Pion Model inspired by Lattice QCD

Tobias Frederico
Instituto Tecnológico de Aeronáutica
São José dos Campos - Brazil
tobias@ita.br

Physics Letters B 766 (2017) 86-93

Collaborators

J.P.B.C. Melo (UNICSUL), C. S. Mello (UNIFAP), W. de Paula (ITA), G. Salmè (INFN/Roma I), M. Viviani (INFN/Pisa), J. Carbonell (IPNO), V. Karmanov (Lebedev), E. Ydrefors (ITA), J. H. A. Nogueira(ITA/Roma I),
C. Mezrag (INFN/Roma I), L. Tomio (ITA/IFT), CR Ji (NCSU)

Motivation

- Develop methods in continuous nonperturbative QCD within a given dynamical simple framework in Minkowski space
- Compare to/ incorporate results Lattice in the space-like region (e. g. selfenergies)
- Solve the Bethe-Salpeter bound state equation with dressed quantities
- Observables: spectrum, SL/TL momentum region
- Relation BSA to LF Fock-space expansion of the hadron wf

Problems to be addressed

Observables associated with the hadron structure in Minkowski Space obtainable from BSA

- parton distributions (pdfs)
- generalized parton distributions
- transverse momentum distributions (TMDs)
- Fragmentation functions
- SL and TL form factors

Light-Front WF (LFWF)

basic ingredient in PDFs, GPDs and TMDs

$$
\begin{aligned}
& \tilde{\Phi}(x, p)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{i k \cdot x} \Phi(k, p) \\
& p^{\mu}=p_{1}^{\mu}+p_{2}^{\mu} \quad k^{\mu}=\frac{p_{1}^{\mu}-p_{2}^{\mu}}{2}
\end{aligned}
$$

$$
\tilde{\Phi}(x, p)=\langle 0| T\left\{\varphi_{H}\left(x^{\mu} / 2\right) \varphi_{H}\left(-x^{\mu} / 2\right)\right\}|p\rangle
$$

$$
=\theta\left(x^{+}\right)\langle 0| \varphi(\tilde{x} / 2) e^{-i P^{-} x^{+} / 2} \varphi(-\tilde{x} / 2)|p\rangle e^{i p^{-} x^{+} / 4}+\bullet \bullet \bullet
$$

$$
=\theta\left(x^{+}\right) \sum_{n, n^{\prime}} e^{i p^{-} x^{+} / 4}\langle 0| \varphi(\tilde{x} / 2)\left|n^{\prime}\right\rangle\left\langle n^{\prime}\right| e^{-i P^{-} x^{+} / 2}|n\rangle\langle n| \varphi(-\tilde{x} / 2)|p\rangle+\text { • • }
$$

$$
x^{+}=0 \quad \text { only valence state remains! How to rebuilt the full } \mathrm{BS} \text { amplitude? }
$$

Iterated Resolvents: Brodsky, Pauli, and Pinsky, Phys. Rep. 301, 299 (1998)

- From the valence \rightarrow full Fock Space w-f: Sales, et al. PRC61, 044003 (2000)

Main Tool: Nakanishi Integral Representation (NIR)

"Parametric representation for any Feynman diagram for interacting bosons, with a denominator carrying the overall analytical behavior in Minkowski space" (Nakanishi 1962)

Bethe-Salpeter amplitude

$$
\Phi(k, p)=\int_{-1}^{1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} \frac{g\left(\gamma^{\prime}, z^{\prime}\right)}{\left(\gamma^{\prime}+\kappa^{2}-k^{2}-p \cdot k z^{\prime}-i \epsilon\right)^{3}}
$$

$$
\kappa^{2}=m^{2}-\frac{M^{2}}{4}
$$

BSE in Minkowski space with NIR for bosons
Kusaka and Williams, PRD 51 (1995) 7026;
Light-front projection: integration in k
Carbonell\&Karmanov EPJA27(2006)1;EPJA27(2006)11;
TF, Salme, Viviani PRD89(2014) 016010,...

