Nucleon PDFs in small boxes

Juan Guerrero Hampton University \& Jefferson Lab

Light Cone 2018
May, 2018

Novel idea: PDFs on the lattice

PDFs from QCD: the only non-perturbative way to study QCD is lattice QCD.

$$
t_{M} \rightarrow-i t_{E}
$$

Lattice QCD is defined by...
O Discretization
O Euclidean vs Minkowski
O Quark masses
o Finite volume

Novel idea: PDFs on the lattice

PDFs from QCD: the only non-perturbative way to study QCD is lattice QCD.

$$
t_{M} \rightarrow-i t_{E}
$$

Lattice QCD is defined by...
O Discretization
O Euclidean vs Minkowski
O Quark masses
O Finite volume

Focus of this talk...

Scheme to extract PDFs from the lattice

PDFs on the lattice

There are different techniques:
evaluation of matrix elements of non-local operators

OWilson lines: $\langle N| \bar{q} W q|N\rangle_{\infty}{ }_{\text {Fi (2013), Radyushkin (2017) }}$

Otwo current operators: $\langle N| \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0)|N\rangle_{\infty} |$| Ma \& iu (2018) |
| :---: |
| Braun etal (2008, 2018$)$ |

Lattice QCD
 $\langle N| \bar{q} W q|N\rangle_{V}$
 $\langle N| \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0)|N\rangle_{V}$

Scheme to extract PDFs from the lattice

PDFs on the lattice

There are different techniques:
evaluation of matrix elements of non-local operators OWilson lines: $\langle N| \bar{q} W q|N\rangle_{\infty} \prod_{\text {『i } 12013), \text { Radyushkin (2017) }}$

Otwo current operators: $\langle N| \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0)|N\rangle_{\infty} |$| Ma \& iu (2018) |
| :---: |
| Braun etal (2008, 2018$)$ |

Lattice QCD
$\langle N| \bar{q} W q|N\rangle_{V}$
$\langle N| \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0)|N\rangle_{V}$

Pheno QCD
$\langle N| \bar{q} W q|N\rangle_{\infty}$

$$
\langle N| \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0)|N\rangle_{\infty}
$$

Finite volume: Infrared limit of the theory

O Finite-volume artifacts arise from the interactions with mirror images
O Assuming $L \gg$ size of the hadrons $\sim 1 / m_{\pi}$

- This is a purely infrared artifact
- We can determine these artifact using hadrons as d.o.f.

Finite volume: Infrared limit of the theory

O Finite-volume artifacts arise from the interactions with mirror images
O Assuming $L \gg$ size of the hadrons $\sim 1 / m_{\pi}$

- This is a purely infrared artifact
- We can determine these artifact using hadrons as d.o.f.

Finite volume effects: Matrix elements

OIn general, the masses and matrix elements of stable particles have been observed to have these exponentially suppressed corrections.

OBut matrix elements of non-local currents suffer from larger FV effects:
$\langle N| \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0)|N\rangle_{\infty}$: generally decays as a function of ξ
$\langle N| \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0)|N\rangle_{V}$: periodic, since

$$
\mathcal{J}(t, \mathbf{x})=\mathcal{J}\left(t, \mathbf{x}+L \mathbf{e}_{i}\right)
$$

Expect enhanced finite volume effects to keep periodicity!

Finite volume effects: Matrix elements

Expect enhanced finite volume effects to keep periodicity!

A simple example: mass of a pion

Consider a toy model for mesons

$$
\mathcal{L}_{M}=\frac{\lambda}{4!} \varphi^{4}
$$

Bare propagator is volume-independent:

$$
\cdots \cdots \cdots \cdots=\Delta_{0}\left(p^{2}\right)=\frac{i}{p^{2}-m_{0}^{2}+i \epsilon}
$$

so we have to have to go to loops... self-energy...

O In a finite volume, integrals over momenta become sums:

$$
\text { 1D: } \int \frac{d k_{i}}{2 \pi} \rightarrow \sum_{k_{i}} \frac{\Delta k_{i}}{2 \pi}=\sum_{k_{i}} \frac{2 \pi \Delta n}{2 \pi L}=\frac{1}{L} \sum_{k_{i}} \quad 3 \mathrm{D}: \int \frac{d^{3} k}{(2 \pi)^{3}} \rightarrow \frac{1}{L^{3}} \sum_{k_{i}}
$$

A simple example: self-energy of a pion

 in infinite volume:$$
I_{\infty}=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}+m_{\pi}^{2}}
$$

