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PDF fits at the time of the Higgs discovery

• Several groups obtained incompatible results.
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• Benchmarking exercises to understand the differences largely
inconclusive.

• Recommendation: For the most part, ignore individual group
uncertainties. Take “envelope” of individual determinations.
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PDFs including LHC data

• Situation much improved: Several groups produced compatible
results.
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• PDF4LHC 2015 recommendation [arXiv:1510.03865] recognized
most import features in PDF fits.

• PDF uncertainties become meaningful: Propagate experimental
uncertainties to best fit of unbiased interpolants.
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Some features of contemporary PDF fits

• Data driven approach: Avoid making assumptions on the non
perturbative behaviour. Use flexible parametrization:

• CTEQ and MMHT: Bernstein and Chebichev polynomials
• NNPDF: Neural networks

• Self validating procedures:
• CTEQ and MMHT: dynamic tolerance.
• NNPDF: closure tests.

• Use as much data as possible
• Use the best available perturbative QCD theory:

• NNLO thoery with a General Mass Variable Flavour Number
Scheme for heavy quark emission

• Photon PDF
• Fitted charm

Differences with other groups can be explained by differences in
these assumptions (see e.g. Thorne 1201.6180).
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PDF timeline [Global sets, published only]

Figure 1: S.Forte 2018
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Agreement keeps improving

Figure 2: Tie-Jiun Hou, DIS 2018 (Unpublished)
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NNPDF 3.1

• Updates NNPDF 3.0 with:
• New data (LHC + Updated HERA).
• Data driven description of the charm PDF.

• Results largely compatible but:
• Smaller uncertainties
• Improved accuracy
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Dataset in NNPDF 3.1
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Difficulties with high precision data

• Increased precision in experiment data and theoretical
calculation imposes challenges in the PDF fitting toolchain (e.g.
interpolation of the DGLAP solution can make a big difference)

• Parton level calculation can be problematic. E.g. large numerical
instabilities in Z pT calculation (Boughezal et al, arxiv:1705.00343).

• Experimental input can be problematic:
• Improved statistics → Correlated systematics dominant →
Covariance matrices (used for χ2 goodness of fit) near singular →
χ2 given by not so well controlled systematics.
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Example: ATLAS 7 TeV Jets

• Fit quality in the MMHT framework increases very substantially if
one relaxes some correlations across rapidity bins:

Figure 3: (Harland-Lang, Martin, Thorne arxiv:1711.05757)

• Highly non trivial analyses are required to understand problems
with data. Better tools necessary.
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Tools for compression, visualization and data impact

• PDFSense (Wang et al, arxiv:1803.02777). Define a sensitivity
based on correlations of data and parameters, and on the
residuals to the best fit.

• SMPDF (Carrazza, Forte, Z.K., Rojo, arxiv:1602.00005) Use
correlations directly in x space to construct an optimized
representation or study the PDF dependence. 11



Example: Studying data dependence with SMPDF
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Some results for NNPDF 3.1
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• PDF Uncertainties in data region can be below 1%!
• How much can these be trusted?
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Impact on the W and Z cross sections
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• These are predictions for
standard candles.

• Improvements likely driven
by fitted charm PDF.
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Determining charm PDF from the data

• Usually, charm generated only perturbatively (or parametrized
with models e.g. CT14 arxiv:1707.00657).

• Induces large dependence on the charm mass.
• Possible non perturbative effects missed.

• Motto: Replace assumptions on non perturbative physics and
theoretical ambiguities by data driven approach

• =⇒Fit the charm PDF.

• Teach the GM-VNFS to account for massive quarks: Ball et al,
arXiv:1510.02491.
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Effects of fitting charm

Compared to a purely perturbative charm PDF,

• Reduced scale dependence + charm vanishing at Q² ? mc

→Increased strangeness at high Q² → Better fit to the LHC data.
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The photon PDF from LUXQED

• Important uncertainty for many analyses (e.g. Higgs+W). Most
requested feature since NNPDF3.1.

• Previously determined using a restricted model (MRST2004) or
constrained from data with large uncertainties (NNPDF 2.3 QED).

• Breakthrough in the understanding (Manohar, Nason, Salam,
Zanderighi, arxiv:1607.04266):

• Photon PDF can be written in terms of the structure functions:
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Photon PDF in NNPDF

Matched the LUXQED ansatz with the NNPDF formalism e.g. to
conserve momentum fraction.

• In agreement with the previous data driven fit, but with much
reduced uncertainties.
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Using precise PDFs: A determination of the string coupling con-
stant

Adapted the NNPDF methodology to work as if PDFs and αS were
fitted simultaneously. Apply to the NNPDF 3.1 dataset [arxiv:
1802.03398].

αNNLO
S (MZ) = 0.11845± 0.00052(0.4%)(exp) ± 0.0011(MHOU)

αNLO
S (MZ) = 0.12067± 0.00064(0.4%)(exp)

• Negligible systematic uncertainties induced in the process,
studied extensively.

• Experimental uncertainty comparable to most precise
determinations in the PDG.

• Only way to find the best fit to all data (i.e. also in PDFs) in fits
of αs to collider data [ZK, arxiv:1802.05236].
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Missinh higher order uncertainties in αS

αNNLO
S (MZ) = 0.11845± 0.00052(0.4%)(exp) ± 0.0011(MHOU)

• No good way of estimating Missing Higher Order Uncertainties.
Conservatively, take half the difference between the result at
NLO and NNLO.

• There are some arguments that this is overestimated due to the
bad fit [Carrazza, Forte, ZK, Rojo, Rottoli, arxiv:1803.07977].
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Missing higher order uncertainties in PDFs (Very preliminary!)

Include a theory covariance matrix as well as an experimental
covariance matrix in the PDF fit.

• Compute e.g. using scale variations

sij =
1
2

(
(σi(2µ) − σi(µ))

(
σj(2µ) − σj(µ)

)
+

(
σi(

1
2
µ) − σi(µ)

)(
σj(

1
2
µ) − σj(µ)

))

• sij element of the theoretical covariance between data points i
and j.

• σi(µ) Theoretical prediction for point i evaluated with scales
µr = µf = µ.
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Theoretical covariance and correlation
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Theory + Experiment covariance (Very preliminary)

• Propagates both
experimental and theory
uncertainties to the fit.

• Weights down points with
large perturbative
corrections.

• Allows various correlation
models to be studied.
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Thank you!
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