LF wave function

$$
\psi_{L F}(\gamma, z)=\frac{1}{4}\left(1-z^{2}\right) \int_{0}^{\infty} \frac{g\left(\gamma^{\prime}, z\right) d \gamma^{\prime}}{\left[\gamma^{\prime}+\gamma+z^{2} m^{2}+\kappa^{2}\left(1-z^{2}\right)\right]^{2}}
$$

$$
\gamma=k_{\perp}^{2} \quad z=2 x-1
$$

Equivalent to Generalized Stietjes transform
Carbonell,Frederico, Karmanov PLB769 (2017) 418

1. Bethe-Salpeter equation $\boldsymbol{\&}$ the pion

The pion is the Goldston Boson of the dynamical chiral symmetry breaking \rightarrow Quark self energy and pseudo-scalar bound state equation has to be consistent in order that axial vector Ward Identity is fulfilled.
I.C. Cloët, C.D. Roberts, Prog. Part. Nucl. Phys. 77 (2014) 1.

$$
\Phi(k, p)=S\left(\eta_{1} p+k\right) S\left(\eta_{2} p-k\right) \int \frac{d^{4} k^{\prime}}{(2 \pi)^{4}} i K\left(k, k^{\prime}, p\right) \Phi\left(k^{\prime}, p\right)
$$

Källen-Lehmann spectral representation

$$
S\left(p^{\prime}\right)=\int_{0}^{\infty} d \gamma \frac{\rho(\gamma)}{p^{\prime 2}-\gamma+i \epsilon}
$$

$$
\Phi(k, p)=\int_{0}^{\infty} d \gamma \frac{\rho(\gamma)}{\left(\eta_{1} p+k\right)^{2}-\gamma+i \epsilon} \int_{0}^{\infty} d \gamma^{\prime} \frac{\rho\left(\gamma^{\prime}\right)}{\left(\eta_{2} p-k\right)^{2}-\gamma^{\prime}+i \epsilon} \int \frac{d^{4} k^{\prime}}{(2 \pi)^{4}} i K\left(k, k^{\prime}, p\right) \Phi\left(k^{\prime}, p\right)
$$

Non planar diagrams (cross-ladder) are unimportant with color degrees of freedom! J.H. Alvarenga Nogueira, Chueng-Ryong Ji, E. Ydrefors, T. Frederico, Phys. Lett. B 777 (2018) 207

2. Quark model propagator

$$
S_{F}(k)=\imath Z\left(k^{2}\right)\left[k-M\left(k^{2}\right)+\iota \epsilon\right]^{-1}
$$

simplification $\quad Z\left(k^{2}\right)=1$

$$
M\left(k^{2}\right)=m_{0}-m^{3}\left[k^{2}-\lambda^{2}+i \epsilon\right]^{-1}
$$

$$
m_{0}=0.014 \mathrm{GeV}, m=0.574 \mathrm{GeV} \text { and } \lambda=0.846 \mathrm{GeV} \text {. }
$$

quark propagator poles $\left\{\begin{array}{l}m_{i}^{2}=M^{2}\left(m_{i}^{2}\right) \\ m_{i}\left(m_{i}^{2}-\lambda^{2}\right)= \pm\left[m_{0}\left(m_{i}^{2}-\lambda^{2}\right)-m^{3}\right]\end{array}\right.$

$$
S_{F}(k)=l \frac{\left(k^{2}-\lambda^{2}\right)^{2}\left(k+m_{0}\right)-\left(k^{2}-\lambda^{2}\right) m^{3}}{\prod_{i=1,3}\left(k^{2}-m_{i}^{2}+l \epsilon\right)}
$$

$$
m_{1}=0.327 \mathrm{GeV}, m_{2}=0.644 \mathrm{GeV} \text { and } m_{3}=0.954 \mathrm{GeV}
$$