Poisson summation

in finite volume:

$$
I_{\mathrm{FV}}=\frac{1}{L^{3}} \sum_{\mathbf{k}} \int \frac{d k_{4}}{2 \pi} \frac{1}{k^{2}+m_{\pi}^{2}} \stackrel{\downarrow}{=} \sum_{\mathbf{n}} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i \mathbf{k} \cdot \mathbf{n} L}}{k^{2}+m_{\pi}^{2}}
$$

finite/infinite volume difference: $\delta m^{2}(L) \sim \delta I_{\mathrm{FV}}=I_{\mathrm{FV}}-I_{\infty}$

$$
\begin{aligned}
& =\sum_{\mathbf{n} \neq 0} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i \mathbf{k} \cdot \mathbf{n} L}}{k^{2}+m_{\pi}^{2}} \\
& \sim K_{1}(L m) \sim \frac{e^{-L m}}{(L m)^{3 / 2}}
\end{aligned}
$$

A simple example: self-energy of a pion

$$
m_{\pi}(L)=m_{\pi}+c \frac{e^{-m_{\pi} L}}{\left(m_{\pi} L\right)^{3 / 2}}
$$

Dudek, Edwards \& Thomas (2012)
$m_{\pi} \sim 390 \mathrm{MeV}, a_{s} \sim 0.12 \mathrm{fm} \longrightarrow m_{\pi} L \sim 3.8,4.7,5.6$

Our toy model

Consider a theory with two scalar particles
O a light one, φ, analogous to the pion
O a heavy one, χ, analogous to the nucleon
O momentum independent coupling

$$
m_{\varphi} \ll m_{\chi}
$$

Coupling to an external current :

Light external states

Finite volume correction: $\delta \mathcal{M}_{L}^{(\mathrm{LO})}(\boldsymbol{\xi}, \mathbf{p})=g_{\varphi}^{2} \sum_{\mathbf{n} \neq 0} \int_{q_{E}} \frac{e^{i \mathbf{q} \cdot(\boldsymbol{\xi}+i L \mathbf{n})}}{\left(p_{E}+q_{E}\right)^{2}+m_{\varphi}^{2}}$

$$
\begin{gathered}
\delta \mathcal{M}_{L}^{(\mathrm{LO})}(\boldsymbol{\xi}, \mathbf{p})=\frac{m_{\varphi} g_{\varphi}^{2}}{4 \pi^{2}} e^{-i \mathbf{p} \cdot \boldsymbol{\xi}} \sum_{\mathbf{n} \neq 0} \frac{K_{1}\left(m_{\varphi}|\boldsymbol{\xi}+L \mathbf{n}|\right)}{|\boldsymbol{\xi}+L \mathbf{n}|} \sim \frac{m_{\varphi} g_{\varphi}^{2}}{4 \pi^{2}} \frac{K_{1}\left(m_{\varphi}|L-\xi|\right)}{|L-\xi|} \\
\delta \mathcal{M}_{L}^{(\mathrm{LO})}(\boldsymbol{\xi}, \mathbf{p}) \propto \frac{e^{-m_{\varphi}(L-\xi)}}{(L-\xi)^{3 / 2}}
\end{gathered}
$$

Light external states

Expected behavior!

Light external states

Light external states

Light external states

Heavy external states

Leading order

Next to Leading Order

(a)

(e)

(b)

(c)

(d)

(f)

(g)

(h)

In general...

We find that in general the matrix elements...
$\langle M| \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0)|M\rangle_{L}-\langle M| \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0)|M\rangle_{\infty}=P_{a}(\boldsymbol{\xi}, L) e^{-M(L-\xi)}+P_{b}(\boldsymbol{\xi}, L) e^{-m_{\pi} L}+\cdots$,

Polynomial prefactors $\propto L^{m} /|L-\xi|^{n}$

This result might be universal and have a better convergence than the EFT used, but we don't have a proof yet...

Summary

oWe presented first steps towards understanding finite-volume artifacts that arise in matrix elements of spatially non-local operators.
*matrix elements of spatially-separated currents, one of the approaches to determine hadron structure from lattice QCD.
oWe considered a toy model involving two scalar particles to estimate the size of finite-volume corrections.
\otimes lightest particle: LO contribution dominant,effects scale like: $P(\xi, L) e^{-m_{\pi}(L-\xi)}$
heaviest particle: NLO contribution dominant,effects scale like: $P(\xi, L) e^{-m_{\pi} L}$

Thank you!

