condensates?



Chiral symmetry in null-plane QCD

✓    Chiral symmetry acts on dynamical quark field only:

✓    Axial current and its divergence and chiral charge:

The price to pay is a loss of manifest Lorentz invariance, as well as the appearance of

non-local operators (in the longitudinal coordinate). We will comment further on this

feature below. As in the instant-form case, one should view this Lagrangian as providing

a perturbative definition of QCD at large momentum transfers, where the longitudinal

zero modes play no role. Of course we expect the same symmetries that we have before.

Consider the symmetry transformations,

⌅+ ⇤ e�i⇤�T�⌅+ , ⌅+ ⇤ e�i⇤�T�⇥5⌅+ . (4.15)

This is clearly not the same chiral transformation that we had in the instant form, as the

constraint equation then dictates the complicated tranformation of ⌅�. The associated

currents are

J̃µ
� = Jµ

� � i
2 ⌅̄⇥

µ⇥+ [M , T� ]
1

⌥+
⌅+ (4.16)

J̃µ
5� = Jµ

5� � i
2 ⌅̄⇥

µ⇥+⇥5 {M , T� }
1

⌥+
⌅+ , (4.17)

with divergences

⌥µJ̃
µ
� = 1

2 ⌅̄⇥
+ [M2 , T� ]

1

⌥+
⌅+ (4.18)

⌥µJ̃
µ
5� = 1

2 ⌅̄⇥
+⇥5 [M2 , T� ]

1

⌥+
⌅+ + 1

2 ⌅̄+⇥
+⇥5{M , T� }

1

⌥+
(�rg taAr

a)⌅+ (4.19)

For N degenerate flavors, the quark mass matrix is proportional to the identity, the vector

current is conserved, and the axial current and the divergence of the axial current are given

by

J̃µ
5� = Jµ

5� � i⌅̄⇥µ⇥+⇥5 T�M
1

⌥+
⌅+ (4.20)

⌥µJ̃
µ
5� = ⌅̄+⇥

+⇥5 T�M
1

⌥+
(�rg taAr

a)⌅+ . (4.21)

The non-converved nature of the axial current arises from the single operator that breaks

chiral symmetry:

L̃⇧\
QCD = i

2 ⌅̄+⇥
+M 1

⌥+
(�rg taAr

a)⌅+ . (4.22)

As this operator cannot vanish in the chiral limit (or else there is no source of chiral

symmetry breaking in the theory), we define

1

⌥+
M

⇥ M 1

⌥+
. (4.23)

The null-plane Hamiltonian (energy operator) is given by:

P� =

�
dx� d2x⇥��+ . (4.24)

One then finds the symmetry breaking parts of the reduced QCD Hamiltonians:

M2
(N,N) = iP+

�
dx� d2x⇥ ⌅̄+⇥

+ 1

⌥+
M

(�rg taAr
a)⌅+ ; (4.25)

(MJr)(N,N) = �⇤rs P
+
�

dx� d2x⇥ xs ⌅̄+⇥
+ 1

⌥+
M

(�rg taAr
a)⌅+ . (4.26)

All chiral symmetry breaking in QCD arises from these two operators.
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and therefore the chiral-symmetry breaking part of this Hamiltonian is given by:

P�
(N,N) ⇥ � i

2

⌅
dx� d2x⇤ D̃ . (4.51)

One readily checks that this is consistent with eqs. 3.10 and 4.42.

One then finds the symmetry breaking parts of the reduced QCD Hamiltonians:

M2
(N,N) = �iP+

⌅
dx� d2x⇤ ⌅̄+�

+ 1

⇧+
M

(�rg taAr
a)

⇥ ⌅+ ; (4.52)

(MJr)(N,N) = �1
2⇤rs P

+
⇤
dx� d2x⇤ �s ⌅̄+�+

1
⇧+
M
(�rg taAr

a)
⇥ ⌅+ , (4.53)

where, in addition, we have used eqs. 3.11 and 4.28 to obtain the reduced Hamiltonian for

spin. All chiral symmetry breaking in null-plane QCD is contained in these two operators.

Using eqs. 3.10, 3.11 and 4.46 one finds

[Q̃⇥
5 , [ Q̃

�
5 , M

2 ]] = �2iP+
⌅

dx� d2x⇤

�
1

N
⇥�⇥ D̃ + d�⇥⇤ D̃⇤

⇥
; (4.54)

[Q̃⇥
5 , [ Q̃

�
5 , MJr ]] = i⇤rsP

+
⌅

dx� d2x⇤ �s

�
1

N
⇥�⇥ D̃ + d�⇥⇤ D̃⇤

⇥
. (4.55)

Acting on these equations with ⇥�⇥ and d�⇥⇤ , and using the identities in Appendix D gives
⌅

dx� d2x⇤ D̃ =
N

N2 � 1
[Q̃�

5 , [ Q̃
�
5 , M

2 ]] ; (4.56)
⌅

dx� d2x⇤ D̃⇤ = d�⇥⇤
N

N2 � 4
[Q̃⇥

5 , [ Q̃
�
5 , M

2 ]] . (4.57)

Therefore, eq. 4.54 can be written as

[Q̃⇥
5 , [Q̃

�
5 ,M

2]] =
1

N2 � 1
⇥�⇥ [Q̃⇤

5 , [Q̃
⇤
5 ,M

2]] +
N

N2 � 4
d�⇥⇤dµ⌅⇤ [Q̃µ

5 , [Q̃
⌅
5 ,M

2]] , (4.58)

and eq. 4.55 takes the same form but with M2 replaced by MJ±. Defining the projection

operator

P�⇥;µ⌅ ⇥ ⇥�⌅⇥⇥µ � 1

N2 � 1
⇥�⇥⇥µ⌅ � N

N2 � 4
d�⇥⇤dµ⌅⇤ , (4.59)

we can express the constraints on the reduced Hamiltonians in compact notation as:

P�⇥;µ⌅ [Q̃µ
5 , [ Q̃

⌅
5 , M

2]] = P�⇥;µ⌅ [Q̃µ
5 , [ Q̃

⌅
5 , MJ±]] = 0 . (4.60)

These are quite possibly the most important equations in null-plane QCD, as they are

the mathematical expression of the specific way in which the internal symmetries and

Poincaré symmetries intersect. These equations were obtained originally in Refs. [7–9]

by considering the most general form of Goldstone-boson-hadron scattering amplitudes in

specially-designed Lorentz frames, and using input from Regge-pole theory expectations

of their high-energy behavior. Note that the projection operator, P�⇥;µ⌅ , has four adjoint

indices and is, as shown in Ref. [7] related to the interactions of Goldstone bosons (in the
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✓    Symmetry-breaking Hamiltonians:               

where g is the strong coupling constant, and indices a, b, . . . are taken as adjoint indices of

the SU(3)-color gauge group. The Lagrangian is invariant with respect to baryon number

and singlet axial transformations

⌅ ⌅ e�i⇤⌅ , ⌅ ⌅ e�i⇤⇥5⌅ , (4.3)

with associated currents

Jµ = ⌅̄�µ⌅ , Jµ
5 = ⌅̄�µ�5⌅ , (4.4)

and with divergences

⇧µJ
µ = 0 , ⇧µJ

µ
5 = 2i⌅̄M �5⌅ � g2

16⇤2
⇥µ⌅⇧⌃ tr (Fµ⌅F⇧⌃) , (4.5)

where the singlet axial symmetry is of course anomalous. In addition, the Lagrangian is

invariant with respect to the symmetry transformations

⌅ ⌅ e�i⇤�T�⌅ , ⌅ ⌅ e�i⇤�T�⇥5⌅ , (4.6)

where the T� are SU(N) generators (see appendix). By the standard Noether procedure

one defines the associated currents,

Jµ
� = ⌅̄�µT�⌅ , Jµ

5� = ⌅̄�µ�5T�⌅ , (4.7)

respectively, with divergences

⇧µJ
µ
� = �i⌅̄ [M , T� ]⌅ , ⇧µJ

µ
5� = i⌅̄ {M , T� } �5⌅ . (4.8)

Therefore, with N degenerate flavors the QCD Lagrangian is SU(N)F invariant and in the

chiral limit where M vanishes, there is an SU(N)R ⇤ SU(N)L chiral symmetry generated

by the currents Jµ
L� = (Jµ

� � Jµ
5�)/2 and Jµ

R� = (Jµ
� + Jµ

5�)/2.

The energy-momentum tensor may be written as

Tµ⌅ = �gµ⌅LQCD � Fµ⇧
a F ⌅

a ⇧ +
i

2
⌅̄

�
Dµ�⌅⌅ . (4.9)

From the energy-momentum tensor we can form the Hamiltonian,

P 0 =

�
d3xT 00 . (4.10)

Here we will assume that chiral symmetry is spontaneously broken through the formation

of the condensate

M ⌃� | ⌅̄⌅ |� ⌥ = M ⌃� | ⇧T
00

⇧M |� ⌥ = M ⇧E0
⇧M ⇧= 0 , (4.11)

where we have used the Feynman-Hellmann theorem, |� ⌥ represents the (complicated)

instant-form QCD vacuum state, and E0 is the QCD vacuum energy. It is straightforward

to show that the condensate transforms as the (N̄,N)⇥(N, N̄) representation of SU(N)R⇤
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⇧µJ̃
µ
5� = ⌅̄+�

+�5 T�M
1

⇧+
(�rg taAr

a)
⌅ ⌅+ . (4.28)

Here note in particular that the null-plane axial-vector current in null-plane QCD evidently

takes the form, eq. 3.40, expected on general grounds.

4.3 Null-plane charges

The null-plane singlet axial charge is defined as

Q̃5 =

⇥
dx� d2x⇧ J̃+

5 =

⇥
dx� d2x⇧ ⌅̄+�

+�5 ⌅+ , (4.29)

where we have used eq. 4.20. Using the momentum-space representation of ⌅+, given in

eq. B.20, one finds

Q̃5 =
�

⇥=⇥⇤
2⇥

⇥
dk+d2k⇧
2k+(2⇤)3

⇤
b†⇥(k

+,k⇧)b⇥(k
+,k⇧) + d†⇥(k

+,k⇧)d⇥(k
+,k⇧)

⌅
. (4.30)

Comparison with eq. B.31 one sees that the singlet axial charge coincides (up to a factor

of two) with the free-fermion helicity operator. This of course explains why the quark

mass term in the free-fermion theory is a chiral invariant; on the null-plane, chiral sym-

metry breaking in the free-fermion theory implies breaking of rotational invariance in the

transverse plane.

Similarly, the null-plane non-singlet vector and chiral charges are, respectively,

Q̃� =

⇥
dx� d2x⇧ J̃+

� =

⇥
dx� d2x⇧ ⌅̄+�

+ T�⌅+ ; (4.31)

Q̃5
� =

⇥
dx� d2x⇧ J̃+

5� =

⇥
dx� d2x⇧ ⌅̄+�

+�5 T�⌅+ , (4.32)

and using the momentum-space representation of ⌅+, given in eq. B.20, one finds

Q̃� =
�

⇥=⇥⇤

⇥
dk+d2k⇧
2k+(2⇤)3

⇤
b†⇥(k

+,k⇧)T�b⇥(k
+,k⇧)� d†⇥(k

+,k⇧)T
T
� d⇥(k

+,k⇧)
⌅

; (4.33)

Q̃5
� =

�

⇥=⇥⇤
2⇥

⇥
dk+d2k⇧
2k+(2⇤)3

⇤
b†⇥(k

+,k⇧)T�b⇥(k
+,k⇧) + d†⇥(k

+,k⇧)T
T
� d⇥(k

+,k⇧)
⌅
. (4.34)

One readily checks that the null-plane chiral algebra, eqs. 3.4 and 3.5, is satisfied by these

charges. As these charge are written as sums of number operators that count the number

of quarks and anti-quarks, both chiral charges annihilate the vacuum, and we have

Q̃� | 0 ⇥ = Q̃�
5 | 0 ⇥ = 0 , (4.35)

as expected on the general grounds presented above. One then has

[ Q̃� , ⌅+ ] = �T� ⌅+ ; [ Q̃�
5 , ⌅+ ] = ��5 T

� ⌅+ . (4.36)

Breaking down the fields into left- and right-handed components,

⌅+R = 1
2(1 + �5)⌅+ , ⌅+L = 1

2(1� �5)⌅+ (4.37)
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momentum transfers, where the longitudinal zero modes play no role. Notice that in null-

plane QCD there are two kinds of operators that depend on the quark-mass matrix 9. One

is a kinetic term, quadratic in the quark masses, and the other is a spin-flip quark-gluon

interaction that is linear in the quark masses.

