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Introduction

Understanding the structure of non-perturbative few-body systems, from an
fundamental point of view is important for applications in hadron physics, e.g. for
studies of the nucleon.

One important aspect is to obtain a reliable solution directly in Minkowski space,
so that dynamical observables such as form factor can be calculated.
In this talk, the solutions of the Bethe-Salpeter equation for a bound-state system
of three bosons, bounded through a (two-body) zero range interaction, using three
different approaches are discussed:

LF projection, i.e. only retaining the valence component, in Minkowski space.
Solution of the BS equation in Euclidean space, through Wick rotation
Solution of the BS equation in Minkowski space by direct integration (preliminary
results).
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Three-body problem with zero-range interaction

Three-body Bethe-Salpeter equation (Frederico, PLB 282 (1992) 409):

v(q, p) = 2iF(M12)
∫ d4k

(2π)4
i

k2 −m2 + iε
i

(p− q− k)2 −m2 + iε
v(k, p)

Equal-mass case, bare propagators.

v(q, p) is one of the Faddeev components of the total vertex function.

F(M12): two-body scattering amplitude characterized by scattering length a and
M2

12 = (p− q)2.

1) a < 0: Borromean system, no two-body bound state, 2) a > 0: two-body bound
state exists.
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LF equation:
After the LF projection, i.e. introducing k± = k0 ± kz and integrating over k−, one
obtains the three-body LF equation (Carbonell and Karmanov, PRC 67 (2003) 037001):

Γ(k⊥, x) =
F(M12)

(2π)3

∫ 1−x

0

dx′

x′(1− x− x′)

∫ ∞

0

d2k′⊥
M2

0 −M2
3

Γ(k′⊥, x′)

with M2
0 = (k′2⊥ + m2)/x′ + (k2

⊥ + m2)/x + ((k′⊥ + k⊥)2 + m2)/(1− x− x′)

Euclidean BS equation:
Through a change of variables k = k′ + p

3 and q = q′ + p
3 , and a subsequent Wick

rotation (Ydrefors et al, PLB 770 (2017) 131):

vE(q′4, q′v) =
2F(−M′212)

(2π)3

∫ ∞

−∞
dk′4

∫ ∞

0

dk′vΠ(q′4, q′v, k′4, k′v)
(k′4 −

i
3 M3)2 + k′2v + m2

vE(k′4, k′v),

with M′212 = ( 2
3 iM3 + q′4)

2 + q′2v . The kernel Π is here given by

Π(q′4, q′v, k′4, k′v) =
k′v

2q′v
log

(k′4 + q′4 +
i
3 M3)

2 + (q′v + k′v)2 + m2

(k′4 + q′4 +
i
3 M3)2 + (q′v − k′v)2 + m2

. (1)

Both the equations can be solved with standard methods, e.g. by using splines.
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Direct method

Direct integration of the BS equation, treating explicitly the singularities.
The same approach was used by Carbonell and Karmanov (PRD 90 (2014) 056002 )
to solve the two-body problem (finite-range interaction).
The equation for the vertex function, v(q0, qv) can be written in the "non-singular"
form

v(q0, qv) =
F (M12)

(2π)4

∫ ∞

0
k2

vdkv

{
i
[Π(q0, qv; εk, kv)v(εk, kv) + Π(q0, qv;−εk, kv)v(−εk, kv)]

2εk

− 2
∫ 0

−∞
dk0

[
Π(q0, qv; k0, kv)v(k0, kv)−Π(q0, qv;−εk, kv)v(−εk, kv)

k2
0 − ε2

k

]

− 2
∫ ∞

0
dk0

[
Π(q0, qv; k0, kv)v(k0, kv)−Π(q0, q; εk, kv)v(εk, kv)

k2
0 − ε2

k

]}
,

(2)

using, e.g,
[k2

0 − k2
v −m2 + iε]−1 = PV[k2

0 − ε2
k]
−1 − iπ/(2εk)[δ(k0 − εk) + δ(k0 + εk)]. Above,

where εk =
√

k2
v + m2, kv = |~k| and the kernel Π only has weak, logaritmic,

singularities. For a < 0 (considered here) F(M12) has no pole.
The singularities at k0 = ±εk were subtracted.
We have solved the above equation by using a spline expansion for v, i.e.
v(q0, qv) = ∑ij CijSi(q0)Sj(qv).
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Binding energy versus inverse scattering length (EBS vs LF)
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The (complete) BS equation gives a stronger bound system compared to the LF
one for all a.
For a < 0 (i.e. a Borromean system) the solution with the smallest M2

3, i.e. the
formal ground state, is physical.
However, for a > 0, i.e. a two-body bound state exists, the lowest state is
unphysical.
M2

3 > −∞: No Thomas collapse in the non-relativistic sense, i.e. an effective
short-range repulsion.
The higher-Fock state contributions beyond the valence to the kernel can be
interpreted as an effective three-body force of relativistic origin.
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Transverse amplitudes

The LF and (Euclidean) BS vertex functions cannot be directly compared with
each other.
However, we can define the transverse amplitudes

