Collinear Distributions from Monte Carlo Global QCD Analyses
 Jacob Ethier

On behalf of the JAM Collaboration
Light Cone Conference
May $14^{\text {th }}, 2018$

WILLIAM ©゚ MARY Jefferson Lab

Motivation

- Want to obtain reliable information of nonperturbative dynamics associated with hadron structure and hadronization

Factorization \rightarrow separation of short and long distance physics in pQCD expressions of experimental observables, e.g.

- Collinear factorization \rightarrow distributions depend on some fraction of longitudinal momentum
- Nonperturbative distributions are typically determined empirically through global QCD analyses
\rightarrow Objects are parameterized $x f(x)=N x^{a}(1-x)^{b}(1+c \sqrt{x}+d x)$
\rightarrow Parameters are optimized with a least-squares fit $\chi^{2}=\sum_{e}^{N_{\text {exp }}} \sum_{i}^{N_{\text {data }}} \frac{\left(D_{i}^{e}-T_{i}\right)^{2}}{\left(\sigma_{i}^{e}\right)^{2}}$

Motivation

- However, many observables can depend on more than one type of distribution Polarized semi-inclusive DIS observable

$$
\ell+(p, d) \rightarrow \ell^{\prime}+h+X
$$

$$
A_{1}^{h} \sim \frac{g_{1}^{h}}{F_{1}^{h}} \sim \frac{\sum_{f, f^{\prime}} \Delta f \otimes \Delta C_{f f^{\prime}} \otimes D_{f^{\prime}}^{h}}{\sum_{f, f^{\prime}} f \otimes C_{f f^{\prime}} \otimes D_{f^{\prime}}^{h}}
$$

\rightarrow Unpolarized (Polarized) PDFs: describe nucleon's momentum (spin) structure
\rightarrow Fragmentation functions (FFs) D_{f} : describe parton-to-hadron fragmentation
...and there are many issues with performing single chi-squared minimizations
\rightarrow Uncertainties computed by Hessian or Lagrange multiplier method introduce tolerance criteria (uncertainties inflated by arbitrary factor)
\rightarrow Parameters difficult to constrain (flat eigendirections) are typically fixed
\rightarrow Highly non-linear chi-squared function means many local minima that a single fit can be trapped in

- With a consistent theoretical framework and rigorous fitting procedure we can (more effectively): 1. Test universality

2. Explore the limits of collinear factorization
3. Study power suppressed corrections

JAM Collaboration Efforts

- Recent efforts by the JAM collaboration:

		JAM15	JAM16	JAM17	JAM18
	DIS	\square	\boxtimes	\square	\square
	SIA	区	\square	\square	\square
	SIDIS	®	®	\square	\square
	DY	\boxtimes	\boxtimes	\boxtimes	\square
	J	®	®	®	\square
	Δf	\square	®	\square	\square
	D_{f}^{h}	\boxtimes	\square	\square	\square

\rightarrow JAM17: First combined Monte Carlo analysis of polarized DIS, polarized SIDIS, and SIA data - studies impact of SIDIS on sea quark helicity distributions

JE, N. Sato, W. Melnitchouk PRL 119132001 (2017)
\rightarrow JAM18: Universal extraction of all nonperturbative input (in progress)

- Other JAM projects:
N. Sato, JE, C. Andrés, W. Melnitchouk, et. al. (2018)
\rightarrow Monte Carlo extraction of transversity distribution with lattice QCD constraints
H.-W. Lin, W. Melnitchouk, A. Prokudin, N. Sato, H. Shows, PRL 120152052 (2018)
\rightarrow Monte Carlo analysis of pion PDFs (see P. Barry's talk Tuesday p.m.)
P. C. Barry, N. Sato, W. Melnitchouk, C.-R. Ji, arXiv:1804.01965 (2018)

JAM Collaboration Efforts

－Recent efforts by the JAM collaboration：
\rightarrow JAM15：Iterative Monte Carlo Analysis of spin PDFs（DIS only）－studies impact of high precision Jefferson Lab data on proton spin structure N．Sato et．al．Phys．Rev．D93 074005 （2016）
\rightarrow JAM16：First Monte Carlo analysis of FFs （SIA only）－preformed to obtain reliable determination of FFs and their uncertainties