Naturally we expect that null-plane QCD has the same symmetries as instant-form

QCD. Consider the U(1)R ⇥ U(1)L transformations,

⌅+ ⇤ e�i⇤⌅+ , ⌅+ ⇤ e�i⇤⇥5⌅+ . (4.19)

While baryon number is unaltered in moving to the null-plane coordinates, this is clearly

not the same chiral transformation that we had in the instant form, as that transformation

acts on the non-dynamical degrees of freedom, ⌅�, in a distinct manner and is therefore

complicated on the null-plane. That the chiral symmetry transformations are di�erent

in the two forms of dynamics is essential for what follows. We will return below to the

relation between the chiral symmetries in the instant-form and the front form, as this

will be important in understanding the role of condensates on the null-plane. The U(1)A
current and its divergence are [29]

J̃µ
5 = Jµ

5 � i⌅̄�µ�+�5M
1

⇧+
⌅+ ; (4.20)

⇧µJ̃
µ
5 = ⌅̄+�

+�5M
1

⇧+
(�rg taAr

a)
⇥ ⌅+ � g2

16⇤2
⇥µ⌅⇧⌃ tr (Fµ⌅F⇧⌃) . (4.21)

Consider the SU(N)R ⇥ SU(N)L transformations,

⌅+ ⇤ e�i⇤�T�⌅+ , ⌅+ ⇤ e�i⇤�T�⇥5⌅+ . (4.22)

The currents associated with eq. 4.22 are

J̃µ
� = Jµ

� � i
2 ⌅̄�

µ�+ [M , T� ]
1

⇧+
⌅+ ; (4.23)

J̃µ
5� = Jµ

5� � i
2 ⌅̄�

µ�+�5 {M , T� }
1

⇧+
⌅+ , (4.24)

with divergences

⇧µJ̃
µ
� = 1

2 ⌅̄�
+ [M2 , T� ]

1

⇧+
⌅+ ; (4.25)

⇧µJ̃
µ
5� = 1

2 ⌅̄�
+�5 [M2 , T� ]

1

⇧+
⌅+ + 1

2 ⌅̄+�
+�5{M , T� }

1

⇧+
(�rg taAr

a)
⇥ ⌅+ . (4.26)

For N degenerate flavors, the quark mass matrix is proportional to the identity, the vector

current is conserved, and the axial current and the divergence of the axial current are

J̃µ
5� = Jµ

5� � i⌅̄�µ�+�5 T�M
1

⇧+
⌅+ ; (4.27)

9To minimize clutter, it will prove convenient to define the operator

1
⇥+

(�rg taAr
a)

� �+ ⇥ (�rg taAr
a)

1
⇥+

�+ � 1
⇥+

(�rg taAr
a�+) . (4.18)
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⇧µJ̃
µ
5� = ⌅̄+�

+�5 T�M
1

⇧+
(�rg taAr

a)
⌅ ⌅+ . (4.28)

Here note in particular that the null-plane axial-vector current in null-plane QCD evidently

takes the form, eq. 3.40, expected on general grounds.

4.3 Null-plane charges

The null-plane singlet axial charge is defined as

Q̃5 =

⇥
dx� d2x⇧ J̃+

5 =

⇥
dx� d2x⇧ ⌅̄+�

+�5 ⌅+ , (4.29)

where we have used eq. 4.20. Using the momentum-space representation of ⌅+, given in

eq. B.20, one finds

Q̃5 =
�

⇥=⇥⇤
2⇥

⇥
dk+d2k⇧
2k+(2⇤)3

⇤
b†⇥(k

+,k⇧)b⇥(k
+,k⇧) + d†⇥(k

+,k⇧)d⇥(k
+,k⇧)

⌅
. (4.30)

Comparison with eq. B.31 one sees that the singlet axial charge coincides (up to a factor

of two) with the free-fermion helicity operator. This of course explains why the quark

mass term in the free-fermion theory is a chiral invariant; on the null-plane, chiral sym-

metry breaking in the free-fermion theory implies breaking of rotational invariance in the

transverse plane.

Similarly, the null-plane non-singlet vector and chiral charges are, respectively,

Q̃� =

⇥
dx� d2x⇧ J̃+

� =

⇥
dx� d2x⇧ ⌅̄+�

+ T�⌅+ ; (4.31)
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⇥
dx� d2x⇧ ⌅̄+�
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and using the momentum-space representation of ⌅+, given in eq. B.20, one finds

Q̃� =
�
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dk+d2k⇧
2k+(2⇤)3
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b†⇥(k

+,k⇧)T�b⇥(k
+,k⇧)� d†⇥(k

+,k⇧)T
T
� d⇥(k

+,k⇧)
⌅

; (4.33)
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� =

�
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⇥
dk+d2k⇧
2k+(2⇤)3

⇤
b†⇥(k

+,k⇧)T�b⇥(k
+,k⇧) + d†⇥(k

+,k⇧)T
T
� d⇥(k

+,k⇧)
⌅
. (4.34)

One readily checks that the null-plane chiral algebra, eqs. 3.4 and 3.5, is satisfied by these

charges. As these charge are written as sums of number operators that count the number

of quarks and anti-quarks, both chiral charges annihilate the vacuum, and we have

Q̃� | 0 ⇥ = Q̃�
5 | 0 ⇥ = 0 , (4.35)

as expected on the general grounds presented above. One then has

[ Q̃� , ⌅+ ] = �T� ⌅+ ; [ Q̃�
5 , ⌅+ ] = ��5 T

� ⌅+ . (4.36)

Breaking down the fields into left- and right-handed components,

⌅+R = 1
2(1 + �5)⌅+ , ⌅+L = 1

2(1� �5)⌅+ (4.37)
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counts quarks and 
antiquarks separately.

and therefore the chiral-symmetry breaking part of this Hamiltonian is given by:

P�
(N,N) ⇥ � i

2

⇤
dx� d2x⌅ D̃ . (4.51)

One readily checks that this is consistent with eqs. 3.10 and 4.42.

One then finds the symmetry breaking parts of the reduced QCD Hamiltonians:

M2
(N,N) = �iP+

⇤
dx� d2x⌅ ⌅̄+�

+ 1

⌥+
M

(�rg taAr
a)

⇤ ⌅+ ; (4.52)

(MJr)(N,N) = i12⇤rs P
+
⇤

dx� d2x⌅ �s ⌅̄+�
+ 1

⌥+
M

(�rg taAr
a)

⇤ ⌅+ , (4.53)

where, in addition, we have used eqs. 3.11 and 4.28 to obtain the reduced Hamiltonian for

spin. All chiral symmetry breaking in null-plane QCD is contained in these two operators.

Using eqs. 3.10, 3.11 and 4.46 one finds

[Q̃⇥
5 , [ Q̃

�
5 , M

2 ]] = �2iP+
⇤

dx� d2x⌅

�
1

N
⇥�⇥ D̃ + d�⇥⇤ D̃⇤

⇥
; (4.54)

[Q̃⇥
5 , [ Q̃

�
5 , MJr ]] = i⇤rsP

+
⇤

dx� d2x⌅ �s

�
1

N
⇥�⇥ D̃ + d�⇥⇤ D̃⇤

⇥
. (4.55)

Acting on these equations with ⇥�⇥ and d�⇥⇤ , and using the identities in Appendix D gives

�2iP+
⇤

dx� d2x⌅ D̃ =
N

N2 � 1
[Q̃�

5 , [ Q̃
�
5 , M

2 ]] ; (4.56)

�2iP+
⇤

dx� d2x⌅ D̃⇤ = d�⇥⇤
N

N2 � 4
[Q̃⇥

5 , [ Q̃
�
5 , M

2 ]] . (4.57)

Therefore, eq. 4.54 can be written as

[Q̃⇥
5 , [Q̃

�
5 ,M

2]] =
1

N2 � 1
⇥�⇥ [Q̃⇤

5 , [Q̃
⇤
5 ,M

2]] +
N

N2 � 4
d�⇥⇤dµ⇧⇤ [Q̃µ

5 , [Q̃
⇧
5 ,M

2]] , (4.58)

and eq. 4.55 takes the same form but with M2 replaced by MJ±. Defining the projection

operator

P�⇥;µ⇧ ⇥ ⇥�⇧⇥⇥µ � 1

N2 � 1
⇥�⇥⇥µ⇧ � N

N2 � 4
d�⇥⇤dµ⇧⇤ , (4.59)

we can express the constraints on the reduced Hamiltonians in compact notation as:

P�⇥;µ⇧ [Q̃µ
5 , [ Q̃

⇧
5 , M

2]] = P�⇥;µ⇧ [Q̃µ
5 , [ Q̃

⇧
5 , MJ±]] = 0 . (4.60)

These are quite possibly the most important equations in null-plane QCD, as they are

the mathematical expression of the specific way in which the internal symmetries and

Poincaré symmetries intersect. These equations were obtained originally in Refs. [7–9]

by considering the most general form of Goldstone-boson-hadron scattering amplitudes in

specially-designed Lorentz frames, and using input from Regge-pole theory expectations

of their high-energy behavior. Note that the projection operator, P�⇥;µ⇧ , has four adjoint
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where | 0 ⌥ represents the trivial instant-form QCD vacuum state, and Ẽ0 is the null-plane

QCD vacuum energy. As we clearly expect that Ẽ0 = E0 this result seems rather puzzling

since this operator does not break chiral symmetry. Moreover, as the operator in the QCD

Lagrangian that encodes quark mass e⇥ects transforms as a chiral singlet, it is unclear

how one can consistently account for these e⇥ects in the low-energy EFT in the null-plane

framework. However, as we will see shortly, this result is perfectly consistent. First we

must understand more about null-plane chiral symmetry and how it relates to instant-form

chiral symmetry.

4.4.2 Algebraic proof

While the left- and right-handed components of the “good” quark fields transform irre-

ducibly with respect to the chiral group, the same cannot be said for the “bad” components.

Indeed one finds

[ Q̃�
5 , ⇤ ] = ��5 T

� ⇤ � i �5 �
+ T� 1

⌃+
M
⇤ , (4.53)

from which it follows that

⇤R , ⇤L ⇧ (1,N)⇥ (N,1) , ⇤†
R , ⇤†

L ⇧ (1, N̄)⇥ (N̄,1) . (4.54)

Since the left- and right-handed components of the quark field transform reducibly with

respect to the chiral group, generally bilinear operators of the form ⇤̄�⇤ will have com-

plicated reducible chiral transformation properties. Generally QCD operator built out of

these bilinears will have a component that transforms as a chiral singlet. We will now

see, for the simplest example, that this is essential to the consistency of the null-plane

formulation. Consider the transformation properties of the following set of bilinears:

D�
5 ⌅ ⇤̄ �5 T

� ⇤ , D5 ⌅ ⇤̄ �5 ⇤ ; (4.55)

D� ⌅ ⇤̄ T� ⇤ , D ⌅ ⇤̄ ⇤ . (4.56)

Is is easy to check that these operators fill out the (N̄,N) ⇥ (N, N̄) representation of

SU(N)R ⇤ SU(N)L with respect to the instant-form chiral charges Q�
5 . Now consider the

tranformation properties of these operators with respect to the null-plane chiral charges.

One finds

[ Q̃�
5 , D

⇥
5 ] = � 1

N
⇥�⇥

�
D � i ⇤̄+�

+ 1

⌃+
M
⇤+

⇥

� d�⇥⇤
�
D⇤ + i ⇤̄+�

+T ⇤ 1

⌃+
M
⇤+

⇥
; (4.57)

[ Q̃�
5 , D ] = �2D�

5 ; (4.58)

[ Q̃�
5 , D

⇥ ] = � 1

N
⇥�⇥

�
D5 � i ⇤̄+�

+�5
1

⌃+
M
⇤+

⇥

� d�⇥⇤
�
D⇤

5 + i ⇤̄+�
+�5T

⇤ 1

⌃+
M
⇤+

⇥
; (4.59)

[ Q̃�
5 , D5 ] = �2D� . (4.60)
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Hence the full set of operators transform as the reducible 4N2-dimensional (1,1)� (1,1)�
(1,A) � (A,1) � (N̄,N) � (N, N̄) representation of SU(N)R ⇥ SU(N)L, where here A
denotes the SU(N) adjoint representation. In particular one see that

⇥̄⇥ ⇤ (N̄,N)� (N, N̄)� (1,1)� . . . , (4.76)

and therefore transforms reducibly. This is verified by direct calculation which gives 12

M ⇥̄⇥ = iM ⇥̄+�
+ 1

⇤+
M
⇥+ + ⇥̄+�

+ 1

⇤+
M

(�r⇤r)⇥+ + ⇥̄+�
+ 1

⇤+
M

(�rg taAr
a)

� ⇥+ . (4.77)

Taking the vacuum expectation value of eq. 4.77 (or eq. 4.69) gives the general solution [29]

⇧ 0 | ⇥̄⇥ | 0 ⌃ = ⇧ 0 | i ⇥̄+�
+ 1

⇤+
M
⇥+ | 0 ⌃ . (4.78)

Therefore only the singlet part of ⇥̄⇥ can acquire a vacuum expectation value on the null

plane, as must be the case since SU(N)R⇥SU(N)L is a symmetry of the null-plane vacuum

state. This argument readily generalizes to any chiral symmetry breaking Lorentz scalar

operator, O, that one can build out of products of quark bilinears in instant-form QCD.

One can write

O =
�

R
OR =

�

R̃

OR̃ + O1̃ (4.79)

where R is a non-trivial chiral representation with respect to the instant-form chiral

charges, Q5�, and R̃ (1̃) is a non-trivial (the singlet) representation with respect to the

front-form chiral charges, Q̃5�. Unless protected by another symmetry, O has a non-

vanishing vacuum expectation value, which can be expressed as

⇧� | O |� ⌃ = ⇧� |
�

R
OR |� ⌃ = ⇧ 0 | O1̃ | 0 ⌃ ⌅= 0 . (4.80)

Therefore all instant-form chiral symmetry breaking QCD condensates map to chiral sym-

metry conserving condensates in the front-form. The presence of the singlet part of the

operator can always be traced to the reducible chiral transformation property of ⇥ given

in eq. 4.65. For the case at hand, with O = ⇥̄⇥, we have

⇧� | ⇥̄⇥ |� ⌃ = ⇧ 0 | ⇥̄⇥ | 0 ⌃ , (4.81)

which together with eq. 4.78, provides the desired link between the instant-form and front-

form expressions of the Gell-Mann-Oakes-Renner relation.

The general relation, eq. 4.80 is important for the consistency of null-plane QCD, as it

demonstrates that, as expected, the QCD vacuum energy is unaltered in moving from the

instant-form to the front-form description, and these relations must, of course, exist in order

12Note that the second term, which is breaks chiral symmetry and is independent of the interaction does

not appear in the free fermion Lagrangian as it is cancelled by a piece coming from the other kinetic term,

as must be the case in order that the Lagrangian commute with the helicity operator.

