GPDs from charged current meson production in *ep* experiments

Marat Siddikov In collaboration with Ivan Schmidt

Based on:

PRD 96 (2017), 096006, PRD 95 (2017), 013004, PRD 91 (2015) 073002, PRD 89 (2014) 053001 PRD 87 (2013) 033008, PRD 86 (2012) 113018

↓□ ↓ ↓ ≡ ↓ ∽ < < <</p>

Nucleon (hadron) structure

- Formidable theoretical problem (nonperturbative strongly interacting $\bar{q}qg$ ensemble)
- Parton distributions: concise descriptions of nonperturbative structure

GPD extraction from DVCS

Kinematic coverage of DVCS experiments.

 $H_{DVCS} = \sum e_f^2 H^f + \mathcal{O}(\alpha_s) H^g$

 \bullet DVMP may give access to GPD flavor structure, but theoretically is more complicated

Challenges in GPD extraction from pion production (CLAS)

• Tw-2 contribution is small, probes

$$\sigma_L \sim \left| \{ \tilde{H}, \tilde{E} \} \otimes \phi_{2;\pi} \right|^2$$

and underestimates significantly data • Dependence on azimuthal angle ϕ_{π} between ee' and πp planes, should not exist in leading twist

• Signals that tw-3 contributions are pronounced

$$\sigma_{TT} \sim \left| \{H_T, E_T\} \otimes \phi_{\mathbf{3};\pi} \right|^2$$
$$\sigma_{LT} \sim \left| \{H_T, E_T\} \otimes \phi_{\mathbf{3};\pi} \right|^2$$

□ > < ≡ > <> <>

 \Rightarrow This channel requires significantly larger Q^2 to access GPDs

GPDs from ρ_L -mesons

• Probe unpolarized GPDs $\{H, E\} \otimes \phi_{2;\pi}$, smaller twist-3 contributions

Challenge

• Vector meson wave function unknown

• controlled by confinement (not SCSB), depends heavily on the model

Uncertainty in WF translates into significant uncertainty in extraction of GPDs from this channel

Charged current $\pi/\textit{K}\text{-}\mathsf{production}$ can be used as a complementary source of information on GPDs

- V A structure of interaction \Rightarrow access to unpolarized GPDs H, E
 - Relative contribution of higher twist corrections smaller
- Good knowledge of pion and kaon WF, closeness of DAs due to $SU(3)_f \Rightarrow$ can extract full flavor structure of GPD

Charged current studies in ep experiments

Suggested process: $ep \rightarrow \nu_e \pi^- p$

• Neutrino ν_e momentum reconstructed via momentum conservation

$$p_
u = p' + p_\pi - p - p_e$$

-final hadrons are charged, kinematics resolution should be good.

Variables x_B , t, Q^2 are functions of pion and proton energies E_{π} , E_p and angle $\theta_{\pi p}$ between π^- and p

$$t = 2 m_{p} (m_{p} - E_{p})$$

-Q² = 2m_{p}^{2} + m_{\pi}^{2} - 2m_{p} (E_{\pi} + E_{p}) +
+ 2E_{\pi} E_{p} - 2\sqrt{E_{p}^{2} - m_{p}^{2}} \sqrt{E_{\pi}^{2} - m_{\pi}^{2}} \cos \theta_{\pi p}

 $B = \frac{Q}{Q^2 + m_{\pi}^2 + 2E_{\pi}E_{p} - 2\sqrt{E_{p}^2 - m_{p}^2}\sqrt{E_{\pi}^2 - m_{\pi}^2}\cos\theta_{\pi p}}$

▲□▶ ▲ 분 ▶ ∽ Q @

Cross-section in collinear factorization framework

- Coef. functions known up to NLO (JETPL 80, 226; EPJC 52, 933)
- ullet Weak dependence on factorization scale for $\mu_{\it F}\gtrsim$ 3 GeV
- Scale choice: $\mu_R = \mu_F = Q$
- Estimates of NNLO corrections: $\mu_R = \mu_F \in (0.5, 2)Q$
- \bullet NLO corrections increase all the cross-sections ${\gtrsim}50\%$
- \Rightarrow NNLO corrections are needed !