Backup slides

Finite volume effects: Matrix elements

Wilson line is not periodic:
$W\left[x+\xi \mathbf{e}_{i}, x\right] \equiv U_{i}\left(x+(\xi-a) \mathbf{e}_{i}\right) U_{i}\left(x+(\xi-2 a) \mathbf{e}_{i}\right) \times \cdots \times U_{i}\left(x+a \mathbf{e}_{i}\right)$

Quark bilinears connected to Wilson Lines:
$\bar{q}\left(x+(\xi+n L) \mathbf{e}_{i}\right) W\left[x+(\xi+n L) \mathbf{e}_{i}, x\right] q(x)=\bar{q}\left(x+\xi \mathbf{e}_{i}\right) W\left[x+\xi \mathbf{e}_{i}, x\right]\left(W\left[x+L \mathbf{e}_{i}, x\right]^{n}\right) q(x)$
are no periodic. However,
$q(x)$ and $U(x)$ feel
boundary conditions
expect enhanced finite volume effects for large ξ

Asymptotic behaviors

$$
\begin{aligned}
& \delta \mathcal{M}_{L}^{(b)}(\boldsymbol{\xi}, \mathbf{0})=g^{2} g_{\varphi} g_{\chi} \sum_{\{\mathbf{n}, \mathbf{m}\} \neq \mathbf{0}}\left[\int_{0}^{1} \mathrm{~d} x \mathcal{I}_{2}[|L \mathbf{n}-\boldsymbol{\xi}| ; M(x)]\right]\left[\int_{0}^{1} \mathrm{~d} y \mathcal{I}_{2}[|L \mathbf{m}-\boldsymbol{\xi}| ; M(y)]\right], \\
& \delta \mathcal{M}_{L}^{(c)}(\boldsymbol{\xi}, \mathbf{0})=2 g^{2} g_{\chi}^{2} \sum_{\{\mathbf{n}, \mathbf{m}\} \neq \mathbf{0}} \mathcal{I}_{1}\left[|L \mathbf{n}-\boldsymbol{\xi}| ; m_{\chi}\right]\left[\int_{0}^{1} \mathrm{~d} x(1-x) \mathcal{I}_{3}[|L \mathbf{m}-\boldsymbol{\xi}| ; M(x)]\right], \\
& \delta \mathcal{M}_{L}^{(d)}(\boldsymbol{\xi}, \mathbf{0})=g_{\chi \varphi}^{2} \sum_{\{\mathbf{n}, \mathbf{m}\} \neq \mathbf{0}} \mathcal{I}_{1}\left[|L \mathbf{n}-\boldsymbol{\xi}| ; m_{\chi}\right] \mathcal{I}_{1}\left[|L \mathbf{m}-\boldsymbol{\xi}| ; m_{\varphi}\right] \\
& \delta \mathcal{M}_{L}^{(e)}(\boldsymbol{\xi}, \mathbf{0})=g g_{\varphi} g_{\chi \varphi} \sum_{\{\mathbf{n}, \mathbf{m}\} \neq \mathbf{0}} \mathcal{I}_{1}\left[|L \mathbf{n}-\boldsymbol{\xi}| ; m_{\varphi}\right]\left[\int_{0}^{1} \mathrm{~d} x \mathcal{I}_{2}[|L \mathbf{m}-\boldsymbol{\xi}| ; M(x)]\right], \\
& \delta \mathcal{M}_{L}^{(f)}(\boldsymbol{\xi}, \mathbf{0})=g g_{\chi} g_{\chi \varphi} \sum_{\{\mathbf{n}, \mathbf{m}\} \neq \mathbf{0}} \mathcal{I}_{1}\left[|L \mathbf{n}-\boldsymbol{\xi}| ; m_{\chi}\right]\left[\int_{0}^{1} \mathrm{~d} x \mathcal{I}_{2}[|L \mathbf{m}-\boldsymbol{\xi}| ; M(x)]\right], \\
& \delta \mathcal{M}_{L}^{(g)}(\boldsymbol{\xi}, \mathbf{0})=g g_{\chi \varphi} g_{\chi} \sum_{\{\mathbf{n}, \mathbf{m}\} \neq \mathbf{0}} \mathcal{I}_{1}\left[|L \mathbf{n}-\boldsymbol{\xi}| ; m_{\chi}\right]\left[\int_{0}^{1} \mathrm{~d} x \mathcal{I}_{2}[|L \mathbf{m}| ; M(x)]\right], \\
& \delta \mathcal{M}_{L}^{(h)}(\boldsymbol{\xi}, \mathbf{0})=\frac{1}{2} g_{\chi} g_{\chi \varphi \varphi} \sum_{\{\mathbf{n}, \mathbf{m}\} \neq \mathbf{0}} \mathcal{I}_{1}\left[|L \mathbf{n}-\boldsymbol{\xi}| ; m_{\chi}\right] \mathcal{I}_{1}\left[|L \mathbf{m}| ; m_{\varphi}\right] .
\end{aligned}
$$