– 27 –

where | 0 ⌥ represents the trivial instant-form QCD vacuum state, and Ẽ0 is the null-plane
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Since the left- and right-handed components of the quark field transform reducibly with
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plicated reducible chiral transformation properties. Generally QCD operator built out of
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formulation. Consider the transformation properties of the following set of bilinears:
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� ⇤ , D5 ⌅ ⇤̄ �5 ⇤ ; (4.55)

D� ⌅ ⇤̄ T� ⇤ , D ⌅ ⇤̄ ⇤ . (4.56)

Is is easy to check that these operators fill out the (N̄,N) ⇥ (N, N̄) representation of

SU(N)R ⇤ SU(N)L with respect to the instant-form chiral charges Q�
5 . Now consider the

tranformation properties of these operators with respect to the null-plane chiral charges.

One finds

[ Q̃�
5 , D

⇥
5 ] = � 1

N
⇥�⇥

�
D � i ⇤̄+�

+ 1

⌃+
M
⇤+

⇥

� d�⇥⇤
�
D⇤ + i ⇤̄+�

+T ⇤ 1

⌃+
M
⇤+

⇥
; (4.57)

[ Q̃�
5 , D ] = �2D�

5 ; (4.58)

[ Q̃�
5 , D

⇥ ] = � 1

N
⇥�⇥

�
D5 � i ⇤̄+�

+�5
1

⌃+
M
⇤+

⇥

� d�⇥⇤
�
D⇤

5 + i ⇤̄+�
+�5T

⇤ 1

⌃+
M
⇤+

⇥
; (4.59)

[ Q̃�
5 , D5 ] = �2D� . (4.60)
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Gell-Mann-Oakes-Renner relation:  front form

t-channel of Goldstone-boson-hadron scattering), which are in the adjoint of SU(N)F and

whose scattering amplitudes therefore transform as the product of two adjoints. In the case

of two flavors, where 3 ⇤ 3 = 1 ⇥ 3 ⇥ 5, it projects out the 5-dimensional representation

(I = 2) and in the case of three flavors, where 8 ⇤ 8 = 1 ⇥ 8 ⇥ 8 ⇥ 10 ⇥ 1̄0 ⇥ 27, it

projects out the 10, 1̄0, and 27-dimensional representations. As shown above, these are

the representations that cannot be formed from a single quark bilinear; i.e. they are not

contained in (N̄,N)⇥ (N, N̄), as is clear from direct inspection of eqs. 4.54 and 4.55.

4.5 Gell-Mann-Oakes-Renner relation recovered

We are now in a position to address the fate of instant-form QCD chiral-symmetry breaking

condensates in null-plane QCD. Again using the Feynman-Hellmann theorem we find

M ⌅ 0 | ⇤T
�+

⇤M | 0 ⇧ = M ⇤Ẽ0
⇤M = M ⇤E0

⇤M = M ⇤E⇥PT
0

⇤M , (4.61)

where | 0 ⇧ represents the null-plane QCD vacuum state, and Ẽ0 is the null-plane QCD

vacuum energy. In this equation we have also expressed that physics is independent of the

choice of coordinates. Therefore calculation of the leading quark-mass contribution to the

vacuum energy must be independent of the quantization surface, and should be the same

whether one works with the fundamental degrees of freedom, or with the Goldstone bosons

in the infrared. One then has

M ⇤Ẽ0
⇤M = M ⌅ 0 | i ⇥̄+�

+ 1

⇤+
M
⇥+ | 0 ⇧+ ⌅ 0 | i

2 ⇥̄+�
+ 1

⇤+
M

(�rg taAr
a)⇥+ | 0 ⇧ . (4.62)

The second term must vanish as the chiral charges annihilate the vacuum and therefore

there can be no chiral-symmetry breaking condensates. Operationally one sees this directly

by taking the vacuum expectation value of eq. 4.46 which gives

⌅ 0 | i
2 ⇥̄+�

+ 1

⇤+
M

(�rg taAr
a)⇥+ | 0 ⇧ = 0. (4.63)

We are then left with the null-plane expression of the Gell-Mann-Oakes-Renner relation:

�M ⌅ 0 | i ⇥̄+�
+ 1

⇤+
M
⇥+ | 0 ⇧ = N M2

� F
2
� + . . . . (4.64)

Hence, a chiral-symmetry breaking condensate in the instant-form formulation of QCD has

been replaced by a chiral-symmetry conserving condensate in the null-plane formulation.

Note that while the operator naively vanishes in the chiral limit, the matrix element is

infrared singular and therefore it need not, and indeed cannot, vanish in the chiral limit 11.

It would be very interesting to define the relevant operator non-perturbatively and calculate

this condensate directly, perhaps using transverse lattice gauge theory methods [65–73].

Note that a priori knowledge of the singlet condensate in eq. 4.64 is not very di�erent to

a priori knowledge of the symmetry-breaking quark condensate in eq. 4.14. In both cases,

it is necessary to keep the quark masses finite and only at the very end take the chiral

limit [74].

11This expression of the Gell-Mann-Oakes-Renner formula was found previously in Ref. [29] using the

methods that will be described below.
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� F
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Note that while the operator naively vanishes in the chiral limit, the matrix element is

infrared singular and therefore it need not, and indeed cannot, vanish in the chiral limit 11.

It would be very interesting to define the relevant operator non-perturbatively and calculate

this condensate directly, perhaps using transverse lattice gauge theory methods [65–73].

Note that a priori knowledge of the singlet condensate in eq. 4.64 is not very di�erent to

a priori knowledge of the symmetry-breaking quark condensate in eq. 4.14. In both cases,

it is necessary to keep the quark masses finite and only at the very end take the chiral
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✓    Match vacuum energy to chiral perturbation theory:

❖     Chiral singlet:

Hence the full set of operators transform as the reducible 4N2-dimensional (1,1)� (1,1)�
(1,A) � (A,1) � (N̄,N) � (N, N̄) representation of SU(N)R ⇥ SU(N)L, where here A
denotes the SU(N) adjoint representation. In particular one see that

⇥̄⇥ ⇤ (N̄,N)� (N, N̄)� (1,1)� . . . , (4.76)

and therefore transforms reducibly. This is verified by direct calculation which gives 12

M ⇥̄⇥ = iM ⇥̄+�
+ 1

⇤+
M
⇥+ + ⇥̄+�

+ 1

⇤+
M

(�r⇤r)⇥+ + ⇥̄+�
+ 1

⇤+
M

(�rg taAr
a)

� ⇥+ . (4.77)

Taking the vacuum expectation value of eq. 4.77 (or eq. 4.69) gives the general solution [29]

⇧ 0 | ⇥̄⇥ | 0 ⌃ = ⇧ 0 | i ⇥̄+�
+ 1

⇤+
M
⇥+ | 0 ⌃ . (4.78)

Therefore only the singlet part of ⇥̄⇥ can acquire a vacuum expectation value on the null

plane, as must be the case since SU(N)R⇥SU(N)L is a symmetry of the null-plane vacuum

state. This argument readily generalizes to any chiral symmetry breaking Lorentz scalar

operator, O, that one can build out of products of quark bilinears in instant-form QCD.

One can write

O =
�

R
OR =

�

R̃

OR̃ + O1̃ (4.79)

where R is a non-trivial chiral representation with respect to the instant-form chiral

charges, Q5�, and R̃ (1̃) is a non-trivial (the singlet) representation with respect to the

front-form chiral charges, Q̃5�. Unless protected by another symmetry, O has a non-

vanishing vacuum expectation value, which can be expressed as

⇧� | O |� ⌃ = ⇧� |
�

R
OR |� ⌃ = ⇧ 0 | O1̃ | 0 ⌃ ⌅= 0 . (4.80)

Therefore all instant-form chiral symmetry breaking QCD condensates map to chiral sym-

metry conserving condensates in the front-form. The presence of the singlet part of the

operator can always be traced to the reducible chiral transformation property of ⇥ given

in eq. 4.65. For the case at hand, with O = ⇥̄⇥, we have

⇧� | ⇥̄⇥ |� ⌃ = ⇧ 0 | ⇥̄⇥ | 0 ⌃ , (4.81)

which together with eq. 4.78, provides the desired link between the instant-form and front-

form expressions of the Gell-Mann-Oakes-Renner relation.

The general relation, eq. 4.80 is important for the consistency of null-plane QCD, as it

demonstrates that, as expected, the QCD vacuum energy is unaltered in moving from the

instant-form to the front-form description, and these relations must, of course, exist in order

12Note that the second term, which is breaks chiral symmetry and is independent of the interaction does

not appear in the free fermion Lagrangian as it is cancelled by a piece coming from the other kinetic term,

as must be the case in order that the Lagrangian commute with the helicity operator.
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✓    General prescription:
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Poincare Symmetry Internal Symmetry

transform as (N̄,N) ⇤ (N, N̄) with respect to SU(N)R ⌅ SU(N)L, and which arise from

zero modes of the Goldstone boson field operator. The three reduced Hamiltonians satisfy

the following brackets which mix mix chiral and Poincaré symmetry generators:

P�⇥;µ⇧ [Q̃µ
5 , [ Q̃

⇧
5 , M

2]] = P�⇥;µ⇧ [Q̃µ
5 , [ Q̃

⇧
5 , MJ±]] = 0 . (5.1)

In addition, there is a non-vanishing condensate vacuum condensate,

� 0 | ⇤̄⇤ | 0  = � 0 | i ⇤̄+�
+ 1

⌃+
M
⇤+ | 0  ⇧= 0 (5.2)

� 2M� 0 | i ⇤̄+�
+ 1

⌃+
M
⇤+ | 0  = M2

⌃ F
2
⌃ (5.3)

which transforms as the singlet representation of SU(N)R ⌅ SU(N)L, and which gives

the Gell-Mann-Oakes-Renner formula on the null-plane. In addition to these signatures of

chiral symmetry breaking, the three reduced Hamiltonians, together with the generator of

rotations on the transverse plane together generate the U(2) dynamical sub-group of the

null-plane Poincaré algebra:

[J3 , MJ± ] = ±MJ± , [J3 , M
2 ] = 0 (5.4)

[MJ+ , MJ� ] = 2M2J3 , [M2 , MJ± ] = 0 . (5.5)

The null-plane vector and chiral charges satisfy the SU(N)R ⌅ SU(N)L algebra:

[ Q̃� , Q̃⇥ ] = i f�⇥⇤ Q̃⇤ , [ Q̃�
5 , Q̃

⇥ ] = i f�⇥⇤ Q̃⇤
5 (5.6)

[ Q̃�
5 , Q̃

⇥
5 ] = i f�⇥⇤ Q̃⇤ . (5.7)

In some sense, eqs. 5.4,??,?? and eq. 5.1 are the fundamental operator relations of null-

plane QCD. The consequences of chiral symmetry breaking for the spectrum and spin of

QCD are contained in the symmetry-breaking parts of the reduced Hamiltonians, which

are constrained by eq. 5.1. Eqs. (5.6) and (5.7) indicate that that hadrons fill out SU(N)⌅
SU(N) representations for each hadron helicity. The non-trivial mixed commutators imply

that these representations are reducible and possibly infinite dimensional. Below we will

consider consequences of this algebraic structure.

5.2 The fundamental null-plane QCD sum rules

In order to find the physical consequences of the null-plane operator algebra, it is necessary

to take the matrix elements of the Lie brackets between hadronic states. Taking matrix

elements of the SU(N)⌅ SU(N) algebra between states h and h⇤ and using eqs. 3.44 and

3.45 yields

[T� , T ⇥ ] = i f�⇥⇤ T ⇤ , [X�(⇥) , T ⇥ ] = i f�⇥⇤ X⇤(⇥) , (5.8)
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One then easily finds that

[ Q̃�
5 , D̃

⇥
5 ] =

1

N
⇥�⇥ D̃ + d�⇥⇤ D̃⇤ ; (4.40)

[ Q̃�
5 , D̃ ] = 2 D̃�

5 ; (4.41)

[ Q̃�
5 , D̃

⇥ ] =
1

N
⇥�⇥ D̃5 + d�⇥⇤ D̃⇤

5 ; (4.42)

[ Q̃�
5 , D̃5 ] = 2 D̃� . (4.43)

It follows that the 2N2 operators (D̃�5, D̃5, D̃�, D̃) fill out the (N̄,N)⇥ (N, N̄) representa-

tion of SU(N)R ⇤SU(N)L. Note that the chiral-symmetry breaking part of the null-plane

Hamiltonian is given by:

P�
(N,N) ⌅ i

2

⇤
dx� d2x⇤ D̃ . (4.44)

Using eq. ??, one easily finds

[Q̃⇥
5 , [ Q̃

�
5 , M

2 ]] = 2iP+

�
1

N
⇥�⇥

⇤
dx� d2x⇤ D̃ + d�⇥⇤

⇤
dx� d2x⇤ D̃⇤

⇥
.(4.45)

Acting on this equation with ⇥�⇥ and d�⇥⇤ one then finds:
⇤

dx� d2x⇤ D̃ =
N

N2 � 1
[Q̃�

5 , [ Q̃
�
5 , M

2 ]] ; (4.46)
⇤

dx� d2x⇤ D̃⇤ = d�⇥⇤
N

N2 � 4
[Q̃⇥

5 , [ Q̃
�
5 , M

2 ]] . (4.47)

One can then write the constraint as:

[Q̃⇥
5 , [ Q̃

�
5 , M

2 ]] =
1

N2 � 1
⇥�⇥ [Q̃⇤

5 , [ Q̃
⇤
5 , M

2 ]] +
N

N2 � 4
d�⇥⇤dµ⇧⇤ [Q̃µ

5 , [ Q̃
⇧
5 , M

2 ]] .(4.48)

Of course the same constraint holds for the other reduced Hamiltonians, MJ±. We can

express these constraints in compact notation as:

P�⇥;µ⇧ [Q̃µ
5 , [ Q̃

⇧
5 , M

2]] = P�⇥;µ⇧ [Q̃µ
5 , [ Q̃

⇧
5 , MJ±]] = 0 (4.49)

where we have defined the projection operator,

P�⇥;µ⇧ ⌅ ⇥�⇧⇥⇥µ � 1

N2 � 1
⇥�⇥⇥µ⇧ � N

N2 � 4
d�⇥⇤dµ⇧⇤ . (4.50)

We will discuss the significance of this projection operator below.