Gluons contribution (LO+NLO)

▲□▶ ▲≣▶ ∽9<</p>

Results for the $e \rightarrow \nu_e M$ (NLO in α_s)

- Estimates were done with Kroll-Goloskokov parametrization
- Mostly sensitive to GPD H_u , H_d
 - (\gtrsim 80% of result).

• Gluons give minor contribution and slightly *decrease* the cross-section (interference term q - g is negative)

Results for the $e \rightarrow \nu_e M$ (NLO in α_s)

• For K-mesons, suppression by an order of magnitude (Cabibbo forbidden), smaller statistics

• Sizeable <u>negative</u> contribution from interfe-

rence $\mathcal{H}^*\mathcal{G} + \mathcal{G}^*\mathcal{H}$ • For neutrons the cross-section is of the same order

(~ 40% less than in $ep \rightarrow \nu_e \pi^- p$), but kinematics reconstruction might be more difficult

Contaminations by twist-3 & Bethe-Heitler mechanisms Twist-3 contributions

• Quark spin flip \Rightarrow probe transversity GPDs $\{H_T, E_T, \tilde{H}_T, \tilde{E}_T\} \otimes \phi_{3;\pi}$

• Both mechanisms generate azimuthal asymmetry

$$\frac{d^4 \sigma^{(tot)}}{dt \, dQ^2 d \ln \nu \, d\varphi} = \frac{1}{2\pi} \frac{d^3 \sigma^{(DVMP)}}{dt \, dQ^2 d \ln \nu} \times \left[1 + \sum_n \left(c_n \cos n\varphi + s_n \sin n\varphi \right) \right]$$

. Use harmonics c_n , s_n to quantize the effects of twist-3 and BH corrections

↓□ ↓ ↓ ≡ ↓ ∽ < < <</p>

Contaminations by twist-3 & Bethe-Heitler mechanisms

• Generate azimuthal asymmetry, quantify effect in terms of angular harmonics

• In both cases the angular harmonics are small

How do such events look like in lab frame?

Kinematic reconstruction

• Need only energies
$$E_{\pi}$$
, E_{p} and angle $\theta_{\pi p}$
 $t = 2 m_{p} (m_{p} - E_{p})$
 $-Q^{2} = 2m_{p}^{2} + m_{\pi}^{2} - 2m_{p} (E_{\pi} + E_{p}) +$
 $+ 2E_{\pi}E_{p} - 2 |\vec{p}_{\pi}| |\vec{p}_{p}| \cos \theta_{\pi p}$
 $x_{B} = \frac{Q^{2}}{Q^{2} + m_{\pi}^{2} + 2E_{\pi}E_{p} - 2 |\vec{p}_{p}| |\vec{p}_{\pi}| \cos \theta_{\pi p}}$
 $|\vec{p}_{i}| = \sqrt{E_{i}^{2} - m_{i}^{2}}$

• Luminosity $\mathcal{L} = 10^{35} \mathrm{cm}^{-2} s^{-1} \Rightarrow \sim 6 \pi^{-}/\mathrm{day}$ in Bjorken kinematics (green region)

• Angles of interest: $(0.3 \leq \theta_{\pi p} \leq 0.8) \operatorname{rad}$ -smaller angles lead to small $W_{\pi p} \leq 2 \text{ GeV}$ (resonance region)

-larger angles lead to small $Q^2 \lesssim 2.5~{
m GeV}$

Cuts to eliminate backgrounds

Pion misidentification as electron

Elastic scattering $e^- p \rightarrow e^- p$ • Neutrino energy E_{ν} distribution after Bjorken regime cuts in

 \Rightarrow Additional cut $E_{\nu} > 1$ GeV allows to get rid of elastic background

 $-2\sqrt{E_{\epsilon}^{\epsilon}} - m_{\epsilon}^{\epsilon} (p_{p,z} + p_{\pi,z}) \equiv m_{\nu}^{-} \lesssim (\dots \text{ eV})^{-}$ $\Rightarrow \text{Cut } p_{\nu}^{2} < m_{\pi}^{2} \text{ to eliminate this background}_{o,\infty}$