N．Sato et．al．Phys．Rev．D94 114004（2016）

		JAM15	JAM16	JAM17	JAM18
$\begin{aligned} & \text { un } \\ & \dot{U} \\ & 0 . \\ & 0 \\ & 0 \end{aligned}$	DIS	\square	®	\square	\square
	SIA	\boxtimes	\square	\square	\square
	SIDIS	\boxtimes	囚	\square	\square
	DY	®	囚	区	\square
	f	\boxtimes	®	®	\square
	Δf	\square	®	\square	\square
	D_{f}^{h}	マ	\square	\square	\square

\rightarrow JAM17：First combined Monte Carlo analysis of polarized DIS，polarized SIDIS，and SIA data－studies impact of SIDIS on sea quark helicity distributions JE，N．Sato，W．Melnitchouk PRL 119132001 （2017）
\rightarrow JAM18：Universal extraction of all nonperturbative input（in progress）
N．Sato，JE，C．Andrés，W．Melnitchouk，et．al．（2018）
\rightarrow Monte Carlo extraction of transversity distribution with lattice QCD constraints
H．－W．Lin，W．Melnitchouk，A．Prokudin，N．Sato，H．Shows，PRL 120152052 （2018）
\rightarrow Monte Carlo analysis of pion PDFs（see P．Barry＇s talk Tuesday p．m．）
P．C．Barry，N．Sato，W．Melnitchouk，C．－R．Ji，arXiv：1804．01965（2018）

JAM Fitting Methodology

- Based on Bayesian statistical methods - robust determination of "observables" O (PDFs,FFs,etc.) and their uncertainties

$$
\begin{aligned}
E[\mathcal{O}] & =\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data }) \mathcal{O}(\vec{a}) \\
V[\mathcal{O}] & =\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data })[\mathcal{O}(\vec{a})-E[\mathcal{O}]]^{2}
\end{aligned}
$$

- Bayes' theorem defines probability \mathcal{P} as

$$
\mathcal{P}(\vec{a} \mid d a t a)=\frac{1}{Z} \mathcal{L}(d a t a \mid \vec{a}) \pi(\vec{a})
$$

JAM Fitting Methodology

- Based on Bayesian statistical methods - robust determination of "observables" O (PDFs,FFs,etc.) and their uncertainties

$$
\begin{aligned}
E[\mathcal{O}] & =\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data }) \mathcal{O}(\vec{a}) \\
V[\mathcal{O}] & =\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data })[\mathcal{O}(\vec{a})-E[\mathcal{O}]]^{2}
\end{aligned}
$$

- Bayes' theorem defines probability \mathcal{P} as

$$
\mathcal{P}(\vec{a} \mid d a t a)=\frac{1}{Z} \mathcal{L}(\text { data } \mid \vec{a}) \pi(\vec{a})
$$

Likelihood function

$$
\mathcal{L}=\exp \left(-\frac{1}{2} \chi^{2}(\vec{a})\right) \rightarrow \text { Gaussian form in data with } \chi^{2}=\sum_{e}^{N_{\text {exp }}} \sum_{i}^{N_{\text {data }}} \frac{\left(D_{i}^{e}-T_{i}\right)^{2}}{\left(\sigma_{i}^{e}\right)^{2}}
$$

JAM Fitting Methodology

- Based on Bayesian statistical methods - robust determination of "observables" O (PDFs,FFs,etc.) and their uncertainties

$$
\begin{aligned}
E[\mathcal{O}] & =\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data }) \mathcal{O}(\vec{a}) \\
V[\mathcal{O}] & =\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data })[\mathcal{O}(\vec{a})-E[\mathcal{O}]]^{2}
\end{aligned}
$$

- Bayes' theorem defines probability \mathcal{P} as

$$
\mathcal{P}(\vec{a} \mid \text { data })=\frac{1}{Z} \mathcal{L}(\text { data } \mid \vec{a}) \pi(\vec{a})
$$

JAM Fitting Methodology

- Based on Bayesian statistical methods - robust determination of "observables" O (PDFs,FFs,etc.) and their uncertainties

$$
\begin{aligned}
& E[\mathcal{O}]=\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data }) \mathcal{O}(\vec{a}) \\
& V[\mathcal{O}]=\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data })[\mathcal{O}(\vec{a})-E[\mathcal{O}]]^{2}
\end{aligned}
$$

- Bayes' theorem defines probability \mathcal{P} as

$$
\mathcal{P}(\vec{a} \mid \text { data })=\frac{1}{Z} \mathcal{L}(\text { data } \mid \vec{a}) \pi(\vec{a})
$$