4.4 Gell-Mann-Oakes-Renner relation recovered

4.4.1 Matching the vacuum energy

Again using the Feynman-Hellmann theorem we find

M � 0 | ⌃P
�

⌃M | 0  = M ⌃Ẽ0
⌃M (4.51)

= M � 0 | i ⇤̄+�
+ 1

⌃+
M
⇤+ | 0  + � 0 | i

2 ⇤̄+�
+ 1

⌃+
M

(�rg taAr
a)⇤+ | 0  .(4.52)
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Inverting eq. 2.22 one then finds the following expressions for the Hamiltonians:

P� =
�
1/2P+

⇥ ⇤
P 2
1 + P 2

2 + M2
⌅
;

F1 =
�
1/P+

⇥ ⇤
P1K3 + P�E1 � P2J3 � MJ2

⌅
;

F2 =
�
1/P+

⇥ ⇤
P2K3 + P�E2 + P1J3 + MJ1

⌅
. (2.23)

A striking feature of the null-plane formulation is that the fundamental dynamical objects

are the products M2 and MJr, rather than the generators themselves. Following Ref. [6],

we will refer to these objects as reduced Hamiltonians. The reduced Hamiltonians, together

with J3, commute with all kinematical generators and satisfy the algebra of U(2). This is

conveniently demonstrated by making use of the Pauli-Lubanski vector

Wµ = 1
2⇤

µ�⇥⇤P�M⇥⇤ , (2.24)

which satisfies WµPµ = 0 and the non-trivial commutation relations:

[Mµ� , W⇥ ] = i ( g�⇥Wµ � gµ⇥W� ) ; (2.25)

[Wµ , W � ] = �i⇤µ�⇥⇤W⇥P⇤ . (2.26)

One then finds general, compact expressions for the angular momentum operators:

J3 = W+/P+ , MJr = Wr � Pr W
+/P+ . (2.27)

By considering the commutation relations among Wµ, Pµ and Mµ� one confirms that

[J3 , MJr ] = i �rsMJs , [J3 , M
2 ] = 0 ;

[MJr , MJs ] = i �rsM
2J3 , [M2 , MJr ] = 0 . (2.28)

Hence, the reduced Hamiltonians together with the stability group generator J3 satisfy the

algebra of U(2), and the problem of finding a Lorentz invariant description of a relativistic

quantum mechanical system is thus equivalent to finding a representation of the three

reduced Hamiltonians which satisfy this algebra 3. Since the essence of Lorentz invariance

resides in these Lie brackets, and they require knowledge of the reduced Hamiltonians,

in theories with complicated dynamics like QCD, the formulation of the theory at weak

coupling will lack manifest Lorentz invariance, which is tied up with the detailed dynamics

of the theory, and is as complicated to achieve as finding the spectrum of the theory.

We can write a general momentum eigenstate as:

| p+ , p⇥ ;⇥ , n ⇤ = | p+ , p⇥ ⇤ ⇥ |⇥ , n ⇤ . (2.29)

Here n are additional variables that may be needed to specify the state of a system at rest,

and ⇥ is helicity, the eigenvalue of J3:

J3 | p+ , p⇥ ;⇥ , n ⇤ = ⇥ | p+ , p⇥ ;⇥ , n ⇤ , (2.30)

3Since the mass operator, M =
�
pµpµ, commutes with the spin operators, this algebra can clearly be

expressed in the canonical form: [Ji , Jj ] = i�ijkJk and [M , Ji ] = 0.
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where the axial charges have been given explicit null-plane time dependence as they are not

conserved due to the explicit breaking operator in the Lagrangian. These charges satisfy

the SU(N)R ⇥ SU(N)L chiral algebra,

[ Q̃� , Q̃⇥ ] = i f�⇥⇤ Q̃⇤ , [ Q̃�
5 (x

+) , Q̃⇥ ] = i f�⇥⇤ Q̃⇤
5(x

+) ; (3.4)

[ Q̃�
5 (x

+) , Q̃⇥
5 (x

+) ] = i f�⇥⇤ Q̃⇤ . (3.5)

We further assert that both types of chiral charges annihilate the vacuum. That is,

Q̃� | 0 ⌅ = Q̃�
5 | 0 ⌅ = 0 . (3.6)

This is the statement that the front-form vacuum is invariant with respect to the full

SU(N)R ⇥ SU(N)L symmetry. In particular, this implies that there can be no vacuum

condensates that break SU(N)R ⇥ SU(N)L on a null-plane. This may seem to be an odd

assumption, since the chiral charge is directly related to the axial-vector current through

eq. 3.3, and in general one would expect that this current has a Goldstone boson pole

contribution, in turn implying that the chiral charges acting on the vacuum state excite

massless Goldstone bosons. Below we will confirm the assertion, eq. 3.6, by using standard

current-algebra polology to show that indeed the Goldstone boson pole contribution to the

null-plane axial-vector current is absent.

3.2 Symmetries of the reduced Hamiltonians

Mixed commutators among the Poincaré generators and internal symmetry generators can

be expressed generally as [13]:

[Q�(n · x) , Pµ] = �i nµ
⇧

d4y �(n · (x � y ) ) ⌅⌃J
⌃
�(y) ; (3.7)

[Q�(n · x) , Mµ⌃ ] = i

⇧
d4y �(n · (x � y ) ) (nµy⌃ � n⌃yµ) ⌅⇧J

⇧
�(y) . (3.8)

From these expressions one then obtains the mixed commutator between the Pauli-Lubanski

vector and the internal symmetry charges:

[Q�(n · x),W⌃ ] =
i
2⇤⌃⌅⌥�

⇧
d4y�(n · (x� y))

⇤
M ⌅⌥n� �

�
n⌅y⌥ � n⌥y⌅

⇥
P �

⌅
⌅⇧J

⇧
�(y). (3.9)

Using these expressions, one finds the commutation relations between null-plane chiral

charges and the reduced Hamiltonians:

[ Q̃5
�(x

+) , M2] = �2i P+
⇧

dx� d2x⇥ ⌅µJ̃
µ
5�(x

�, ⇧x⇥, x
+) ; (3.10)

[ Q̃5
�(x

+) , MJr] = i ⇥rs P
+
⇧

dx� d2x⇥ �s ⌅µJ̃
µ
5�(x

�, ⇧x⇥, x
+) , (3.11)

where �s ⇤ Es � P+xs. Here and in what follows, we are assuming that SU(N)F is un-

broken and therefore ⌅µJ̃
µ
� = 0 and the reduced Hamiltonians commute with the SU(N)F

charges:

[ Q̃� , M
2] = [ Q̃� , MJr] = 0 . (3.12)
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❖   projects onto exotic channel.

nucleon of positive parity, N 0, in addition to N and �. The � = 1
2 isodoublet Hamiltonian

is:

Ĥ =

0

BB@

h(1,2)| m̂2
1 |(1,2)i h(1,2)| m̂2

22 |(2,3)2i

h(2,3)2| m̂2
22 |(1,2)i h(2,3)2| m̂2

1 |(2,3)2i

1

CCA . (30)

Clearly the chiral-symmetry breaking part of the Hamiltonian induces mixing:

|N i = sin |(1,8) , # , 1i + cos |(3,6)8 , " , 0i

|N 0
i = � cos |(1,8) , # , 1i + sin |(3,6)8 , " , 0i , (31)

where  is a mixing angle that depends on the Hamiltonian matrix elements 4. We supple-
ment the chiral perturbation theory current with

�J↵,5
",LO = g0

A
( N †

" T ↵ N 0
" + h.c. ) + g00

A
N 0†

" T ↵ N 0
" � C�N 0 (

q
2
3N

0†
" T ↵ �" + h.c. ), (32)

in order to define the N 0 axial couplings. It is then straightforward to determine the axial
couplings from the chiral multiplet structure [10, 12]:

gA = 1 + 2
3 cos

2  , g0
A

= 2
3 sin cos , g00

A
= 1 + 2

3 sin
2  ,

C�N = �2 cos , C�N 0 = �2 sin , H�� = �3 ,

M2
N
cos2  + M2

N 0 sin2  = M2
� , (33)

where  is the mixing angle between the two isodoublet multiplets. It is clear that as the
chiral-symmetry breaking part of the Hamiltonian is turned o↵,  ! 0, and we recover the
quark-model values of the axial couplings as well as N -� degeneracy.

|N i =
X

`

u` |(1,8) , # , 1i +
X

`

v` |(3,6)8 , " , 0i + . . . (34)

|(RR,RL) , s3 , `3i (35)

[ Q̃↵

5 , M
2 ] 6= 0 (36)

[ Q̃↵

5 , MJ± ] 6= 0 (37)

[S3 , M
2 ] 6= 0 (38)

4 This multiplet has a long history [10, 12, 17–20].
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one verifies the fermion transformation properties with respect to SU(2)R ⌦ SU(2)L:

 +R =  " 2 (1,2) ,  ̄+R =  ̄# 2 (1,2) ; (3.2)

 +L =  # 2 (2,1) ,  ̄+L =  ̄" 2 (2,1) . (3.3)

where (RR,RL) labels the SU(2)R⌦SU(2)L content and RR,L are SU(2)R,L representations.

With these degrees of freedom we can construct the baryon chiral multiplets of definite quark

helicity:

� = ±
1
2

8
><

>:

 "  "  # ⇢ (2,1)� (2,3)

 #  #  " ⇢ (1,2)� (3,2)

(3.4)

� = ±
3
2

8
><

>:

 "  "  " ⇢ (1,2)� (1,2)� (1,4)

 #  #  # ⇢ (2,1)� (2,1)� (4,1) ,

(3.5)

where we have suppressed the fundamental indices. We will label baryon states as

| (RR,RL)R i ⌦ |� i ⌘ | (RR,RL)R , � i (3.6)

where R is an SU(2)-isospin representation in the product RR ⌦ RL. The total angular

momentum operator is given by the helicity; that is, J3 = Ŝ3, where Ŝ3|� i = �|� i. As Ŝ3

counts the quark helicity we represent Ŝi (with i = 1, 2, 3) as

Ŝi = Ŝ
q

i
⌦ 1 ⌦ 1 + 1 ⌦ Ŝ

q

i
⌦ 1 + 1 ⌦ 1 ⌦ Ŝ

q

i
(3.7)

where Ŝ
q

i
= �i/2 is the quark spin operator. Clearly the Ŝi satisfy the SU(2) algebra and

contain the spin-12 and spin-32 representations. It then follows that the chiral symmetry

charges can be represented as

Q̃
↵ = 1 ⌦ T̂

↵
, Q̃

↵

5 = 2Ŝq

3 ⌦ T̂
↵
, (3.8)

where T̂
↵ = ⌧

↵
/2 is the quark isospin generator.

3.2 The Casher-Susskind theorem and interacting partons

It is clear that in order to break chiral symmetry without breaking Lorentz invariance, there

must be other spin degrees of freedom, which we will denote L̂3 and define such that the total

helicity is given by

J3 = Ŝ3 + L̂3 . (3.9)

Our basis states now acquire a new label:

| (R1,R2)R i ⌦ |� i ⌦ | ` i ⌘ | (R1,R2)R , � , ` i (3.10)
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must be other spin degrees of freedom, which we will denote L̂3 and define such that the total

helicity is given by

J3 = Ŝ3 + L̂3 . (3.9)

Our basis states now acquire a new label:

| (R1,R2)R i ⌦ |� i ⌦ | ` i ⌘ | (R1,R2)R , � , ` i (3.10)
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one verifies the fermion transformation properties with respect to SU(2)R ⌦ SU(2)L:

 +R =  " 2 (1,2) ,  ̄+R =  ̄# 2 (1,2) ; (3.2)

 +L =  # 2 (2,1) ,  ̄+L =  ̄" 2 (2,1) . (3.3)

where (RR,RL) labels the SU(2)R⌦SU(2)L content and RR,L are SU(2)R,L representations.

With these degrees of freedom we can construct the baryon chiral multiplets of definite quark

helicity:

� = ±
1
2

8
><

>:

 "  "  # ⇢ (2,1)� (2,3)

 #  #  " ⇢ (1,2)� (3,2)

(3.4)

� = ±
3
2

8
><

>:

 "  "  " ⇢ (1,2)� (1,2)� (1,4)

 #  #  # ⇢ (2,1)� (2,1)� (4,1) ,

(3.5)

where we have suppressed the fundamental indices. We will label baryon states as

| (RR,RL)R i ⌦ |� i ⌘ | (RR,RL)R , � i (3.6)

where R is an SU(2)-isospin representation in the product RR ⌦ RL. The total angular

momentum operator is given by the helicity; that is, J3 = Ŝ3, where Ŝ3|� i = �|� i. As Ŝ3

counts the quark helicity we represent Ŝi (with i = 1, 2, 3) as

Ŝi = Ŝ
q

i
⌦ 1 ⌦ 1 + 1 ⌦ Ŝ

q

i
⌦ 1 + 1 ⌦ 1 ⌦ Ŝ

q

i
(3.7)
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↵
, (3.8)
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↵ = ⌧

↵
/2 is the quark isospin generator.

3.2 The Casher-Susskind theorem and interacting partons

It is clear that in order to break chiral symmetry without breaking Lorentz invariance, there

must be other spin degrees of freedom, which we will denote L̂3 and define such that the total

helicity is given by

J3 = Ŝ3 + L̂3 . (3.9)

Our basis states now acquire a new label:
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2

unifying framework for the derivation of the sum rules whose content can be directly tracked

to QCD symmetries.