Asymptotic behaviors

$$
\begin{aligned}
\delta \mathcal{M}_{L}^{(a)}(\boldsymbol{\xi}, \mathbf{0}) & \sim \frac{g^{2} g_{\varphi}^{2}}{128 \pi^{3} m_{\varphi}}\left[\frac{\xi^{1 / 2}}{(L-\xi)^{3 / 2}} H_{x, 3 / 2}(\xi)+\frac{(L-\xi)^{1 / 2}}{\xi^{3 / 2}} H_{x, 3 / 2}(L-\xi)\right] e^{-m_{\varphi} L}, \\
\delta \mathcal{M}_{L}^{(b)}(\boldsymbol{\xi}, \mathbf{0}) & \sim \frac{g^{2} g_{\varphi} g_{\chi}}{64 \pi^{3} m_{\varphi}}\left[\frac{1}{\xi^{1 / 2}(L-\xi)^{1 / 2}} H_{1,1 / 2}(\xi) H_{1,1 / 2}(L-\xi)\right] e^{-m_{\varphi} L}, \\
\delta \mathcal{M}_{L}^{(c)}(\boldsymbol{\xi}, \mathbf{0}) & =\frac{g^{2} g_{\chi}^{2}}{128 \pi^{3}} \frac{m_{\chi}^{1 / 2}}{m_{\varphi}^{3 / 2}}\left[\frac{(L-\xi)^{1 / 2}}{\xi^{3 / 2}} H_{1-x, 3 / 2}(L-\xi)\right] e^{-\xi\left(m_{\chi}-m_{\varphi}\right)} e^{-m_{\varphi} L}, \\
\delta \mathcal{M}_{L}^{(d)}(\boldsymbol{\xi}, \mathbf{0}) & =\frac{g_{\chi \varphi}^{2} m_{\chi}^{1 / 2} m_{\varphi}^{1 / 2}}{32 \pi^{3}}\left[\frac{1}{\xi^{3 / 2}(L-\xi)^{3 / 2}}\right] e^{-\xi\left(m_{\chi}-m_{\varphi}\right)} e^{-m_{\varphi} L}, \\
\delta \mathcal{M}_{L}^{(e)}(\boldsymbol{\xi}, \mathbf{0}) & =\frac{g g_{\varphi} g_{\chi \varphi}}{64 \pi^{3}}\left[\frac{1}{\xi^{1 / 2}(L-\xi)^{3 / 2}} H_{1,1 / 2}(\xi)+\frac{1}{\xi^{3 / 2}(L-\xi)^{1 / 2}} H_{1,1 / 2}(L-\xi)\right] e^{-m_{\varphi} L}, \\
\delta \mathcal{M}_{L}^{(f)}(\boldsymbol{\xi}, \mathbf{0}) & =\frac{g g_{\chi} g_{\chi \varphi} m_{\chi}^{1 / 2}}{64 \pi^{3} m_{\varphi}^{1 / 2}}\left[\frac{1}{\xi^{3 / 2}(L-\xi)^{1 / 2}} H_{1,1 / 2}(L-\xi)\right] e^{-\xi\left(m_{\chi}-m_{\varphi}\right)} e^{-m_{\varphi} L}, \\
\delta \mathcal{M}_{L}^{(g)}(\boldsymbol{\xi}, \mathbf{0}) & =\frac{g g_{\chi \varphi} g_{\chi} m_{\chi}^{1 / 2}}{64 \pi^{3} m_{\varphi}^{1 / 2}}\left[\frac{1}{\xi^{3 / 2} L^{1 / 2}} H_{1,1 / 2}(L)\right] e^{-\xi m_{\chi}} e^{-m_{\varphi} L}, \\
\delta \mathcal{M}_{L}^{(h)}(\boldsymbol{\xi}, \mathbf{0}) & =\frac{g_{\chi} g_{\chi \varphi \varphi} m_{\varphi}^{1 / 2} m_{\chi}^{1 / 2}}{64 \pi^{3}}\left[\frac{1}{\xi^{3 / 2} L^{3 / 2}}\right] e^{-m_{\chi} \xi} e^{-m_{\varphi} L},
\end{aligned}
$$

Heavy external states: Next to Leading Order