- Monte Carlo technique is used to evaluate expectation value and variance integrals
\rightarrow samples parameter space and assigns weights w_{k} to each parameter a_{k} such that

$$
E[\mathcal{O}(\vec{a})]=\sum_{k} w_{k} \mathcal{O}\left(\vec{a}_{k}\right) \quad V[\mathcal{O}(\vec{a})]=\sum_{k} w_{k}\left(\mathcal{O}\left(\vec{a}_{k}\right)-E[\mathcal{O}]\right)^{2}
$$

Iterative Monte Carlo (IMC)

\rightarrow Samples wide region of parameter space
\rightarrow Data is partitioned for cross-validation - training set is fitted via chi-square minimization
\rightarrow Posteriors used to construct sampler (multi-dimensional Guassian, kernel density estimation, etc) - where parameters are chosen for the next iteration
\rightarrow Procedure iterated until converged

$$
\begin{aligned}
& E[\mathcal{O}]=\frac{1}{n} \sum_{k}^{n} \mathcal{O}\left(\vec{a}_{k}\right) \\
& V[\mathcal{O}]=\frac{1}{n} \sum_{k}^{n}\left(\mathcal{O}\left(\vec{a}_{k}\right)-E[\mathcal{O}]\right)^{2}
\end{aligned}
$$

Nested Sampling

- Statistical mapping of multidimensional integral to 1-D

$$
Z=\int d^{n} a \mathcal{L}(d a t a \mid \vec{a}) \pi(\vec{a})=\int_{0}^{1} d X \mathcal{L}(X)
$$

where the prior volume $d X=\pi(\vec{a}) d^{n} a$

$$
Z_{i} \sim \sum_{i} \mathcal{L}_{i} w_{i}
$$

$$
\text { where } w_{i}=\frac{1}{2}\left(X_{i-1}-X_{i+1}\right)
$$

Feroz et al. arXiv: 1306.2144 [astro-ph]

- Algorithm:
\rightarrow Initialize $X_{0}=1, L=0$ and choose N active points $X_{1}, X_{2}, \ldots, X_{\mathrm{N}}$ from prior
\rightarrow For each iteration, sample new point and remove lowest L_{i}, replacing with point such that L is monotonically increasing
\rightarrow Repeat until entire parameter space has been explored

Proton Spin Structure from DIS

- Typically measure longitudinal and transverse spin asymmetries

$$
A_{\|}=\frac{\sigma^{\uparrow \Downarrow}-\sigma^{\uparrow \Uparrow}}{\sigma^{\uparrow \Downarrow}+\sigma^{\uparrow \Uparrow}}=D\left(A_{1}+\eta A_{2}\right) \quad A_{\perp}=\frac{\sigma^{\uparrow \Rightarrow}-\sigma^{\uparrow \Leftarrow}}{\sigma^{\uparrow \Rightarrow}+\sigma^{\uparrow \Leftarrow}}=d\left(A_{2}+\zeta A_{1}\right)
$$

\rightarrow Virtual photoproduction asymmetries: $A_{1}=\frac{\left(g_{1}-\gamma^{2} g_{2}\right)}{F_{1}} A_{2}=\gamma \frac{\left(g_{1}+g_{2}\right)}{F_{1}} \quad \gamma^{2}=\frac{4 M^{2} x^{2}}{Q^{2}}$

- Leading contribution to polarized structure function g_{1} :

$$
g_{1}\left(x, Q^{2}\right)=\frac{1}{2} \sum_{q} e_{q}^{2}\left[\left(\Delta C_{q} \otimes \Delta q^{+}\right)\left(x, Q^{2}\right)+\left(\Delta C_{g} \otimes \Delta g\right)\left(x, Q^{2}\right)\right]+\mathcal{O}\left(\frac{1}{Q}\right)
$$

- First moment of polarized structure function g_{1} :

$$
\int_{0}^{1} d x g_{1}^{p}\left(x, Q^{2}\right)=\frac{1}{36}\left[8 \Delta \Sigma+3 g_{A}+a_{8}\right]\left(1-\frac{\alpha_{s}}{\pi}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)+\mathcal{O}\left(\frac{1}{Q}\right)
$$

\rightarrow DIS requires assumptions about triplet and octet axial charges to extract $\Delta \Sigma$

- Assuming exact $\mathrm{SU}(2)_{f}$ and $\mathrm{SU}(3)_{f}$ values from weak baryon decays

$$
\begin{gathered}
\int d x\left(\Delta u^{+}-\Delta d^{+}\right)=g_{A} \sim 1.269 \quad \int d x\left(\Delta u^{+}+\Delta d^{+}-2 \Delta s^{+}\right)=a_{8} \sim 0.586 \\
\Delta \Sigma_{\left[10^{-3}, 0.8\right]} \sim 0.3
\end{gathered}
$$