2 Null-plane QCD constraints

2.1 Chiral symmetry and currents

Consider QCD with two degenerate flavors of light quarks. In the chiral limit of massless

quarks this theory has an SU(2)L ⌦ SU(2)R invariance

 (x) ! e
�i✓↵T↵ (x) ,  (x) ! e

�i✓↵T↵�5 (x) , (2.1)

G = SU(N)L ⌦ SU(N)R

where  (x) is the isodoublet quark field, and T↵ = ⌧↵/2. The corresponding instant-form

Noether currents are

J
µ
↵(x) =  ̄(x)�µ

T↵ (x) , J
µ
5↵(x) =  ̄(x)�µ

�5T↵ (x) . (2.2)

Both of these currents are conserved in the chiral limit.

In null-plane quantization (see Appendix A for coordinate conventions) the non-dynamical

degrees of freedom are integrated out leaving behind the dynamical gluon field and the dy-

namical quark fields,  + ⌘ ⇧
+
 , where the projection operator is defined as ⇧± ⌘ 1

2�
⌥
�

±

and �+ ⌘ � · n and �� ⌘ � · n̄. At equal null-plane time, the dynamical quark field satisfies

{ +(x) ,  
†
+(y)}|x+=y+ = 1p

2
⇧

+
�(x� � y

�)�2(x? � y?) . (2.3)

The presence of the SU(2)L ⌦ SU(2)R invariance is of course independent of the choice

of initial quantization surface and indeed in null-plane QCD the chiral transformations are

 +(x) ! e
�i✓↵T↵ +(x) ,  +(x) ! e

�i✓↵T↵�5 +(x) , (2.4)

which give rise to the front-form (tilded) Noether currents J̃
µ
(5)↵(x). While the vector currents

are independent of the choice of coordinates, J̃
µ
↵(x) = J

µ
↵(x), the instant-form and front-form

axial currents only share the + component, J̃
+
5↵(x) = J

+
5↵(x), a reflection of the fundamentally

important property that J̃
µ
5↵(x) is not conserved,

@µJ̃
µ
5↵(x) ⌘ D̃5↵(x) = F⇡M

2
⇡ ⇡̃↵(x) , (2.5)

even in the chiral limit [32–34]. It is important to stress that in null-plane quantization,

the chiral limit should be taken only after taking matrix elements of the pion interpolating

operator ⇡̃↵(x). Using LSZ reduction it is easy to see that these matrix elements scale as

M
�2
⇡ [33], which immediately implies that the matrix element of the axial-vector current

divergence is non-vanishing and independent of M⇡.

In what follows only the null-plane vector and axial-vector charge distributions,

J̃
µ
↵(x) =  ̄+(x)�µ

T↵ +(x) = J
µ
↵(x) , J̃

+
5↵(x) =  ̄+(x)�+

�5T↵ +(x) = J
+
5↵(x) , (2.6)

will be considered. For a complete catalog of notation, the reader should consult Ref. [33].
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Relative weight of these components is not 
constrained by any QCD symmetry.

✓  Fock space expansion in chiral basis:

4 Realistic Nucleon Wavefunctions

4.1 The general case

In the chiral basis the nucleon ⇤ = 1/2 wavefunction has the (schematic) Fock expansion

|N ; 1
2 i = |(2,1) , 1

2 , 0i + |(2,3)2 ,
1
2 , 0i + |(1,2) , �1

2 , 1i

+ |(3,2)2 , �
1
2 , 1i + |(1,2) , 3

2 , �1i + |(2,1) , �3
2 , 2i . (4.1)

These six types of states, three with ` = ±1, two with ` = 0 and one with ` = 2, have been

written down explictly in terms of null-plane quark fields in Ref. [? ]. However, this form is

more general as it includes Fock-space components with arbitrary amounts of glue.

4.2 (2,3)� (1,4): the SU(4) limit

We will now describe the mapping between the symmetric and antisymmetric irreducible

representations of SU(4) and representations of SU(2)R ⌦ SU(2)L. The symmetric 20 of

SU(4) is reproduced by

⇤ = ±
1
2

8
><

>:

|(2,3)2 ,
1
2 , 0i , |(2,3)4 ,

1
2 , 0i

|(3,2)2 , �
1
2 , 0i , |(3,2)4 , �

1
2 , 0i

⇤ = ±
3
2

8
><

>:

|(1,4) , 3
2 , 0i

|(4,1) , �3
2 , 0i ,

(4.2)

We can express the physical positive helicity eigenstates as

|N ,
1
2 i = |(2,3)2 ,

1
2 , 0i

|� ,
1
2 i = |(2,3)4 ,

1
2 , 0i ,

|� ,
3
2 i = |(1,4) , 3

2 , 0i , (4.3)

and the negative helicity eigenstates are

(�1)JN�1/2
⌘N |N , �

1
2 i = |(3,2)2 , �

1
2 , 0i ,

(�1)J��1/2
⌘� |� , �

1
2 i = |(3,2)4 , �

1
2 , 0i ,

(�1)J��3/2
⌘� |� , �

3
2 i = |(4,1) , �3

2 , 0i . (4.4)

4.3 (1,2)� (2,3)� (1,4)

Let’s consider the simplest non-trivial model that extends the SU(4) picture of degenerate

nucleon and delta. This involves the reducible irrep (1,2)�(2,3). We will take the eigenstates

of the free Hamiltonian to be

⇤ = ±
1
2

8
><

>:

|(1,2) , �1
2 , 1i , |(2,3)2 ,

1
2 , 0i , |(2,3)4 ,

1
2 , 0i

|(2,1) , 1
2 , �1i , |(3,2)2 , �

1
2 , 0i , |(3,2)4 , �

1
2 , 0i

(4.5)
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However, weights are constrained by the sum rules.

Turn to the case where the quark helicities sum to −1/2. The corresponding Fock com-
ponent can be written as

|P ↑⟩−1/2 =

∫

d[1]d[2]d[3]
(

(kx
1 + iky

1)ψ̃
(3)(1, 2, 3) + (kx

2 + iky
2)ψ̃

(4)(1, 2, 3)
)

×
ϵabc

√
6

(

u†
a↑(1)u†

b↓(2)d†
c↓(3) − d†

a↑(1)u†
b↓(2)u†

c↓(3)
)

|0⟩ . (32)

The matrix elements in Eqs. (10) and (25) can be calculated, and the resulting ψ(3,4)

are related to the above amplitudes in the same way as in Eq. (31). One might suspect
if additional independent amplitudes can be constructed by adding terms with structure
kx

1k
y
2 − ky

1k
x
2 . A careful examination indicates that they can be reduced to the already

existing ones.
When the quark helicity is added to 3/2, the Fock component is

|P ↑⟩3/2 =

∫

d[1]d[2]d[3] (−kx
1 + iky

1)ψ̃
(5)(1, 2, 3)

×
ϵabc

√
6
u†

a↑(1)
(

u†
b↑(2)d†

c↑(3) − d†
b↑(2)u†

c↑(3)
)

|0⟩ . (33)

Calculating the matrix element in Eq. (22), we find ψ(5)(ξ1, ξ2, ξ3) is the Fourier transfor-
mation of ψ̃(5)(k1, k2, k3).

Finally, we consider the case when the quark helicity adds to −3/2, the Fock component
is

|P ↑⟩−3/2 =

∫

d[1]d[2]d[3] (kx
1 + iky

1)(k
x
3 + iky

3)ψ̃
(6)(1, 2, 3)

×
ϵabc

√
6
u†

a↓(1)
(

d†
b↓(2)u†

c↓(3) − u†
b↓(2)d†

c↓(3)
)

|0⟩ . (34)

Using this, we calculate the matrix elements in Eq. (28) and find ψ(6)(ξ1, ξ2, ξ3) is just the
Fourier transformation of ψ̃(6)(k1, k2, k3).

The complete three-quark light-cone Fock expansion of the proton has the following form,

|P ↑⟩ = |P ↑⟩−3/2 + |P ↑⟩−1/2 + |P ↑⟩1/2 + |P ↑⟩3/2 . (35)

Many interesting proton observables can be calculated using the above wave function as we
will show in the next section.

Using the results in the previous section, one can also construct a proton state with the
negative helicity |P ↓⟩. All the wave function amplitudes are the same, except that the
quark helicities are flipped, kx ± iky becomes kx ∓ iky, and some signs are added,

|P ↓⟩−1/2 =

∫

d[1]d[2]d[3]
(

−ψ̃(1)(1, 2, 3) + i(kx
1k

y
2 − ky

1k
x
2)ψ̃

(2)(1, 2, 3)
)

×
ϵabc

√
6
u†

a↓(1)
(

u†
b↑(2)d†

c↓(3) − d†
b↑(2)u†

c↓(3)
)

|0⟩ , (36)

|P ↓⟩1/2 =

∫

d[1]d[2]d[3]
(

(kx
1 − iky

1)ψ̃
(3)(1, 2, 3) + (kx

2 − iky
2)ψ̃

(4)(1, 2, 3)
)

×
ϵabc

√
6

(

u†
a↓(1)u†

b↑(2)d†
c↑(3) − d†

a↓(1)u†
b↑(2)u†

c↑(3)
)

|0⟩ , (37)
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Turn to the case where the quark helicities sum to −1/2. The corresponding Fock com-
ponent can be written as

|P ↑⟩−1/2 =

∫

d[1]d[2]d[3]
(

(kx
1 + iky

1)ψ̃
(3)(1, 2, 3) + (kx

2 + iky
2)ψ̃

(4)(1, 2, 3)
)

×
ϵabc

√
6

(

u†
a↑(1)u†

b↓(2)d†
c↓(3) − d†

a↑(1)u†
b↓(2)u†

c↓(3)
)

|0⟩ . (32)

The matrix elements in Eqs. (10) and (25) can be calculated, and the resulting ψ(3,4)

are related to the above amplitudes in the same way as in Eq. (31). One might suspect
if additional independent amplitudes can be constructed by adding terms with structure
kx

1k
y
2 − ky

1k
x
2 . A careful examination indicates that they can be reduced to the already

existing ones.
When the quark helicity is added to 3/2, the Fock component is

|P ↑⟩3/2 =

∫

d[1]d[2]d[3] (−kx
1 + iky

1)ψ̃
(5)(1, 2, 3)

×
ϵabc

√
6
u†

a↑(1)
(

u†
b↑(2)d†

c↑(3) − d†
b↑(2)u†

c↑(3)
)

|0⟩ . (33)

Calculating the matrix element in Eq. (22), we find ψ(5)(ξ1, ξ2, ξ3) is the Fourier transfor-
mation of ψ̃(5)(k1, k2, k3).

Finally, we consider the case when the quark helicity adds to −3/2, the Fock component
is

|P ↑⟩−3/2 =

∫

d[1]d[2]d[3] (kx
1 + iky

1)(k
x
3 + iky

3)ψ̃
(6)(1, 2, 3)

×
ϵabc

√
6
u†

a↓(1)
(

d†
b↓(2)u†

c↓(3) − u†
b↓(2)d†

c↓(3)
)

|0⟩ . (34)

Using this, we calculate the matrix elements in Eq. (28) and find ψ(6)(ξ1, ξ2, ξ3) is just the
Fourier transformation of ψ̃(6)(k1, k2, k3).

The complete three-quark light-cone Fock expansion of the proton has the following form,

|P ↑⟩ = |P ↑⟩−3/2 + |P ↑⟩−1/2 + |P ↑⟩1/2 + |P ↑⟩3/2 . (35)

Many interesting proton observables can be calculated using the above wave function as we
will show in the next section.

Using the results in the previous section, one can also construct a proton state with the
negative helicity |P ↓⟩. All the wave function amplitudes are the same, except that the
quark helicities are flipped, kx ± iky becomes kx ∓ iky, and some signs are added,

|P ↓⟩−1/2 =

∫

d[1]d[2]d[3]
(

−ψ̃(1)(1, 2, 3) + i(kx
1k

y
2 − ky

1k
x
2)ψ̃

(2)(1, 2, 3)
)

×
ϵabc

√
6
u†

a↓(1)
(

u†
b↑(2)d†

c↓(3) − d†
b↑(2)u†

c↓(3)
)

|0⟩ , (36)

|P ↓⟩1/2 =

∫

d[1]d[2]d[3]
(

(kx
1 − iky

1)ψ̃
(3)(1, 2, 3) + (kx

2 − iky
2)ψ̃

(4)(1, 2, 3)
)

×
ϵabc

√
6

(

u†
a↓(1)u†

b↑(2)d†
c↑(3) − d†

a↓(1)u†
b↑(2)u†

c↑(3)
)

|0⟩ , (37)
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that the operator product expansion be independent of the choice of quantization surface.

We see that a symmetry-breaking condensate can form in the instant-form coordinates with

an asymmetric vacuum which is equal to a corresponding symmetry-preserving condensate

in the null-plane description with a symmetric vacuum. The condensate relation eq. 4.81

is one of an infinite number of relations which translates condensates which break chiral

symmetry in the instant form to null-plane condensates which transform as chiral singlets.

5 Consequences of the operator algebra

5.1 Summary of the null-plane QCD description

Before considering the consequences of the null-plane QCD operator algebra, we will sum-

marize the picture of chiral symmetry breaking that we have so far established. While the

null-plane QCD vacuum state is chirally invariant, chiral symmetry is spontaneously bro-

ken by the three reduced Hamiltonians that have contributions, M2
(N,N) and (MJr)(N,N),

which transform as (N̄,N)�(N, N̄) with respect to SU(N)R⇥SU(N)L. The three reduced

Hamiltonians satisfy the constraints, eq. 4.60. In addition to these signatures of chiral sym-

metry breaking, the three reduced Hamiltonians, together with the generator of rotations

on the transverse plane together generate the U(2) dynamical sub-group of the null-plane

Poincaré algebra, eq. 2.28. And finally, the null-plane vector and chiral charges satisfy the

SU(N)R ⇥ SU(N)L algebra, eqs. 3.4 and 3.5. The entire set of Lie-brackets provide all of

the constraints that exist among the generators of the internal and space-time symmetries

in null-plane QCD. The consequences of chiral symmetry breaking for the spectrum and

spin of QCD are contained in the symmetry-breaking parts of the reduced Hamiltonians.

