Non-perturbative study of the three-body system using the Bethe-Salpeter approach

Emanuel Ydrefors

Instituto Tecnológico de Aeronáutica (ITA), Brazil
Collaborators: J. H. Alvarenga Nogueira, V. A. Karmanov and T. Frederico

Light Cone 2018
Jefferson Lab, US
May 17, 2018

Introduction

- Understanding the structure of non-perturbative few-body systems, from an fundamental point of view is important for applications in hadron physics, e.g. for studies of the nucleon.
- One important aspect is to obtain a reliable solution directly in Minkowski space, so that dynamical observables such as form factor can be calculated.
- In this talk, the solutions of the Bethe-Salpeter equation for a bound-state system of three bosons, bounded through a (two-body) zero range interaction, using three different approaches are discussed:
- LF projection, i.e. only retaining the valence component, in Minkowski space.
- Solution of the BS equation in Euclidean space, through Wick rotation
- Solution of the BS equation in Minkowski space by direct integration (preliminary results).

Three-body problem with zero-range interaction

- Three-body Bethe-Salpeter equation (Frederico, PLB 282 (1992) 409):

$$
v(q, p)=2 \mathrm{i} F\left(M_{12}\right) \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\mathrm{i}}{k^{2}-m^{2}+\mathrm{i} \epsilon} \frac{\mathrm{i}}{(p-q-k)^{2}-m^{2}+i \epsilon} v(k, p)
$$

- Equal-mass case, bare propagators.
- $v(q, p)$ is one of the Faddeev components of the total vertex function.
- $F\left(M_{12}\right)$: two-body scattering amplitude characterized by scattering length a and $M_{12}^{2}=(p-q)^{2}$.
- 1) $a<0$: Borromean system, no two-body bound state, 2) $a>0$: two-body bound state exists.
- LF equation:
- After the LF projection, i.e. introducing $k_{ \pm}=k_{0} \pm k_{z}$ and integrating over k_{-}, one obtains the three-body LF equation (Carbonell and Karmanov, PRC 67 (2003) 037001):

$$
\Gamma\left(k_{\perp}, x\right)=\frac{F\left(M_{12}\right)}{(2 \pi)^{3}} \int_{0}^{1-x} \frac{d x^{\prime}}{x^{\prime}\left(1-x-x^{\prime}\right)} \int_{0}^{\infty} \frac{d^{2} k_{\perp}^{\prime}}{M_{0}^{2}-M_{3}^{2}} \Gamma\left(k_{\perp}^{\prime}, x^{\prime}\right)
$$

with $M_{0}^{2}=\left(k_{\perp}^{\prime 2}+m^{2}\right) / x^{\prime}+\left(k_{\perp}^{2}+m^{2}\right) / x+\left(\left(k_{\perp}^{\prime}+k_{\perp}\right)^{2}+m^{2}\right) /\left(1-x-x^{\prime}\right)$

- Euclidean BS equation:
- Through a change of variables $k=k^{\prime}+\frac{p}{3}$ and $q=q^{\prime}+\frac{p}{3}$, and a subsequent Wick rotation (Ydrefors et al, PLB 770 (2017) 131):

$$
v_{\mathrm{E}}\left(q_{4}^{\prime}, q_{v}^{\prime}\right)=\frac{2 F\left(-M_{12}^{\prime 2}\right)}{(2 \pi)^{3}} \int_{-\infty}^{\infty} d k_{4}^{\prime} \int_{0}^{\infty} \frac{d k_{v}^{\prime} \Pi\left(q_{4}^{\prime}, q_{v}^{\prime}, k_{4}^{\prime}, k_{v}^{\prime}\right)}{\left(k_{4}^{\prime}-\frac{i}{3} M_{3}\right)^{2}+k_{v}^{\prime 2}+m^{2}} v_{\mathrm{E}}\left(k_{4}^{\prime}, k_{v}^{\prime}\right)
$$

with $M_{12}^{\prime 2}=\left(\frac{2}{3} \mathrm{i} M_{3}+q_{4}^{\prime}\right)^{2}+q_{v}^{\prime 2}$. The kernel Π is here given by