Källén-Lehmann spectral decomposition

$$
\begin{gathered}
S_{F}(k)=\iota\left[A\left(k^{2}\right) \not k+B\left(k^{2}\right)\right] \\
A\left(k^{2}\right)=\int_{0}^{\infty} d \mu^{2} \frac{\rho_{A}\left(\mu^{2}\right)}{k^{2}-\mu^{2}+\iota \varepsilon} \text { and } B\left(k^{2}\right)=\int_{0}^{\infty} d \mu^{2} \frac{\rho_{B}\left(\mu^{2}\right)}{k^{2}-\mu^{2}+\iota \varepsilon} \\
\rho_{A}\left(\mu^{2}\right)=-\frac{1}{\pi} \operatorname{Im}\left[A\left(\mu^{2}\right)\right] \text { and } \rho_{B}\left(\mu^{2}\right)=-\frac{1}{\pi} \operatorname{Im}\left[B\left(\mu^{2}\right)\right] \\
\text { positivity constraints }
\end{gathered}
$$

$$
\mathcal{P}_{a}=\rho_{A}\left(\mu^{2}\right) \geq 0 \text { and } \mathcal{P}_{b}=\mu \rho_{A}\left(\mu^{2}\right)-\rho_{B}\left(\mu^{2}\right) \geq 0
$$

$$
A\left(k^{2}\right)=\frac{H_{2}\left(m_{1}, m_{2}, m_{3}\right)}{k^{2}-m_{1}^{2}+\imath \epsilon}+\frac{H_{2}\left(m_{2}, m_{1}, m_{3}\right)}{k^{2}-m_{2}^{2}+\imath \epsilon}+\frac{H_{2}\left(m_{3}, m_{2}, m_{1}\right)}{k^{2}-m_{3}^{2}+\imath \epsilon}
$$

$$
\begin{gathered}
B\left(k^{2}\right)=\frac{H_{1}\left(m_{1}, m_{2}, m_{3}\right)}{k^{2}-m_{1}^{2}+\iota \epsilon}+\frac{H_{1}\left(m_{2}, m_{1}, m_{3}\right)}{k^{2}-m_{2}^{2}+\iota \epsilon}+\frac{H_{1}\left(m_{3}, m_{2}, m_{1}\right)}{k^{2}-m_{3}^{2}+\iota \epsilon}+m_{0} A\left(k^{2}\right) \\
H_{n}\left(m_{1}, m_{2}, m_{3}\right)=\frac{\left(-m^{3}\right)^{2-n}\left(m_{1}^{2}-\lambda^{2}\right)^{n}}{\left(m_{1}^{2}-m_{2}^{2}\right)\left(m_{1}^{2}-m_{3}^{2}\right)}
\end{gathered}
$$

$$
\begin{aligned}
\rho_{A}\left(\mu^{2}\right)= & H_{2}\left(m_{1}, m_{2}, m_{3}\right) \delta\left(\mu^{2}-m_{1}^{2}\right) \\
& +H_{2}\left(m_{2}, m_{1}, m_{3}\right) \delta\left(\mu^{2}-m_{2}^{2}\right) \\
& +H_{2}\left(m_{3}, m_{2}, m_{1}\right) \delta\left(\mu^{2}-m_{3}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\rho_{B}\left(\mu^{2}\right)= & H_{1}\left(m_{1}, m_{2}, m_{3}\right) \delta\left(\mu^{2}-m_{1}^{2}\right) \\
& +H_{1}\left(m_{2}, m_{1}, m_{3}\right) \delta\left(\mu^{2}-m_{2}^{2}\right) \\
& +H_{1}\left(m_{3}, m_{2}, m_{1}\right) \delta\left(\mu^{2}-m_{3}^{2}\right)+m_{0} \rho_{A}\left(\mu^{2}\right)
\end{aligned}
$$

Positivity Violation!

$$
\mathcal{P}_{a}=\rho_{A}\left(\mu^{2}\right) \geq 0 \text { and } \mathcal{P}_{b}=\mu \rho_{A}\left(\mu^{2}\right)-\rho_{B}\left(\mu^{2}\right) \geq 0
$$

$$
\begin{aligned}
& \mathcal{P}_{a}^{\delta}\left(m_{1}, m_{2}, m_{3}\right)=H_{2}\left(m_{1}, m_{2}, m_{3}\right) \text { and } \\
& \mathcal{P}_{b}^{\delta}\left(m_{1}, m_{2}, m_{3}\right)=H_{1}\left(m_{1}, m_{2}, m_{3}\right)+m_{0} H_{2}\left(m_{1}, m_{2}, m_{3}\right)
\end{aligned}
$$