ALF(~k1⊥,~k2⊥) = ALF
1 + ALF

2 + ALF
3 =

−
√

2π

4

×
∫ 1

0
dx1

∫ 1−x1

0

dx2

x1x2(1− x1 − x2)

Γ(~k1⊥, x1) + Γ(~k2⊥, x2) + Γ(~k3⊥, x3)

M2
0 −M2

3

and
AEBS(~k1⊥,~k2⊥) = AEBS

1 + AEBS
2 + AEBS

3 =

− i
∫

dk14dk1zdk24dk2z[vE(k14, k1v) + vE(k24, k2v) + vE(k34, k3v)]Π1Π2Π3

where Π−1
j = (k2

j4 − i 1
3 M3)

2 + k2
jz + k2

j⊥ + m2
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In both frameworks the first excited state has one node, and the ground state has
no node. This confirms these assignments.

The extra contributions included in the "full" BS solution has a significant impact
on the transverse amplitude, especially for the first excited state.
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Binding energies: Euclidean solution vs direct method (preliminary
results)

The three-body binding energy (for fixed a) is calculable both in Minkowski and
Euclidean spaces.

In the table are shown for three cases (a m = −1.28,−1.5,−1.705), the obtained
eigenvalue using the B3 from the Euclidean calculation.

a m B3/m λ

−1.28 0.006 0.999− 0.0544i
−1.5 0.395 1.000 + 0.0023i
−1.705 1.001 0.997 + 0.106i

Results good for the case a m = −1.5, but the error in the imaginary is getting
quite large for more strongly bound system.

One reason for the non-zero imaginary part could be the use of finite cuts, i.e.
kmax/m = 6.0 and k0max/m = 13.0 (first two cases) and k0max/m = 15.0 (third case).

Euclidean solution obtained without cuts, i.e. using a mapping.
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Three-body vertex function in Minkowski space
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The figure shows the real and imaginary parts of v(q0, qv) at fixed qv/m = 0.5, for
the case B3/m = 0.395.
It is seen that there are four peaks (either singularities or branch cuts). It turns out

that they have the positions q0 = M3 ±
√

q2
v + 4m2 and q0 = M3 ± qv, shown by

red dashed lines. These are thus moving peaks depending on qv.
The non-smooth behavior of v makes the solution of this problem numerically
very challenging.
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Transverse amplitude in Minkowski space

L1(~k1⊥,~k2⊥) =
∫ ∞

−∞
dk1z

{ iπ
[
v(k̃10, k1v)χ(k̃10, k1z,~k1⊥;~k2⊥) + v(−k̃10, k1v)χ(−k̃10, k1z,~k1⊥;~k2⊥)

]
2k̃10

−
∫ ∞

0
dk10

v(k10, k1v)χ(k10, k1z,~k1⊥;~k2⊥)− v(k̃10, k1v)χ(k̃10, k1z,~k1⊥;~k2⊥)

k2
10 − k̃2

10

−
∫ ∞

0
dk10

v(−k10, k1v)χ(−k10, k1z,~k1⊥;~k2⊥)− v(−k̃10, k1v)χ(−k̃10, k1z,~k1⊥;~k2⊥)

k2
10 − k̃2

10

}
,

(3)

with k̃10 =
√

k2
1z +

~k2
1⊥ + m2 and χ is a known function having only weak, square root,

singularities.
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Results for the transverse amplitudes
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The figure compares (as an example) the modulus of the transverse amplitudes for
the case B3/m = 0.395.

The agreement between the two approaches is good.

Even though the Minkowski space amplitude, v(q0, qv), has a non-smooth
behavior, a smooth transverse amplitude is obtained.
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Alternative: Nakanishi integral representation

One alternative in order to avoid the numerical difficulties with the direct method,
could be to use the Nakanishi integral representation. This has been used
succesfully in the two body-case where the BS amplitude is written in the form:

Φ(k, p) =
∫ 1

−1
dz′
∫ ∞

0

g(γ′, z′; κ2)

(γ′ + κ2 − k2 − (p · k)z′ − iε)3 κ2 = m2 −M2/4 (4)

Similarly, in the three-body case, Nakanishi integral representations could be used
for v(q, p) and F(M12), and thus produce a non-singular integral equation. This is
planned for the near future.
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Conclusions

We have in this work studied a system of three bosons interacting through a
zero-range potential using three approaches. Namely, 1) using the valence LF
equation in Minkowski space, 2) Solving the 4-dimensional Euclidean BS
equation, 3) Solving the 4-dimensional BS equation by direct integration in
Minkowski space.

The contributions beyond the valence have large impact both on binding energies
and transverse amplitudes. These contributions can be interpreted as an effective
three-body force of relativistic origin.

The direct method is of great interest since it can give a BS amplitude defined in
Minkowski space, needed to compute dynamical observables.

This is work is in progress. However, we have shown that the binding energy (at
least for modest B3) is in fair agreement with the Euclidean. The transverse
amplitudes are also in fair agreement.

Unfortunately, the method is numerically very challenging due the treatment of
the many singularities.

One way to solve this could be to use a Nakanishi integral representation
(similarly to the two-body case) for the BS amplitude, and it will be done in the
near future.
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