$$
\begin{equation*}
\Pi\left(q_{4}^{\prime}, q_{v}^{\prime}, k_{4}^{\prime}, k_{v}^{\prime}\right)=\frac{k_{v}^{\prime}}{2 q_{v}^{\prime}} \log \frac{\left(k_{4}^{\prime}+q_{4}^{\prime}+\frac{i}{3} M_{3}\right)^{2}+\left(q_{v}^{\prime}+k_{v}^{\prime}\right)^{2}+m^{2}}{\left(k_{4}^{\prime}+q_{4}^{\prime}+\frac{i}{3} M_{3}\right)^{2}+\left(q_{v}^{\prime}-k_{v}^{\prime}\right)^{2}+m^{2}} . \tag{1}
\end{equation*}
$$

- Both the equations can be solved with standard methods, e.g. by using splines.

Direct method

- Direct integration of the BS equation, treating explicitly the singularities.
- The same approach was used by Carbonell and Karmanov (PRD 90 (2014) 056002) to solve the two-body problem (finite-range interaction).
- The equation for the vertex function, $v\left(q_{0}, q_{v}\right)$ can be written in the "non-singular" form

$$
\begin{align*}
v\left(q_{0}, q_{v}\right) & =\frac{\mathcal{F}\left(M_{12}\right)}{(2 \pi)^{4}} \int_{0}^{\infty} k_{v}^{2} d k_{v}\left\{i \frac{\left[\Pi\left(q_{0}, q_{v} ; \varepsilon_{k}, k_{v}\right) v\left(\varepsilon_{k}, k_{v}\right)+\Pi\left(q_{0}, q_{v} ;-\varepsilon_{k}, k_{v}\right) v\left(-\varepsilon_{k}, k_{v}\right)\right]}{2 \varepsilon_{k}}\right. \\
& -2 \int_{-\infty}^{0} d k_{0}\left[\frac{\Pi\left(q_{0}, q_{v} ; k_{0}, k_{v}\right) v\left(k_{0}, k_{v}\right)-\Pi\left(q_{0}, q_{v} ;-\varepsilon_{k}, k_{v}\right) v\left(-\varepsilon_{k}, k_{v}\right)}{k_{0}^{2}-\varepsilon_{k}^{2}}\right] \tag{2}\\
& \left.-2 \int_{0}^{\infty} d k_{0}\left[\frac{\Pi\left(q_{0}, q_{v} ; k_{0}, k_{v}\right) v\left(k_{0}, k_{v}\right)-\Pi\left(q_{0}, q ; \varepsilon_{k}, k_{v}\right) v\left(\varepsilon_{k}, k_{v}\right)}{k_{0}^{2}-\varepsilon_{k}^{2}}\right]\right\}
\end{align*}
$$

using, e.g,
$\left[k_{0}^{2}-k_{v}^{2}-m^{2}+i \epsilon\right]^{-1}=P V\left[k_{0}^{2}-\varepsilon_{k}^{2}\right]^{-1}-i \pi /\left(2 \varepsilon_{k}\right)\left[\delta\left(k_{0}-\varepsilon_{k}\right)+\delta\left(k_{0}+\varepsilon_{k}\right)\right]$. Above, where $\varepsilon_{k}=\sqrt{k_{v}^{2}+m^{2}}, k_{v}=|\vec{k}|$ and the kernel Π only has weak, logaritmic, singularities. For $a<0$ (considered here) $F\left(M_{12}\right)$ has no pole.

- The singularities at $k_{0}= \pm \varepsilon_{k}$ were subtracted.
- We have solved the above equation by using a spline expansion for v, i.e. $v\left(q_{0}, q_{v}\right)=\sum_{i j} C_{i j} S_{i}\left(q_{0}\right) S_{j}\left(q_{v}\right)$.

Binding energy versus inverse scattering length (EBS vs LF)

- The (complete) BS equation gives a stronger bound system compared to the LF one for all a.
- For $a<0$ (i.e. a Borromean system) the solution with the smallest M_{3}^{2}, i.e. the formal ground state, is physical.
- However, for $a>0$, i.e. a two-body bound state exists, the lowest state is unphysical.
- $M_{3}^{2}>-\infty$: No Thomas collapse in the non-relativistic sense, i.e. an effective short-range repulsion.
- The higher-Fock state contributions beyond the valence to the kernel can be interpreted as an effective three-body force of relativistic origin.

