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The pion structure in Minkowski space is described in terms of an analytic model of the Bethe–Salpeter 
amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into 
account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is 
associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements 
in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral 
representation, and it shows a violation of the positivity constraints. The integral representation of the 
pion Bethe–Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated 
with a quark electromagnetic current, which satisfies the Ward–Takahashi identity to ensure current 
conservation. The results for the form factor and weak decay constant are found to be consistent with 
the experimental data.

© 2016 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One fundamental goal of particle physics today, both in the-
ory and experiments, is to explore the nonperturbative structure 
of hadrons. The accepted strong interaction theory is Quantum 
Chromodynamics (QCD) with quark and gluon degrees of free-
dom. Dedicated experiments are planned to investigate the nu-
cleon structure with the 12 GeV JLAB upgrade [1], in particular 
focusing in the study of electromagnetic form factors, inclusive 
and semi-inclusive deep inelastic electron scattering. On the the-
ory side, the research is devoted to the nonperturbative hadron 
properties from the strong interaction, which has being pursued in 
the Euclidean space by lattice QCD calculations (see e.g. [2–5]) and 
by Dyson–Schwinger methods in QCD (see e.g. [6]). In Minkowski 
space, the diagonalization of the Light-Front (LF) QCD hamilto-
nian [7], for example using the basis function approach forwarded 
by the Iowa group [8–14] gives, besides the spectrum, the hadron 
LF Fock-space wave function, explored through from factors, par-
ton an generalized parton distributions. This effort demands a huge 
computational effort (see e.g. [8]) but is becoming nowadays more 
and more feasible. However, the study of the non-perturbative QCD 
with ab-initio methods is still very challenging. Therefore, phe-
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nomenological models are called for to explore the structure of 
hadrons waiting for more detailed ab-initio results.

Dynamical models that embed dynamical chiral symmetry 
breaking were indeed explored, as in [15], where the pion wave 
function from chiral quark models was extracted and compared to 
lattice QCD. In addition, the generalized quark transversity distri-
bution of the pion was investigated [16]. Within the same spirit, 
but using the covariant spectator theory [17], it was studied in 
Minkowski space, confinement, the quark mass functions, sponta-
neous chiral symmetry breaking and the pion structure [18–20]
in particular the pion electromagnetic form factor [21]. Further 
developments of the approach implements the complete charge-
conjugation symmetry and evaluates the impulse approximation 
for the pion electromagnetic form factor [22]. Another example, of 
a recent nonperturbative approach to the pseudoscalar and vector 
meson spectrum in a light-front quark model within a variational 
treatment can be found in [23], and within a covariant approach 
of the Nambu and Jona-Lasinio model the pion transverse momen-
tum dependent parton distributions was addressed in [24].

On the other side, there is the option to address directly the 
electroweak observables with light-front or covariant models, and 
the literature is quite rich and started long ago (see e.g. [25,26]), 
which despite their simplicity implement correctly kinematic boost 
properties of the corresponding amplitudes in exclusive processes 
[7]. Since sometime ago it is a common practice to study covari-
ant and light-front models with constituent quark degrees of free-
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Motivation

• Develop  methods in continuous nonperturbative QCD  within a given 
dynamical simple framework in Minkowski space 

• Compare to/ incorporate results  Lattice in the space-like region (e. g. self-
energies)

• Solve the Bethe-Salpeter bound state equation with dressed quantities

• Observables: spectrum, SL/TL  momentum region

• Relation BSA to LF Fock-space expansion of the hadron wf  



3Problems to be addressed
Observables associated with the hadron structure 
in Minkowski Space obtainable from BSA

l parton distributions (pdfs) 

l generalized parton distributions 

l transverse momentum distributions (TMDs) 

l Fragmentation functions

l SL and TL form factors ….
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Light-Front WF (LFWF)
basic ingredient in PDFs, GPDs and TMDs 

• From the valenceà full Fock Space w-f:
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“Parametric representation for any Feynman diagram for 
interacting bosons, with a denominator carrying the overall 
analytical behavior in Minkowski space” (Nakanishi 1962)

Kusaka and Williams, PRD 51 (1995) 7026;
Light-front projection: integration in k-

Carbonell&Karmanov EPJA27(2006)1;EPJA27(2006)11;
TF, Salme, Viviani PRD89(2014) 016010,…

Bethe-Salpeter amplitude

BSE in Minkowski space with NIR for   bosons 

Main Tool: Nakanishi Integral Representation (NIR)



Equivalent to Generalized Stietjes transform 
Carbonell,Frederico, Karmanov PLB769 (2017) 418
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shown in [14] that the non-planar diagrams, like e.g. the cross-
ladder, have a vanishing contribution in the limit Nc → ∞, where 
Nc is the number of colors. SU (N)c theories of QCD in 1 + 1 di-
mensions have been extensively studied by ’t Hooft [15] and also 
by Hornbostel et al. [16].