5.2 Recovery of spin-flavor symmetries

In searching for solutions of the algebraic system that mixes the chiral charges and the

reduced Hamiltonians, one may worry about the existence of no-go theorems that forbid

non-trivial algebras that mix space-time and internal symmetries. In the null-plane for-

mulation the no-go theorems are avoided because it is only the dynamical part, D, of the

null-plane Poincaré algebra that mixes with the internal symmetry generators [52]. Unfor-

tunately, a direct general solution of the null-plane QCD operator algebra in the general

case appears di�cult. However, there is a limiting case in which the algebra yields an

important non-trivial solution. Here we will treat the QCD operator algebra as an ab-

stract operator algebra and consider the limit in which the chiral-symmetry breaking part

of the reduced Hamiltonian M2 can be treated as a perturbation. However, one should

keep in mind that matrix elements of the operator relations between hadronic states must

eventually be taken in order to extract observables. We first define

[ Q̃�
5 , M ] ⇤ �� , (5.1)

and neglect terms of O(�). This implies that all chiral symmetry breaking occurs in the

spin Hamiltonians. This limit is non-trivial, as we have shown above in section 3.5 that the
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✓    General solution to operator algebra is unknown

SU(N)R ⌦ SU(N)L �! SU(N)F

spin Hamiltonians alone imply the presence of Goldstone bosons. In this limit, the QCD

operator algebra reduces to

[Ji , Jj ] = i ⇥ijk Jk (5.2)

which generates SU(2) spin, and the SU(N)R � SU(N)L algebra,

[ Q̃� , Q̃⇥ ] = i f�⇥⇤ Q̃⇤ , [ Q̃�
5 , Q̃

⇥ ] = i f�⇥⇤ Q̃⇤
5 , [ Q̃�

5 , Q̃
⇥
5 ] = i f�⇥⇤ Q̃⇤ . (5.3)

The remaining non-trivial mixed commutator is for the spin Hamiltonian:

P�⇥;µ⌅ [Q̃µ
5 , [ Q̃

⌅
5 , J±]] = 0 . (5.4)

Now this simplified algebra can be put into a more familiar form. Consider an operator

G�i which transforms in the adjoint of SU(N) and as a rotational vector in the sense that

[Ji , G�j ] = i ⇥ijk G�k ; (5.5)

[ Q̃� , G⇥i ] = i f�⇥⇤ G⇤i . (5.6)

In general, the commutator of G�i with itself may be expressed as

[G�i , G⇥j ] = i f�⇥⇤ Aij,⇤ + i ⇥ijk B�⇥,k , (5.7)

where Aij,⇤ = Aji,⇤ and B�⇥,k = B⇥�,k. Now we identify G�3 ⇥ Q̃�
5 . From eq. 5.3 it then

follows that A33,� = Q̃�. Rotational invariance then implies Aij,� = �ijQ̃�. By considering

Jacobi identities of Ji and Q̃� with the commutator in eq. 5.7 one finds, respectively,

[ Q̃⇤ , B�⇥,i ] = i f⇤⇥µ B�µ,i + i f⇤�µ B⇥µ,i ; (5.8)

[Ji , B�⇥,j ] = i ⇥ijk B�⇥,k , (5.9)

which simply indicate that B�⇥,i transforms as a rank-two SU(N) tensor and a rotational

vector.

To obtain B�⇥,i we use eq. 5.4 to find:

P�⇥;µ⌅ [G�3 , G⇥1 ± iG⇥2 ] = 0 , (5.10)

from which it follows that B�⇥,2 and B�⇥,1 have a piece proportional to ��⇥ and a piece pro-

portional to d�⇥⇤ . Rotational invariance then determines that B�⇥,i is a linear combination

of ��⇥Ji and d�⇥⇤G⇤i. The coe�cients of these terms are determined by considering the

Jacobi identity of G�i with the commutator in eq. 5.7, together with the relation among

SU(N) structure constants given in Appendix D. Finally, one obtains

[G�i , G⇥j ] = i �ij f�⇥⇤ Q̃⇤ +
2

N
i ��⇥ ⇥ijk Jk + i⇥ijk d�⇥⇤ G⇤k , (5.11)

which together with

[ Q̃� , G⇥i ] = i f�⇥⇤ G⇤i , [Ji , G�j ] = i ⇥ijk G�k ; (5.12)

[ Q̃� , Q̃⇥ ] = i f�⇥⇤ Q̃⇤ , [Ji , Jj ] = i ⇥ijk Jk (5.13)
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spin Hamiltonians alone imply the presence of Goldstone bosons. In this limit, the QCD

operator algebra reduces to

[Ji , Jj ] = i ⇥ijk Jk (5.2)

which generates SU(2) spin, and the SU(N)R � SU(N)L algebra,

[ Q̃� , Q̃⇥ ] = i f�⇥⇤ Q̃⇤ , [ Q̃�
5 , Q̃

⇥ ] = i f�⇥⇤ Q̃⇤
5 , [ Q̃�

5 , Q̃
⇥
5 ] = i f�⇥⇤ Q̃⇤ . (5.3)

The remaining non-trivial mixed commutator is for the spin Hamiltonian:

P�⇥;µ⌅ [Q̃µ
5 , [ Q̃

⌅
5 , J±]] = 0 . (5.4)

Now this simplified algebra can be put into a more familiar form. Consider an operator

G�i which transforms in the adjoint of SU(N) and as a rotational vector in the sense that

[Ji , G�j ] = i ⇥ijk G�k ; (5.5)

[ Q̃� , G⇥i ] = i f�⇥⇤ G⇤i . (5.6)

In general, the commutator of G�i with itself may be expressed as

[G�i , G⇥j ] = i f�⇥⇤ Aij,⇤ + i ⇥ijk B�⇥,k , (5.7)

where Aij,⇤ = Aji,⇤ and B�⇥,k = B⇥�,k. Now we identify G�3 ⇥ Q̃�
5 . From eq. 5.3 it then

follows that A33,� = Q̃�. Rotational invariance then implies Aij,� = �ijQ̃�. By considering

Jacobi identities of Ji and Q̃� with the commutator in eq. 5.7 one finds, respectively,

[ Q̃⇤ , B�⇥,i ] = i f⇤⇥µ B�µ,i + i f⇤�µ B⇥µ,i ; (5.8)

[Ji , B�⇥,j ] = i ⇥ijk B�⇥,k , (5.9)

which simply indicate that B�⇥,i transforms as a rank-two SU(N) tensor and a rotational

vector.

To obtain B�⇥,i we use eq. 5.4 to find:

P�⇥;µ⌅ [G�3 , G⇥1 ± iG⇥2 ] = 0 , (5.10)

from which it follows that B�⇥,2 and B�⇥,1 have a piece proportional to ��⇥ and a piece pro-

portional to d�⇥⇤ . Rotational invariance then determines that B�⇥,i is a linear combination

of ��⇥Ji and d�⇥⇤G⇤i. The coe�cients of these terms are determined by considering the

Jacobi identity of G�i with the commutator in eq. 5.7, together with the relation among

SU(N) structure constants given in Appendix D. Finally, one obtains

[G�i , G⇥j ] = i �ij f�⇥⇤ Q̃⇤ +
2

N
i ��⇥ ⇥ijk Jk + i⇥ijk d�⇥⇤ G⇤k , (5.11)

which together with

[ Q̃� , G⇥i ] = i f�⇥⇤ G⇤i , [Ji , G�j ] = i ⇥ijk G�k ; (5.12)

[ Q̃� , Q̃⇥ ] = i f�⇥⇤ Q̃⇤ , [Ji , Jj ] = i ⇥ijk Jk (5.13)
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where the axial charges have been given explicit null-plane time dependence as they are not

conserved due to the explicit breaking operator in the Lagrangian. These charges satisfy

the SU(N)R ⇥ SU(N)L chiral algebra,

[ Q̃� , Q̃⇥ ] = i f�⇥⇤ Q̃⇤ , [ Q̃�
5 (x

+) , Q̃⇥ ] = i f�⇥⇤ Q̃⇤
5(x

+) ; (3.4)

[ Q̃�
5 (x

+) , Q̃⇥
5 (x

+) ] = i f�⇥⇤ Q̃⇤ . (3.5)

We further assert that both types of chiral charges annihilate the vacuum. That is,

Q̃� | 0 ⌅ = Q̃�
5 | 0 ⌅ = 0 . (3.6)

This is the statement that the front-form vacuum is invariant with respect to the full

SU(N)R ⇥ SU(N)L symmetry. In particular, this implies that there can be no vacuum

condensates that break SU(N)R ⇥ SU(N)L on a null-plane. This may seem to be an odd

assumption, since the chiral charge is directly related to the axial-vector current through

eq. 3.3, and in general one would expect that this current has a Goldstone boson pole

contribution, in turn implying that the chiral charges acting on the vacuum state excite

massless Goldstone bosons. Below we will confirm the assertion, eq. 3.6, by using standard

current-algebra polology to show that indeed the Goldstone boson pole contribution to the

null-plane axial-vector current is absent.

3.2 Symmetries of the reduced Hamiltonians

Mixed commutators among the Poincaré generators and internal symmetry generators can

be expressed generally as [13]:

[Q�(n · x) , Pµ] = �i nµ
⇧

d4y �(n · (x � y ) ) ⌅⌃J
⌃
�(y) ; (3.7)

[Q�(n · x) , Mµ⌃ ] = i

⇧
d4y �(n · (x � y ) ) (nµy⌃ � n⌃yµ) ⌅⇧J

⇧
�(y) . (3.8)

From these expressions one then obtains the mixed commutator between the Pauli-Lubanski

vector and the internal symmetry charges:

[Q�(n · x),W⌃ ] =
i
2⇤⌃⌅⌥�

⇧
d4y�(n · (x� y))

⇤
M ⌅⌥n� �

�
n⌅y⌥ � n⌥y⌅

⇥
P �

⌅
⌅⇧J

⇧
�(y). (3.9)

Using these expressions, one finds the commutation relations between null-plane chiral

charges and the reduced Hamiltonians:

[ Q̃5
�(x

+) , M2] = �2i P+
⇧

dx� d2x⇥ ⌅µJ̃
µ
5�(x

�, ⇧x⇥, x
+) ; (3.10)

[ Q̃5
�(x

+) , MJr] = i ⇥rs P
+
⇧

dx� d2x⇥ �s ⌅µJ̃
µ
5�(x

�, ⇧x⇥, x
+) , (3.11)

where �s ⇤ Es � P+xs. Here and in what follows, we are assuming that SU(N)F is un-

broken and therefore ⌅µJ̃
µ
� = 0 and the reduced Hamiltonians commute with the SU(N)F

charges:

[ Q̃� , M
2] = [ Q̃� , MJr] = 0 . (3.12)
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This is, of course, the limit in which all chiral symmetry breaking is switched o�. The

QCD operator algebra then reduces to

[Ji , Jj ] = i ⇥ijk Jk (5.18)

which generates SU(2) spin, and the SU(N)R ⇥ SU(N)L algebra,

[ Q̃� , Q̃⇥ ] = i f�⇥⇤ Q̃⇤ , [ Q̃�
5 , Q̃

⇥ ] = i f�⇥⇤ Q̃⇤
5 , [ Q̃�

5 , Q̃
⇥
5 ] = i f�⇥⇤ Q̃⇤ . (5.19)

The remaining non-trivial mixed commutator is:

P�⇥;µ⇧ [Q̃µ
5 , [ Q̃

⇧
5 , J±]] = 0 . (5.20)

It is straightforward to put this simplified algebra into a more familiar form. Consider an

operator G�i which transforms in the adjoint of SU(N) and as a rotational vector in the

sense that

[Ji , G�j ] = i ⇥ijk G�k ; (5.21)

[ Q̃� , G⇥i ] = i f�⇥⇤ G⇤i . (5.22)

In general, the commutator of G�i with itself may be expressed as

[G�i , G⇥j ] = i f�⇥⇤ Aij,⇤ + i ⇥ijk B�⇥,k , (5.23)

where Aij,⇤ = Aji,⇤ and B�⇥,k = B⇥�,k. Now we identify G�3 ⇤ Q̃�
5 . From eq. (5.19)

it then follows that A33,� = Q̃�. Rotational invariance then implies Aij,� = �ijQ̃�. By

considering Jacobi identities of Ji and Q̃� with the commutator in eq. (5.23) one finds,

respectively,

[ Q̃⇤ , B�⇥,i ] = i f⇤⇥µ B�µ,i + i f⇤�µ B⇥µ,i ; (5.24)

[Ji , B�⇥,j ] = i ⇥ijk B�⇥,k , (5.25)

which simply indicate that B�⇥,i transforms as a rank-two SU(N) tensor and a rotational

vector.