Transverse amplitudes

- The LF and (Euclidean) BS vertex functions cannot be directly compared with each other.
- However, we can define the transverse amplitudes

$$
\begin{aligned}
& A^{\mathrm{LF}}\left(\vec{k}_{1 \perp}, \vec{k}_{2 \perp}\right)=A_{1}^{\mathrm{LF}}+A_{2}^{\mathrm{LF}}+A_{3}^{\mathrm{LF}}=\frac{-\sqrt{2 \pi}}{4} \\
& \quad \times \int_{0}^{1} d x_{1} \int_{0}^{1-x_{1}} \frac{d x_{2}}{x_{1} x_{2}\left(1-x_{1}-x_{2}\right)} \frac{\Gamma\left(\vec{k}_{1 \perp}, x_{1}\right)+\Gamma\left(\vec{k}_{2 \perp}, x_{2}\right)+\Gamma\left(\vec{k}_{3 \perp}, x_{3}\right)}{M_{0}^{2}-M_{3}^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& A^{\mathrm{EBS}}\left(\vec{k}_{1 \perp}, \vec{k}_{2 \perp}\right)=A_{1}^{\mathrm{EBS}}+A_{2}^{\mathrm{EBS}}+A_{3}^{\mathrm{EBS}}= \\
& \quad-i \int d k_{14} d k_{1 z} d k_{24} d k_{2 z}\left[v_{E}\left(k_{14}, k_{1 v}\right)+v_{E}\left(k_{24}, k_{2 v}\right)+v_{E}\left(k_{34}, k_{3 v}\right)\right] \Pi_{1} \Pi_{2} \Pi_{3}
\end{aligned}
$$

where $\Pi_{j}^{-1}=\left(k_{j 4}^{2}-i \frac{1}{3} M_{3}\right)^{2}+k_{j z}^{2}+k_{j \perp}^{2}+m^{2}$

- In both frameworks the first excited state has one node, and the ground state has no node. This confirms these assignments.
- The extra contributions included in the "full" BS solution has a significant impact on the transverse amplitude, especially for the first excited state.

Binding energies: Euclidean solution vs direct method (preliminary results)

- The three-body binding energy (for fixed a) is calculable both in Minkowski and Euclidean spaces.
- In the table are shown for three cases ($a m=-1.28,-1.5,-1.705$), the obtained eigenvalue using the B_{3} from the Euclidean calculation.

$a m$	B_{3} / m	λ
-1.28	0.006	$0.999-0.0544 i$
-1.5	0.395	$1.000+0.0023 i$
-1.705	1.001	$0.997+0.106 i$

- Results good for the case a $m=-1.5$, but the error in the imaginary is getting quite large for more strongly bound system.
- One reason for the non-zero imaginary part could be the use of finite cuts, i.e. $k_{\max } / m=6.0$ and $k_{0 \max } / m=13.0$ (first two cases) and $k_{0 \max } / m=15.0$ (third case).
- Euclidean solution obtained without cuts, i.e. using a mapping.

Three-body vertex function in Minkowski space

- The figure shows the real and imaginary parts of $v\left(q_{0}, q_{v}\right)$ at fixed $q_{v} / m=0.5$, for the case $B_{3} / m=0.395$.
- It is seen that there are four peaks (either singularities or branch cuts). It turns out that they have the positions $q_{0}=M_{3} \pm \sqrt{q_{v}^{2}+4 m^{2}}$ and $q_{0}=M_{3} \pm q_{v}$, shown by red dashed lines. These are thus moving peaks depending on q_{v}.
- The non-smooth behavior of v makes the solution of this problem numerically very challenging.