$m_{1}=0.327 \mathrm{GeV}$	$\mathcal{P}_{a}^{\delta}\left(m_{1}, m_{2}, m_{3}\right)=1.49$	$\mathcal{P}_{b}^{\delta}\left(m_{1}, m_{2}, m_{3}\right) \sim-0.001 \mathrm{GeV}$
$m_{2}=0.644 \mathrm{GeV}$	$\mathcal{P}_{a}^{\delta}\left(m_{2}, m_{1}, m_{3}\right)=-0.580$	$\mathcal{P}_{b}^{\delta}\left(m_{2}, m_{1}, m_{3}\right) \sim 0.001 \mathrm{GeV}$
$m_{3}=0.954 \mathrm{GeV}$	$\mathcal{P}_{a}^{\delta}\left(m_{3}, m_{2}, m_{1}\right)=0.095$	$\mathcal{P}_{b}^{\delta}\left(m_{3}, m_{2}, m_{1}\right)=0.183 \mathrm{GeV}$

3. Pion Bethe-Salpeter amplitude model

pion-quark-antiquark vertex
$\Gamma_{\pi}(k ; P)=\gamma_{5}\left[l E_{\pi}(k ; P)+\not P F_{\pi}(k ; P)+k^{\mu} P_{\mu} \not k G_{\pi}(k ; P)+\sigma_{\mu \nu} k^{\mu} P^{\nu} H_{\pi}(k ; P)\right]$ chiral limit $m_{\pi}=0$ axial-vector Ward-Takahashi identity I.C. Cloët, C.D. Roberts, Prog. Part. Nucl. Phys. 77 (2014) 1.

$$
f_{\pi} E_{\pi}(k, P)=M\left(k^{2}\right) / \sqrt{Z\left(k^{2}\right)}
$$

OUR MODEL:

$$
\Gamma_{\pi}(k ; P)=\left.\imath \mathcal{N} \gamma_{5} M\left(k^{2}\right)\right|_{m_{0}=0} \quad Z\left(k^{2}\right)=1
$$

$$
\psi_{\pi}(k ; P)=S_{F}(k+P / 2) \Gamma_{\pi}(k ; P) S_{F}(k-P / 2)
$$

Other examples of analytic vertex models with fixed

 constituent quark masses$$
\Lambda_{\pi}(k, P)=\mathcal{N}\left[\frac{1}{\left(k+\frac{P}{2}\right)^{2}-m_{R}^{2}+\imath \epsilon}+\frac{1}{\left(k-\frac{P}{2}\right)^{2}-m_{R}^{2}+\imath \epsilon}\right]
$$

J.P.B.C. de Melo, T. Frederico, E. Pace, G. Salmé, Nucl. Phys. A 707 (2002) 399; Braz. J. Phys. 33 (2003) 301.

$$
\Lambda_{\pi}(k, P)=\mathcal{N} \frac{1}{\left[\left(k+\frac{P}{2}\right)^{2}-m_{R}^{2}+\imath \epsilon\right]} \frac{1}{\left[\left(k-\frac{P}{2}\right)^{2}-m_{R}^{2}+\iota \epsilon\right]}
$$

T. Frederico, E. Pace, B. Pasquini, G. Salmè, Phys. Rev. D 80 (2009) 054021.
C. Fanelli, E. Pace, G. Romanelli, G. Salmè, M. Salmistraro, Eur. Phys. J. C 76 (2016) 253.

4. Integral representation of the BSA

$$
\psi_{\pi}(k ; P)=-\left[A\left(k_{q}^{2}\right) \not k_{q}+B\left(k_{q}^{2}\right)\right] \frac{\mathcal{N} \gamma_{5}}{k^{2}-\lambda^{2}+\imath \epsilon}\left[A\left(k_{\bar{q}}^{2}\right) k_{\bar{q}}+B\left(k_{\bar{q}}^{2}\right)\right]
$$