To obtain B�⇥,i we use eq. (5.20)to find:

P�⇥;µ⇧ [G�3 , G⇥1 ± iG⇥2 ] = 0 , (5.26)

from which it follows that B�⇥,2 and B�⇥,1 have a piece proportional to ��⇥ and a piece

proportional to d�⇥⇤ . Rotational invariance then determines that B�⇥,i is a linear combi-

nation of ��⇥Ji and d�⇥⇤G⇤i. The coe⇤cients of these terms are determined by considering

the Jacobi identity of G�i with the commutator in eq. (5.23), together with the relation

among SU(N) structure constants given in Appendix x. Finally, one obtains

[G�i , G⇥j ] = i �ij f�⇥⇤ Q̃⇤ +
2

N
i ��⇥ ⇥ijk Jk + i⇥ijk d�⇥⇤ G⇤k , (5.27)
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✦ Contracted spin-flavor

spin Hamiltonians alone imply the presence of Goldstone bosons. In this limit, the QCD

operator algebra reduces to

[Ji , Jj ] = i ⇥ijk Jk (5.2)

which generates SU(2) spin, and the SU(N)R � SU(N)L algebra,

[ Q̃� , Q̃⇥ ] = i f�⇥⇤ Q̃⇤ , [ Q̃�
5 , Q̃

⇥ ] = i f�⇥⇤ Q̃⇤
5 , [ Q̃�

5 , Q̃
⇥
5 ] = i f�⇥⇤ Q̃⇤ . (5.3)

The remaining non-trivial mixed commutator is for the spin Hamiltonian:

P�⇥;µ⌅ [Q̃µ
5 , [ Q̃

⌅
5 , J±]] = 0 . (5.4)

Now this simplified algebra can be put into a more familiar form. Consider an operator

G�i which transforms in the adjoint of SU(N) and as a rotational vector in the sense that

[Ji , G�j ] = i ⇥ijk G�k ; (5.5)

[ Q̃� , G⇥i ] = i f�⇥⇤ G⇤i . (5.6)

In general, the commutator of G�i with itself may be expressed as

[G�i , G⇥j ] = i f�⇥⇤ Aij,⇤ + i ⇥ijk B�⇥,k , (5.7)

where Aij,⇤ = Aji,⇤ and B�⇥,k = B⇥�,k. Now we identify G�3 ⇥ Q̃�
5 . From eq. 5.3 it then

follows that A33,� = Q̃�. Rotational invariance then implies Aij,� = �ijQ̃�. By considering

Jacobi identities of Ji and Q̃� with the commutator in eq. 5.7 one finds, respectively,

[ Q̃⇤ , B�⇥,i ] = i f⇤⇥µ B�µ,i + i f⇤�µ B⇥µ,i ; (5.8)

[Ji , B�⇥,j ] = i ⇥ijk B�⇥,k , (5.9)

which simply indicate that B�⇥,i transforms as a rank-two SU(N) tensor and a rotational

vector.

To obtain B�⇥,i we use eq. 5.4 to find:

P�⇥;µ⌅ [G�3 , G⇥1 ± iG⇥2 ] = 0 , (5.10)

from which it follows that B�⇥,2 and B�⇥,1 have a piece proportional to ��⇥ and a piece pro-

portional to d�⇥⇤ . Rotational invariance then determines that B�⇥,i is a linear combination

of ��⇥Ji and d�⇥⇤G⇤i. The coe�cients of these terms are determined by considering the

Jacobi identity of G�i with the commutator in eq. 5.7, together with the relation among

SU(N) structure constants given in Appendix D. Finally, one obtains

[G�i , G⇥j ] = i �ij f�⇥⇤ Q̃⇤ +
2

N
i ��⇥ ⇥ijk Jk + i⇥ijk d�⇥⇤ G⇤k , (5.11)

which together with

[ Q̃� , G⇥i ] = i f�⇥⇤ G⇤i , [Ji , G�j ] = i ⇥ijk G�k ; (5.12)

[ Q̃� , Q̃⇥ ] = i f�⇥⇤ Q̃⇤ , [Ji , Jj ] = i ⇥ijk Jk (5.13)
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❖   Algebra of close the algebra of the symmetry group SU(2N). To find the consequences of this algebra

for observable quantities like the mass-squared matrix and the matrix elements for Gold-

stone boson emission and absorption, one takes matrix elements of this algebra between

hadron states h⇥ and h, and neglecting transitions from single-particle to multi-particle

states in the completeness sums over intermediate states, one recovers the same algebra

but with the replacements Q̃� ⇧ [T� ]h�h and Q̃5� ⇧ [X�(⇥) ]h�h , and corresponding re-

placements for G⇥i and Jk. This result, originally found by Weinberg [10], is here shown

to be a general consequence of the null-plane QCD operator algebra, valid in any Lorentz

frame.

It is important to emphasize that the SU(2N) symmetry found here is only operative

in the full interacting field theory. It is therefore unrelated to the SU(2N) invariance

of the QCD Lagrangian in the limit of no interaction. Indeed we have show above in

section 3.5 that eq. 5.4, the main ingredient in the derivation of SU(2N), in itself implies

the existence of Goldstone bosons. In addition, in a special case, this symmetry does

emerge in a well-defined limit of QCD. As ⌃h⇥ |��|h ⌥ ⌅ Mh �Mh� , and baryons within a

given large-Nc multiplet have mass splittings that scale as 1/Nc [75], the large-Nc QCD

scaling rules suggest that for baryons �� ⌅ 1/Nc. Of course, as the matrix element of

chiral charges between baryon states scales as Nc, the SU(2N) symmetry reduces to the

contracted SU(2N) [10, 76] for baryons in the large-Nc limit, as one expects on general

grounds [77–79].

It is instructive to consider a simple example. Consider the case N = 3. Using the

chiral transformation properties of the quarks, eq. 4.39, one sees that a ⇥ = 3/2 baryonic op-

erator ⇤+�⇤+�⇤+� transforms as (1,1), (1,8), or (1,10) with respect to SU(3)R⇤SU(3)L.

Therefore, if the baryon is a decuplet of SU(3)F with its ⇥ = 3/2 part in the (1,10), then

one easily checks that its ⇥ = 1/2 part must transform as (3,6) or (6,3). However, the

di�erent helicity states are unrelated by chiral symmetry in itself. It is the mixed Lie-

bracket, eq. 5.4, the expression of broken chiral symmetry in the spin Hamiltonian, that

relates the helicities. Indeed taking the ⇥ = 1/2 decuplet to transform as (3,6) together

with an octet spin-1/2 field and their negative-helicity partners in (10,1)⇥ (6,3) together

fill out the 56-dimensional representation of SU(6) as is familiar from the quark model.

The di�erence here is that this symmetry arises from QCD symmetries and their pattern of

breaking, and, in particular, has nothing to do with the non-relativistic limit. Hence we see

that starting from the formal null-plane QCD operator algebra, the simple assumption that

the part of the null-plane reduced Hamiltonian, M2, that breaks chiral symmetry is small

implies all of the usual consequences of the non-relativistic quark model, without the need

of any further assumption like the existence of constituent quark degrees of freedom [10].

6 Conclusion

Usually one views the spontaneous breaking of a symmetry as the non-invariance of the

vacuum state with respect to the symmetry. However, in relativistic theories of quantum

mechanics, this picture is purely a matter of convention. We have seen that the front-form

vacuum is a singlet with respect to all symmetries and yet spontaneous symmetry break-
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of the QCD Lagrangian in the limit of no interaction. Indeed we have show above in

section 3.5 that eq. 5.4, the main ingredient in the derivation of SU(2N), in itself implies

the existence of Goldstone bosons. In addition, in a special case, this symmetry does

emerge in a well-defined limit of QCD. As ⌃h⇥ |��|h ⌥ ⌅ Mh �Mh� , and baryons within a

given large-Nc multiplet have mass splittings that scale as 1/Nc [75], the large-Nc QCD

scaling rules suggest that for baryons �� ⌅ 1/Nc. Of course, as the matrix element of

chiral charges between baryon states scales as Nc, the SU(2N) symmetry reduces to the

contracted SU(2N) [10, 76] for baryons in the large-Nc limit, as one expects on general

grounds [77–79].

It is instructive to consider a simple example. Consider the case N = 3. Using the

chiral transformation properties of the quarks, eq. 4.39, one sees that a ⇥ = 3/2 baryonic op-

erator ⇤+�⇤+�⇤+� transforms as (1,1), (1,8), or (1,10) with respect to SU(3)R⇤SU(3)L.

Therefore, if the baryon is a decuplet of SU(3)F with its ⇥ = 3/2 part in the (1,10), then

one easily checks that its ⇥ = 1/2 part must transform as (3,6) or (6,3). However, the

di�erent helicity states are unrelated by chiral symmetry in itself. It is the mixed Lie-

bracket, eq. 5.4, the expression of broken chiral symmetry in the spin Hamiltonian, that

relates the helicities. Indeed taking the ⇥ = 1/2 decuplet to transform as (3,6) together

with an octet spin-1/2 field and their negative-helicity partners in (10,1)⇥ (6,3) together

fill out the 56-dimensional representation of SU(6) as is familiar from the quark model.

The di�erence here is that this symmetry arises from QCD symmetries and their pattern of

breaking, and, in particular, has nothing to do with the non-relativistic limit. Hence we see

that starting from the formal null-plane QCD operator algebra, the simple assumption that

the part of the null-plane reduced Hamiltonian, M2, that breaks chiral symmetry is small

implies all of the usual consequences of the non-relativistic quark model, without the need

of any further assumption like the existence of constituent quark degrees of freedom [10].

6 Conclusion

Usually one views the spontaneous breaking of a symmetry as the non-invariance of the

vacuum state with respect to the symmetry. However, in relativistic theories of quantum

mechanics, this picture is purely a matter of convention. We have seen that the front-form

vacuum is a singlet with respect to all symmetries and yet spontaneous symmetry break-
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4 Realistic Nucleon Wavefunctions

4.1 The general case

In the chiral basis the nucleon ⇤ = 1/2 wavefunction has the (schematic) Fock expansion

|N ; 1
2 i = |(2,1) , 1

2 , 0i + |(2,3)2 ,
1
2 , 0i + |(1,2) , �1

2 , 1i

+ |(3,2)2 , �
1
2 , 1i + |(1,2) , 3

2 , �1i + |(2,1) , �3
2 , 2i . (4.1)

These six types of states, three with ` = ±1, two with ` = 0 and one with ` = 2, have been

written down explictly in terms of null-plane quark fields in Ref. [? ]. However, this form is

more general as it includes Fock-space components with arbitrary amounts of glue.

4.2 (2,3)� (1,4): the SU(4) limit

We will now describe the mapping between the symmetric and antisymmetric irreducible

representations of SU(4) and representations of SU(2)R ⌦ SU(2)L. The symmetric 20 of

SU(4) is reproduced by

⇤ = ±
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2
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(4.2)

We can express the physical positive helicity eigenstates as
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and the negative helicity eigenstates are
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(�1)J��3/2
⌘� |� , �

3
2 i = |(4,1) , �3

2 , 0i . (4.4)

4.3 (1,2)� (2,3)� (1,4)

Let’s consider the simplest non-trivial model that extends the SU(4) picture of degenerate

nucleon and delta. This involves the reducible irrep (1,2)�(2,3). We will take the eigenstates

of the free Hamiltonian to be

⇤ = ±
1
2

8
><

>:

|(1,2) , �1
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(4.5)
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unifying framework for the derivation of the sum rules whose content can be directly tracked

to QCD symmetries.

2 Null-plane QCD constraints

2.1 Chiral symmetry and currents

Consider QCD with two degenerate flavors of light quarks. In the chiral limit of massless

quarks this theory has an SU(2)L ⌦ SU(2)R invariance

 (x) ! e
�i✓↵T↵ (x) ,  (x) ! e

�i✓↵T↵�5 (x) , (2.1)

G = SU(N)L ⌦ SU(N)R

where  (x) is the isodoublet quark field, and T↵ = ⌧↵/2. The corresponding instant-form

Noether currents are

J
µ
↵(x) =  ̄(x)�µ

T↵ (x) , J
µ
5↵(x) =  ̄(x)�µ

�5T↵ (x) . (2.2)

Both of these currents are conserved in the chiral limit.

In null-plane quantization (see Appendix A for coordinate conventions) the non-dynamical

degrees of freedom are integrated out leaving behind the dynamical gluon field and the dy-

namical quark fields,  + ⌘ ⇧
+
 , where the projection operator is defined as ⇧± ⌘ 1

2�
⌥
�

±

and �+ ⌘ � · n and �� ⌘ � · n̄. At equal null-plane time, the dynamical quark field satisfies

{ +(x) ,  
†
+(y)}|x+=y+ = 1p

2
⇧

+
�(x� � y

�)�2(x? � y?) . (2.3)

The presence of the SU(2)L ⌦ SU(2)R invariance is of course independent of the choice

of initial quantization surface and indeed in null-plane QCD the chiral transformations are

 +(x) ! e
�i✓↵T↵ +(x) ,  +(x) ! e

�i✓↵T↵�5 +(x) , (2.4)

which give rise to the front-form (tilded) Noether currents J̃
µ
(5)↵(x). While the vector currents

are independent of the choice of coordinates, J̃
µ
↵(x) = J

µ
↵(x), the instant-form and front-form

axial currents only share the + component, J̃
+
5↵(x) = J

+
5↵(x), a reflection of the fundamentally

important property that J̃
µ
5↵(x) is not conserved,

@µJ̃
µ
5↵(x) ⌘ D̃5↵(x) = F⇡M

2
⇡ ⇡̃↵(x) , (2.5)

even in the chiral limit [32–34]. It is important to stress that in null-plane quantization,

the chiral limit should be taken only after taking matrix elements of the pion interpolating

operator ⇡̃↵(x). Using LSZ reduction it is easy to see that these matrix elements scale as

M
�2
⇡ [33], which immediately implies that the matrix element of the axial-vector current

divergence is non-vanishing and independent of M⇡.