Extension to ρ_I^- CC-production

DAs of π^- vs. ρ_L^-

Leading twist: Quark structure differs from pion only by γ_5 :

$$\phi_{\mathbf{2};\pi}(u) \sim \int dz \, e^{i(2u-1)z} \left\langle 0 \left| \bar{\psi}(0) \gamma_{+} \gamma_{\mathbf{5}} \psi(z) \right| \pi \right\rangle$$

$$\phi_{\mathbf{2};
ho}^{(\boldsymbol{L})}(\boldsymbol{u}) \sim \int \, dz \, e^{i(2\boldsymbol{u}-\mathbf{1})\boldsymbol{z}} \left\langle 0 \left| \bar{\psi}(0) \gamma_{+}\psi(z) \right| \rho_{\boldsymbol{L}} \right\rangle$$

 $\begin{array}{l} e \rightarrow e \; M \; \text{case} \\ \gamma_{5} \Rightarrow \text{sensitivity to different GPD sets,} \\ \rho_{L}: \; (H, \; E) \qquad \langle p' | \bar{\psi}(0) \gamma_{+} \psi(z) | p \rangle \\ \pi: \; \left(\tilde{H}, \; \tilde{E} \right) \qquad \langle p' | \bar{\psi}(0) \gamma_{+} \gamma_{5} \psi(z) | p \rangle \end{array}$

$e ightarrow u_e \, M$ case

• sensitivity to exactly the same GPDs: $\gamma_5 \gamma_\mu (1 - \gamma_5) = \gamma_\mu (1 - \gamma_5)$

Charged current, asymptotic DA

• For $\phi_{2;\pi}(u) = \phi_{2;\rho}^{(L)}(u) = 6u(1-u)$ in the leading twist

$$\mathcal{A}_{e \to \nu_{e} \rho_{L}^{-}}^{(tw-2, asy)} = \mathcal{A}_{e \to \nu_{e} \pi^{-}}^{(tw-2, asy)}$$

Charged Current, realistic DA

In the leading twist meson DA enters as a multiplicative factor

$$\phi_{2;M}^{-1} = \int du \, \frac{\phi_{2;M}(u)}{u}$$

$$\Rightarrow \frac{d\sigma_{e \to \nu_e \rho_L^-}^{(tw-2)}}{d\sigma_{e \to \nu_e \pi^-}^{(tw-2)}} = \left(\frac{\phi_{2;\rho_L}^{-1}}{\phi_{2;\pi}^{-1}}\right)^2 = \text{const}$$

-any (x_B, Q^2, t) -dependence of this ratio \Rightarrow twist-three effects

Summary

• Charged current Deeply Virtual Pion Production can be used as an additional source of information on proton structure (its GPDs)

 \bullet Can be studied at νp and ep experiments thanks to large luminosity of modern experiments.

 \bullet Cross-section dominated by unpolarized GPDs $H,\,E$; expect smaller contamination by higher twist and Bethe-Heitler corrections.

• Need to impose cuts in (missing) neutrino energy $E_{\nu}\gtrsim 1\,{\rm GeV}$ and (missing) invariant mass $(m_{\nu}^2\lesssim m_{\pi}^2)$ to suppress backgrounds

Summary

• Charged current Deeply Virtual Pion Production can be used as an additional source of information on proton structure (its GPDs)

- \bullet Can be studied at νp and ep experiments thanks to large luminosity of modern experiments.
- \bullet Cross-section dominated by unpolarized GPDs $H,\,E$; expect smaller contamination by higher twist and Bethe-Heitler corrections.
- Need to impose cuts in (missing) neutrino energy $E_{\nu}\gtrsim 1\,{\rm GeV}$ and (missing) invariant mass $(m_{\nu}^2\lesssim m_{\pi}^2)$ to suppress backgrounds

THANK YOU FOR YOUR ATTENTION!