$$
k_{q}=k+P / 2 \text { and } k_{\bar{q}}=k-P / 2
$$

$$
\frac{1}{\left.\left(\left(k+\frac{p}{2}\right)^{2}-\mu^{\prime 2}+\imath \epsilon\right)\left(k^{2}-\lambda^{2}+\imath \epsilon\right)\left(k-\frac{p}{2}\right)^{2}-\mu^{2}+\imath \epsilon\right)}=\int_{-\infty}^{+\infty} d \gamma \int_{-1}^{1} d z \frac{g\left(\gamma, z ; \mu^{\prime}, \mu, p\right)}{\left(k^{2}+z k \cdot p+\gamma+\imath \epsilon\right)^{3}}
$$

$$
\begin{aligned}
& g\left(\gamma, z ; \mu^{\prime}, \mu, p\right)= \\
& =\frac{\theta(\alpha) \theta(1-\alpha)}{\frac{1}{2}-\alpha}[\theta(1-2 \alpha-z) \theta(z)-\theta(z-1+2 \alpha) \theta(-z)] \\
& \alpha=\frac{\frac{p^{2}}{4}+\lambda^{2}-\mu^{2}-z^{-1}\left(\lambda^{2}+\gamma\right)}{\mu^{2}-\mu^{\prime 2}+2 z^{-1}\left(\lambda^{2}+\gamma\right)}
\end{aligned}
$$

Nakanishi integral representation

$\psi_{\pi}(k ; P)=\gamma_{5} \chi_{1}(k, P)+k_{q} \gamma_{5} \chi_{2}(k, P)+\gamma_{5} k_{\bar{q}} \chi_{3}(k, P)+\not k_{q} \gamma_{5} k_{\bar{q}} \chi_{4}(k, P)$

$$
\chi_{i}(k, P)=\int_{-\infty}^{+\infty} d \gamma \int_{-1}^{1} d z \frac{g_{i}(\gamma, z ; p)}{\left(k^{2}+z k \cdot p+\gamma+\imath \epsilon\right)^{3}}
$$

J. Carbonell, V.A. Karmanov, Eur. Phys. J. A 46 (2010) 387.
W. de Paula, T. Frederico, G. Salmè , M. Viviani Phys.Rev. D94 (2016) R071901
W. de Paula, T.Frederico, G. Salmè, M.Viviani and R.Pimentel, Eur. Phys. J.C 77 (2017) 764

$$
\begin{aligned}
& \text { The Nakanishi weight functions given by: } \\
& g_{i}(\gamma, z ; p) \\
& =-\mathcal{N} \int_{0}^{\infty} d \mu^{2} \int_{0}^{\infty} d \mu^{\prime 2} \rho_{C_{i}^{\prime}}\left(\mu^{\prime 2}\right) \rho_{C_{i}}\left(\mu^{2}\right) g\left(\gamma, z ; \mu^{\prime}, \mu, p\right) \\
& \left(C_{1}^{\prime}, C_{1}\right)=(B, B),\left(C_{2}^{\prime}, C_{2}\right)=(A, B),\left(C_{3}^{\prime}, C_{3}\right)=(B, A) \text { and }\left(C_{4}^{\prime}, C_{4}\right)=(A, A)
\end{aligned}
$$

5. Electroweak decay constant

$$
P^{\mu} f_{\pi}=N_{c} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left[\gamma^{\mu} \gamma^{5} \psi_{\pi}(k ; P)\right]
$$

6. Electromagnetic form factor Space-like

$-\imath \Gamma_{\pi}^{\mu}\left(P, P^{\prime} ; q\right) \equiv\left\langle\pi\left(P^{\prime}\right)\right| J^{\mu}|\pi(P)\rangle=\left(P+P^{\prime}\right)^{\mu} F_{\pi}\left(Q^{2}\right) \quad Q^{2}=-q^{2}$

$$
\Gamma_{\pi^{+}}^{\mu}\left(P, P^{\prime} ; q\right)=\hat{Q}_{u} \Gamma_{\pi^{+}, u}^{\mu}\left(P, P^{\prime} ; q\right)+\hat{Q}_{\bar{d}} \Gamma_{\pi^{+}, \bar{d}}^{\mu}\left(P, P^{\prime} ; q\right)
$$

$$
\begin{aligned}
& \Gamma_{\pi^{+}, u}^{\mu}\left(P, P^{\prime} ; q\right) \\
& = \\
& \quad N_{c} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left[S_{F}\left(k^{\prime}-P^{\prime} / 2\right) \bar{\Gamma}_{\pi^{+}}\left(k^{\prime} ; P^{\prime}\right) S_{F}\left(k^{\prime}+P^{\prime} / 2\right)\right. \\
& \left.\quad \times \Gamma_{u}^{\mu}\left(k^{\prime}+P^{\prime} / 2, k+P / 2 ; P\right) S_{F}(k+P / 2) \Gamma_{\pi^{+}}(k ; P)\right], k^{\prime}=k+q / 2
\end{aligned}
$$