In what follows only the null-plane vector and axial-vector charge distributions,

J̃
µ
↵(x) =  ̄+(x)�µ

T↵ +(x) = J
µ
↵(x) , J̃

+
5↵(x) =  ̄+(x)�+

�5T↵ +(x) = J
+
5↵(x) , (2.6)

will be considered. For a complete catalog of notation, the reader should consult Ref. [33].
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We can express the physical positive helicity eigenstates as

 
|N1 ,

1
2 i

|N2 ,
1
2 i

!
=

 
sin cos 

� cos sin 

! 
|(1,2) , �1

2 , 1i

|(2,3)2 ,
1
2 , 0i

!
, (4.7)

|� ,
1
2 i = |(2,3)4 ,

1
2 , 0i ,

|� ,
3
2 i = |(1,4) , 3

2 , 0i . (4.8)

where  is a mixing angle that is not constrained by chiral symmetry 1. Acting with the

parity operator, the negative helicity eigenstates are

 
(�1)JN1�1/2

⌘N1 |N1 , �
1
2 i

(�1)JN2�1/2
⌘N1 |N2 , �

1
2 i

!
=

 
sin cos 

� cos sin 

! 
|(2,1) , 1

2 , �1i

|(3,2)2 , �
1
2 , 0i

!
, (4.9)

(�1)J��3/2
⌘� |� , �

1
2 i = |(3,2)4 , �

1
2 , 0i ,

(�1)J��3/2
⌘� |� , �

3
2 i = |(4,1) , �3

2 , 0i . (4.10)

In the physical basis, the axial coupling matrix and quark helicity matrices take the form:

ĜA =

 
3
2 (4� cos 2 ) 3

2 sin 2 
3
2 sin 2 

3
2 (4 + cos 2 )

!
, d�⌃ =

 
� cos 2 sin 2 

sin 2 cos 2 

!
(4.11)

Of course these quantities are not diagonal in the physical basis due to chiral symmetry

breaking. The couplings to the � are:

C�N = �2 cos , C�N 0 = �2 sin , H�� = �3 (4.12)

The Hamiltonians take the form

M
2 =

" | (1,2) i | (2,3) i

h (1,2) | m
2
1a m

2
22

h (2,3) | m
2
22 m

2
1b

#
, MJ

+ =

" | (2,1) i | (3,2) i

h (1,2) | mj22a 0

h (2,3) | 0 mj22b

#

From the first Hamiltonian:

M
2
N1

cos2  + M
2
N2

sin2  = M
2
� , (4.13)

and from the second:

�
JN1 +

1
2

�
(�1)JN1�1/2

⌘N1MN1 =
�
JN2 +

1
2

�
(�1)JN2�1/2

⌘N2MN2 . (4.14)

1This multiplet has a long history [? ? ? ? ? ? ].
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TABLE II: Theory vs. Experiment. The asterisk indicates a fit parameter. In determining the
mass of N 0 we have used the empirical N and � masses as input.

Observable Theory Expt [21]

gA 1.267⇤ 1.267

C�N 1.27 1.51± 0.10

H�� 3 2.2± 0.6

g0
A

0.33 0.71± 0.20

C�N 0 1.55 1.38± 0.50

MN 0 1394 MeV 1440± 30 MeV

�⌃N -0.2 0.1± 0.2 [22]

J3 = S3 + L3 (39)

One concludes that there must be another spin degree of freedom, which we will refer to
as orbital helicity and denote L̂3 such that the total helicity is given by Ĵ3 = ⇤̂3 + L̂3. The
commutator of Eq. (12)

A striking consequence of this chiral multiplet structure in the partonic description that
we have developed here is the non-trivial helicity dependence of the nucleon. The helicity
of the baryons may be decomposed as

1
2 = 1

2 �⌃ + Lq + Jq (40)

where here we have

�⌃N = 2 hN | J3 |N i = cos 2 = 3 ( gA �
4
3 ) ,

LN

q
+ JN

q
= hN |L3 |N i = sin2  = 3

2 (
5
3 � gA ) , (41)

and

�⌃N
0

= 2 hN 0
| J3 |N

0
i = � cos 2 = 3 ( 4

3 � gA ) ,

LN
0

q
+ JN

0

q
= hN 0

|L3 |N
0
i = cos2  = 3

2 ( gA � 1 ) . (42)

It is clear that the helicity of N and N 0 are dominated by orbital helicity. By contrast, the
helicity of � is given entirely by the valence degrees of freedom.

We compare theory with experiment in table II. We fit the mixing angle to the physical
value of gA to give:  = 51o. We interpret N 0 as the lowest-lying state with nucleon quantum
numbers: the Roper-resonance. What sort of errors do we expect? Based on a study of the
algebraic structure of the asymptotic behavior of hadronic scattering amplitudes, this chiral
multiplet structure for the nucleon has been conjectured to be exact in QCD in the chiral
limit [10]. The conjecture is motivated by the empirical fact that the axial transitions from�
and N 0 to N are much larger than the transition from any other baryon to N . One may then
naturally view the suppressed transitions as governed by explicit-breaking e↵ects due to the
quark masses. Hence if the conjecture is correct, one expects corrections to the theoretical
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commutator of Eq. (12)

A striking consequence of this chiral multiplet structure in the partonic description that
we have developed here is the non-trivial helicity dependence of the nucleon. The helicity
of the baryons may be decomposed as

1
2 = 1

2 �⌃ + Lq + Jq (40)

where here we have

�⌃N = 2 hN | S3 |N i = cos 2 = 3 ( gA �
4
3 ) ,

LN

q
+ JN

q
= hN | L3 |N i = sin2  = 3

2 (
5
3 � gA ) , (41)

and

�⌃N
0

= 2 hN 0
| J3 |N

0
i = � cos 2 = 3 ( 4

3 � gA ) ,

LN
0

q
+ JN

0

q
= hN 0

|L3 |N
0
i = cos2  = 3

2 ( gA � 1 ) . (42)

It is clear that the helicity of N and N 0 are dominated by orbital helicity. By contrast, the
helicity of � is given entirely by the valence degrees of freedom.

We compare theory with experiment in table II. We fit the mixing angle to the physical
value of gA to give:  = 51o. We interpret N 0 as the lowest-lying state with nucleon quantum
numbers: the Roper-resonance. What sort of errors do we expect? Based on a study of the
algebraic structure of the asymptotic behavior of hadronic scattering amplitudes, this chiral
multiplet structure for the nucleon has been conjectured to be exact in QCD in the chiral
limit [10]. The conjecture is motivated by the empirical fact that the axial transitions from�
and N 0 to N are much larger than the transition from any other baryon to N . One may then
naturally view the suppressed transitions as governed by explicit-breaking e↵ects due to the
quark masses. Hence if the conjecture is correct, one expects corrections to the theoretical

9

TABLE II: Theory vs. Experiment. The asterisk indicates a fit parameter. In determining the
mass of N 0 we have used the empirical N and � masses as input.

Observable Theory Expt [21]

gA 1.267⇤ 1.267

C�N 1.27 1.51± 0.10

H�� 3 2.2± 0.6

g0
A

0.33 0.71± 0.20

C�N 0 1.55 1.38± 0.50

MN 0 1394 MeV 1440± 30 MeV

�⌃N -0.2 0.1± 0.2 [22]

J3 = S3 + L3 (39)

One concludes that there must be another spin degree of freedom, which we will refer to
as orbital helicity and denote L̂3 such that the total helicity is given by Ĵ3 = ⇤̂3 + L̂3. The
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Nucleon spin decomposition

⇤ = ±
3
2

8
><

>:

|(1,4) , 3
2 , 0i

|(4,1) , �3
2 , 0i .

(4.6)

We can express the physical positive helicity eigenstates as

 
|N1 ,

1
2 i

|N2 ,
1
2 i

!
=

 
sin cos 

� cos sin 

! 
|(1,2) , �1

2 , 1i

|(2,3)2 ,
1
2 , 0i

!
, (4.7)

|� ,
1
2 i = |(2,3)4 ,

1
2 , 0i ,

|� ,
3
2 i = |(1,4) , 3

2 , 0i . (4.8)
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�
JN1 +

1
2

�
(�1)JN1�1/2

⌘N1MN1 =
�
JN2 +

1
2

�
(�1)JN2�1/2

⌘N2MN2 . (4.14)

1This multiplet has a long history [? ? ? ? ? ? ].
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Model is too simple. Minimal model is of the form:

implies unwanted degeneracy!
4 Realistic Nucleon Wavefunctions

4.1 The general case

In the chiral basis the nucleon ⇤ = 1/2 wavefunction has the (schematic) Fock expansion

|N ; 1
2 i = |(2,1) , 1

2 , 0i + |(2,3)2 ,
1
2 , 0i + |(1,2) , �1

2 , 1i

+ |(3,2)2 , �
1
2 , 1i + |(1,2) , 3

2 , �1i + |(2,1) , �3
2 , 2i . (4.1)

These six types of states, three with ` = ±1, two with ` = 0 and one with ` = 2, have been

written down explictly in terms of null-plane quark fields in Ref. [? ]. However, this form is

more general as it includes Fock-space components with arbitrary amounts of glue.

4.2 (2,3)� (1,4): the SU(4) limit

We will now describe the mapping between the symmetric and antisymmetric irreducible

representations of SU(4) and representations of SU(2)R ⌦ SU(2)L. The symmetric 20 of

SU(4) is reproduced by

⇤ = ±
1
2

8
><

>:

|(2,3)2 ,
1
2 , 0i , |(2,3)4 ,

1
2 , 0i

|(3,2)2 , �
1
2 , 0i , |(3,2)4 , �

1
2 , 0i

⇤ = ±
3
2

8
><

>:

|(1,4) , 3
2 , 0i

|(4,1) , �3
2 , 0i ,

(4.2)

We can express the physical positive helicity eigenstates as

|N ,
1
2 i = |(2,3)2 ,

1
2 , 0i

|� ,
1
2 i = |(2,3)4 ,

1
2 , 0i ,

|� ,
3
2 i = |(1,4) , 3

2 , 0i , (4.3)

and the negative helicity eigenstates are

(�1)JN�1/2
⌘N |N , �

1
2 i = |(3,2)2 , �

1
2 , 0i ,

(�1)J��1/2
⌘� |� , �

1
2 i = |(3,2)4 , �

1
2 , 0i ,

(�1)J��3/2
⌘� |� , �

3
2 i = |(4,1) , �3

2 , 0i . (4.4)

4.3 (1,2)� (2,3)� (1,4)

Let’s consider the simplest non-trivial model that extends the SU(4) picture of degenerate

nucleon and delta. This involves the reducible irrep (1,2)�(2,3). We will take the eigenstates

of the free Hamiltonian to be

⇤ = ±
1
2

8
><

>:

|(1,2) , �1
2 , 1i , |(2,3)2 ,

1
2 , 0i , |(2,3)4 ,

1
2 , 0i

|(2,1) , 1
2 , �1i , |(3,2)2 , �

1
2 , 0i , |(3,2)4 , �

1
2 , 0i

(4.5)
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+ . . .

❖   Main problem with this method is limitations of excited baryon data.



Conclusions

✦ On a null-plane all chiral symmetry breaking is contained in 
the three reduced Hamiltonians,         and          .    

Inverting eq. 2.22 one then finds the following expressions for the Hamiltonians:

P� =
�
1/2P+

⇥ ⇤
P 2
1 + P 2

2 + M2
⌅
;

F1 =
�
1/P+

⇥ ⇤
P1K3 + P�E1 � P2J3 � MJ2

⌅
;

F2 =
�
1/P+

⇥ ⇤
P2K3 + P�E2 + P1J3 + MJ1

⌅
. (2.23)

A striking feature of the null-plane formulation is that the fundamental dynamical objects

are the products M2 and MJr, rather than the generators themselves. Following Ref. [6],

we will refer to these objects as reduced Hamiltonians. The reduced Hamiltonians, together

with J3, commute with all kinematical generators and satisfy the algebra of U(2). This is

conveniently demonstrated by making use of the Pauli-Lubanski vector

Wµ = 1
2⇤

µ�⇥⇤P�M⇥⇤ , (2.24)

which satisfies WµPµ = 0 and the non-trivial commutation relations:

[Mµ� , W⇥ ] = i ( g�⇥Wµ � gµ⇥W� ) ; (2.25)

[Wµ , W � ] = �i⇤µ�⇥⇤W⇥P⇤ . (2.26)

One then finds general, compact expressions for the angular momentum operators:

J3 = W+/P+ , MJr = Wr � Pr W
+/P+ . (2.27)

By considering the commutation relations among Wµ, Pµ and Mµ� one confirms that

[J3 , MJr ] = i �rsMJs , [J3 , M
2 ] = 0 ;

[MJr , MJs ] = i �rsM
2J3 , [M2 , MJr ] = 0 . (2.28)

Hence, the reduced Hamiltonians together with the stability group generator J3 satisfy the

algebra of U(2), and the problem of finding a Lorentz invariant description of a relativistic

quantum mechanical system is thus equivalent to finding a representation of the three

reduced Hamiltonians which satisfy this algebra 3. Since the essence of Lorentz invariance

resides in these Lie brackets, and they require knowledge of the reduced Hamiltonians,

in theories with complicated dynamics like QCD, the formulation of the theory at weak

coupling will lack manifest Lorentz invariance, which is tied up with the detailed dynamics

of the theory, and is as complicated to achieve as finding the spectrum of the theory.

We can write a general momentum eigenstate as:

| p+ , p⇥ ;⇥ , n ⇤ = | p+ , p⇥ ⇤ ⇥ |⇥ , n ⇤ . (2.29)

Here n are additional variables that may be needed to specify the state of a system at rest,

and ⇥ is helicity, the eigenvalue of J3:

J3 | p+ , p⇥ ;⇥ , n ⇤ = ⇥ | p+ , p⇥ ;⇥ , n ⇤ , (2.30)

3Since the mass operator, M =
�
pµpµ, commutes with the spin operators, this algebra can clearly be

expressed in the canonical form: [Ji , Jj ] = i�ijkJk and [M , Ji ] = 0.
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✦ This property leads to a proof of Goldstone’s theorem that does 
not rely on the presence of symmetry-breaking condensates. 
However, there must be symmetry-preserving condensates.

✦ Chiral constraints on the QCD Hamiltonians place severe 
constraints on the nucleon light-cone wavefunction.

✦ There are five current algebra sum rules that constrain hadronic 
cross-sections (and many that constrain its derivatives).


