Discussion on "Vacuum in Light-Front Quantization"

□ Quantization:

Jianwei Qiu

A classical field theory _____ Infinite "quantum" field theories

various quantization conditions, $[\phi(x), \phi^{\dagger}(y)]_{x^0=y^0} \propto \delta^3(x-y)$, ... at equal time, t, or at equal LC time x^+ , ... add some constraints to the classical theory, ...

Independent of any choice of Lorentz frame (IMF, ...), or coordinate system, (x,y,z,t) or (x^+,x^-,\vec{x}^\perp) , ...

□ Physical observables:

 $\langle P, \sigma | \mathcal{O}(\phi,...) | P', \sigma' \rangle$ Depend on both the "operator" and the "state"

State: $|P,\sigma\rangle\propto \hat{O}(P,\sigma)|\Omega\rangle$ Depends on the "vacuum" $|\Omega\rangle$

Question: $\langle \Omega | \Omega \rangle_{quantum\ theory} = ? | \Omega \rangle_{quantum\ theory} = ?$

☐ Lorentz frame – where the observer is:

Physical picture depends on frame

May help understand the approximation, ...

☐ Coordinate system:

A "right" choice helps organize the calculation, approximation, presentation, ...

t-ordered vs. x⁺-ordered perturbation theory, which one converges better?