7. Dressed quark current operator

$$
q_{\mu} \Gamma_{\pi}^{\mu}\left(P, P^{\prime} ; q\right)=0
$$

Ward-Takahashi identity (WTI)

$$
\begin{aligned}
& q_{\mu} \Gamma_{q}^{\mu}\left(p^{\prime}, p ; q\right)=S_{F}^{-1}\left(p^{\prime}\right)-S_{F}^{-1}(p) \\
& -\iota \Gamma_{q}^{\mu}\left(p^{\prime}, p ; q\right)=\gamma^{\mu}-\frac{m^{3}\left(p^{\prime}+p\right)^{\mu}}{\mathcal{D}\left(p^{\prime 2}\right) \mathcal{D}\left(p^{2}\right)} \\
& \mathcal{D}\left(p^{2}\right)=\left(p^{2}-\lambda^{2}+i \epsilon\right) \quad q=p^{\prime}-p \\
& \text { Electromagnetic form-factor }
\end{aligned}
$$

8. Results $r_{\pi}=0.672 \mathrm{fm}, f_{\pi}=90 \mathrm{MeV}$

 $r_{\pi}^{e \bar{x} p}=0.672 \pm 0.008 \mathrm{fm} \quad f_{\pi}^{e^{x p}}=92.42 \pm 0.021 \mathrm{MeV}$K.A. Olive, et al., Particle Data Group, Chin. Phys. C 38 (2014) 090001
C.S. Mello et al. / Physics Letters B 766 (2017) 86-93

Fig. 2. Pion charge radius (left-frame) and decay constant (right-frame) as a function of the quark mass given for $M_{q} \equiv M\left(k^{2}=0\right)$. The experimental data for the charge radius and decay constant [67] are given by the horizontal lines.

$$
r_{\pi} f_{\pi}=\sqrt{N_{c}} / 2 \pi
$$

R. Tarrach, Z. Phys. C 2 (1979) 221.
S.B. Gerasimov, Sov. J. Nucl. Phys. 29 (1979) 259;
S.B. Gerasimov, Sov. J. Nucl. Phys. 32 (1980) 156 (Erratum)

Fig. 3. Pion model electromagnetic form factor as a function of the space-like momentum transfer, $Q^{2}=-q^{2}$, compared to the experimental values: Amendolia et al. [70], Baldini et al. [71], Volmer et al. [72], Horn et al. [73], Tadevosyan et al. [74] Huber et al. [75]. In the left frame it is presented the results normalized to the dipole form factor, $F_{\pi}\left(Q^{2}\right)\left(1+Q^{2} /(0.77 \mathrm{GeV})^{2}\right)$, and in the right frame $Q^{2} F_{\pi}\left(Q^{2}\right)$.

Conclusions and Perspectives

- The pion structure in Minkowski space is described in terms of an analytic model of the Bethe-Salpeter amplitude combined with Euclidean Lattice QCD results;
- the model includes the running quark mass fitted to Lattice QCD data;
- the pion pseudoscalar vertex \& quark mass function (dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass);
- the quark propagator violates the positivity constraints of the KL spectral repres.;
- the integral representation of the pion Bethe-Salpeter amplitude is sketched;
- a quark electromagnetic current built consistent with the WTI (current conservation);
- form factor and weak decay constant are consistent with the experimental data;
- Beyond the pion: the kaon
- Form-Factors, PDFs, TMDs, Fragmentation Functions...
- Incorporate in a dynamical model the running quark/gluon masses, quark-gluon vertex from Lattice calculations...

THANK YOU!

@cNPq

- fapesp