Proton Spin Structure from SIDIS

- Measured via longitudinal double spin asymmetries

$$
A_{1}^{h}\left(x, z, Q^{2}\right)=\frac{g_{1}^{h}\left(x, z, Q^{2}\right)}{F_{1}^{h}\left(x, z, Q^{2}\right)}
$$

- Polarized structure function at NLO defined in terms of 2-D convolution

$$
\begin{aligned}
g_{1}^{h}\left(x, z, Q^{2}\right)=\frac{1}{2} \sum_{q} e_{q}^{2}\{ & \left\{q\left(x, Q^{2}\right) D_{q}^{h}\left(z, Q^{2}\right)+\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi}\right. \\
& \left.\times\left(\Delta q \otimes \Delta C_{q q} \otimes D_{q}^{h}+\Delta q \otimes \Delta C_{g q} \otimes D_{g}^{h}+\Delta g \otimes \Delta C_{q g} \otimes D_{q}^{h}\right)\right\}
\end{aligned}
$$

- To include SIDIS observables in the JAM global analyses, fragmentation functions (FFs) must be known
\rightarrow Choice of FF parameterizations available (HKNS \& DSS) differed significantly in kaon sector - strongly impacts Δs^{+}extraction
- JAM17 Analysis: first to fit simultaneously polarized PDFs + FFs and release $\mathrm{SU}(3)$ constraints

JAM17 Polarized PDF Distributions

- Isoscalar sea distribution consistent with zero
- Isovector sea slightly prefers positive shape at low x
\rightarrow Non-zero asymmetry given by small contributions from SIDIS asymmetries

JE, N. Sato, W. Melnitchouk PRL 119132001 (2017)

- Δu^{+}consistent with previous analysis
- Δd^{+}slightly larger in magnitude \rightarrow Anti-correlation with Δs^{+}, which is less negative than JAM15 at $x \sim 0.2$

JAM17 - Resolution of the Strange Polarization

Why does DIS + SU(3) give large negative Δs^{+}?

- Low x DIS deuterium data from COMPASS prefers small negative Δs^{+}
- Negative polarization shifted to intermediate region to satisfy $\mathrm{SU}(3)$ constraint
- b parameter for Δs^{+}typically fixed to
 values $\sim 6-10$, producing a peak at $x \sim 0.1$

JAM18 Analysis (Preliminary)

JAM18 Data vs Theory (Preliminary)

N. Sato, JE, C. Andrés, W. Melnitchouk, et. al. (2018)

Overall agreement with DIS, DY, and SIA data

JAM18 Data vs Theory (Preliminary)

SIDIS

$-y \in[0.10,0.15], \alpha=0.00 \quad-\quad y \in[0.20,0.30], \alpha=0.50$
$-y \in\lceil 0.15,0.20\rceil, \alpha=0.25 \quad-\quad y \in\lceil 0.30,0.50], \alpha=0.75$

- Difficulty fitting low- Q^{2} data \rightarrow only $Q^{2}>5 \mathrm{GeV}^{2}$ included

JAM18 Unpolarized PDFs (Preliminary)

- Central value and uncertainties from maximum likelihood + data resampling method
- Distributions mostly consistent with previous analyses
\rightarrow Light sea asymmetry differs at large- x
- SIDIS supports suppression of strange distribution

JAM18 Impact of SIDIS

N. Sato, JE, C. Andrés, W. Melnitchouk, et. al. (2018)

- Decrease in central value and uncertainty of strange PDF with SIDIS
- Large effect on the gluon distribution
\rightarrow Correlation with strange PDF (momentum sum rule)

Summary and Outlook

- Monte Carlo statistical methods are important for robust extractions of nonperturbative functions and their uncertainties
\rightarrow Necessary for future global QCD studies that contain large data sets and have many fit parameters (TMDs, GPDs)
- New approaches being developed:
\rightarrow Likelihood sampling methods (Nested Sampling)
\rightarrow Generalization of Gaussian likelihood (systematic treatment of incompatible data sets)
- First universal analysis of unpolarized + polarized measurements underway
\rightarrow Simultaneous extraction of all nonperturbative input
\rightarrow Strict test of universality
\rightarrow Can separate individual aligned/anti-aligned helicity distributions
- Longer term: extracting transverse momentum dependent (TMD) PDFs and FFs