Transverse amplitude in Minkowski space

$$
\begin{align*}
& L_{1}\left(\vec{k}_{1 \perp}, \vec{k}_{2 \perp}\right)=\int_{-\infty}^{\infty} d k_{1 z}\left\{\frac{i \pi\left[v\left(\tilde{k}_{10}, k_{1 v}\right) \chi\left(\tilde{k}_{10}, k_{1 z}, \vec{k}_{1 \perp} ; \vec{k}_{2 \perp}\right)+v\left(-\tilde{k}_{10}, k_{1 v}\right) \chi\left(-\tilde{k}_{10}, k_{1 z}, \vec{k}_{1 \perp} ; \vec{k}_{2 \perp}\right)\right]}{2 \tilde{k}_{10}}\right. \\
& \quad-\int_{0}^{\infty} d k_{10} \frac{v\left(k_{10}, k_{1 v}\right) \chi\left(k_{10}, k_{1 z}, \vec{k}_{1 \perp} ; \vec{k}_{2 \perp}\right)-v\left(\tilde{k}_{10}, k_{1 v}\right) \chi\left(\tilde{k}_{10}, k_{1 z}, \vec{k}_{1 \perp} ; \vec{k}_{2 \perp}\right)}{k_{10}^{2}-\tilde{k}_{10}^{2}} \\
& \left.\quad-\int_{0}^{\infty} d k_{10} \frac{v\left(-k_{10}, k_{1 v}\right) \chi\left(-k_{10}, k_{1 z}, \vec{k}_{1 \perp} ; \vec{k}_{2 \perp}\right)-v\left(-\tilde{k}_{10}, k_{1 v}\right) \chi\left(-\tilde{k}_{10}, k_{1 z}, \vec{k}_{1 \perp} ; \vec{k}_{2 \perp}\right)}{k_{10}^{2}-\tilde{k}_{10}^{2}}\right\}, \tag{3}
\end{align*}
$$

with $\tilde{k}_{10}=\sqrt{k_{1 z}^{2}+\vec{k}_{1 \perp}^{2}+m^{2}}$ and χ is a known function having only weak, square root, singularities.

Results for the transverse amplitudes

- The figure compares (as an example) the modulus of the transverse amplitudes for the case $B_{3} / m=0.395$.
- The agreement between the two approaches is good.
- Even though the Minkowski space amplitude, $v\left(q_{0}, q_{v}\right)$, has a non-smooth behavior, a smooth transverse amplitude is obtained.

Alternative: Nakanishi integral representation

- One alternative in order to avoid the numerical difficulties with the direct method, could be to use the Nakanishi integral representation. This has been used succesfully in the two body-case where the BS amplitude is written in the form:

$$
\begin{equation*}
\Phi(k, p)=\int_{-1}^{1} d z^{\prime} \int_{0}^{\infty} \frac{g\left(\gamma^{\prime}, z^{\prime} ; \kappa^{2}\right)}{\left(\gamma^{\prime}+\kappa^{2}-k^{2}-(p \cdot k) z^{\prime}-i \varepsilon\right)^{3}} \quad \kappa^{2}=m^{2}-M^{2} / 4 \tag{4}
\end{equation*}
$$

- Similarly, in the three-body case, Nakanishi integral representations could be used for $v(q, p)$ and $F\left(M_{12}\right)$, and thus produce a non-singular integral equation. This is planned for the near future.

Conclusions

- We have in this work studied a system of three bosons interacting through a zero-range potential using three approaches. Namely, 1) using the valence LF equation in Minkowski space, 2) Solving the 4 -dimensional Euclidean BS equation, 3) Solving the 4-dimensional BS equation by direct integration in Minkowski space.
- The contributions beyond the valence have large impact both on binding energies and transverse amplitudes. These contributions can be interpreted as an effective three-body force of relativistic origin.
- The direct method is of great interest since it can give a BS amplitude defined in Minkowski space, needed to compute dynamical observables.
- This is work is in progress. However, we have shown that the binding energy (at least for modest B_{3}) is in fair agreement with the Euclidean. The transverse amplitudes are also in fair agreement.
- Unfortunately, the method is numerically very challenging due the treatment of the many singularities.
- One way to solve this could be to use a Nakanishi integral representation (similarly to the two-body case) for the BS amplitude, and it will be done in the near future.