In this work, we consider a scalar QCD model to study a proto-
type of a flavor nonsinglet meson system of a scalar-quark and a 
scalar-antiquark with equal masses exchanging a scalar-gluon of 
different mass in 3 + 1 dimensions. This is obtained by adding 
the appropriate color factors in the manifestly covariant BSE and 
its light-front projection. We study quantitatively the suppression 
of the contribution coming from the cross-ladder interaction ker-
nel in the nonperturbative problem of the color singlet two-boson 
bound state mass and structure, due to the color factors in the ker-
nel for different number of colors Nc = N with N = 2, 3, 4. The 
effects of the non-planar cross-ladder interaction kernel on the 
coupling constant for a given bound state mass as well as in light-
front wave function, and the elastic electromagnetic form factor 
are studied in detail.

This work is organized as follows. In Sec. 2 we briefly introduce 
the Bethe–Salpeter equation and the Nakanishi integral represen-
tation. The formalism for introducing the color factors is also pre-
sented. Then, in Sec. 3 we discuss our numerical results for the 
coupling constants for a given bound state mass, the light-front 
wave function and the elastic electromagnetic form factor. Finally, 
in Sec. 4 we summarize our work and give an outlook.

2. Theoretical framework

2.1. Bethe–Salpeter equation

The Bethe–Salpeter equation (BSE) in Minkowski space, for two 
spinless particles, reads:

!(k, p) = S(η1p + k)S(η2p −k)
∫

d4k′

(2π)4
iK (k,k′, p)!(k′, p),

(1)

where the propagators S(p′) are in general dressed and can be 
represented by the Källen–Lehmann spectral representation as

S(p′) =
∞∫

0

dγ
ρ(γ )

p′ 2 −γ + iϵ
, (2)

which raise up the following

!(k, p) =
∞∫

0

dγ
ρ(γ )

(η1p + k)2 −γ + iϵ

∞∫

0

dγ ′ ρ(γ ′)
(η2p −k)2 −γ ′ + iϵ

×
∫

d4k′

(2π)4
iK (k,k′, p)!(k′, p), (3)

where in the interaction kernel, K (k, k′, p), the exchanged boson 
is in general also dressed. For a prototype of flavor nonsinglet 
meson system, K (k, k′, p) does not get complicated by the annihi-
lation process, but it keeps the usual ladder and cross-ladder irre-
ducible kernels, which have been extensively discussed in Refs. [2]
and [13]. The idea of our paper is to start exploring the effects of 
color degrees of freedom on the non-planar diagrams in the sim-
plest possible way, without considering dressed propagators. For 
that purpose we put ρ(γ ) = δ(γ −m2), which gives

!(k, p) = i2[
( p
2 + k)2 −m2 + iϵ

] [
( p
2 −k)2 −m2 + iϵ

]

×
∫

d4k′

(2π)4
iK (k,k′, p)!(k′, p), (4)

where the interaction kernel K is given by a sum of irreducible 
Feynman diagrams and considering the equal partition for the mo-
mentum fraction η1 = η2 = 1/2. The ladder kernel is considered 
in most of works, but here we also incorporate the cross-ladder 
contribution.

The Bethe–Salpeter (BS) amplitude can be found in the form of 
the Nakanishi integral representation [8,9]:

!(k, p) = −i

1∫

−1

dz

∞∫

0

dγ
g(γ , z)

[
γ +m2 −1

4M
2 −k2 −p · k z −iϵ

]3 .

(5)

The weight function g(γ , z) is non-singular, whereas the singu-
larities of the BS amplitude are fully reproduced by this integral. 
The BS amplitude in the form (5) is then substituted into the BS 
equation (4) and after some mathematical transformations, namely 
upon integration in k− = k0 −k3 on both sides of the BS equa-
tion, one obtains the following non-singular integral equation for 
g(γ , z) [13]:

∞∫

0

g(γ ′, z)dγ ′
[
γ ′ + γ + z2m2 + (1−z2)κ2

]2

=
∞∫

0

dγ ′
1∫

−1

dz′ V (γ , z,γ ′, z′)g(γ ′, z′), (6)

where for bound states κ2 =m2 −1
4M

2 > 0 and V is expressed in 
terms of the kernel K [12].

Furthermore, the s-wave valence light-front wave function can 
be computed from

)LF(γ , z) = 1−z2

4

∞∫

0

g(γ ′, z)dγ ′

[γ ′ + γ + z2m2 + (1−z2)κ2]2 , (7)

derived in Ref. [10].

2.2. Scalar QCD

The extension of the BSE to a scalar QCD model is obtained 
simply by introducing the color matrices in the interaction vertices 
appearing in the kernel diagrams. The Feynman rules are first used 
and then the kernel dependence on N is derived by performing 
the trace of the product of Gell-Mann matrices, corresponding to 
a colorless composite two-boson system. For the ladder kernel this 
computation is straightforward:

tr[(λa) ji(λ
a)i j] =

∑

a

(λa) ji(λ
a)i j =

1
2

3∑

i, j=1

(
δ j jδii −

1
N

δ jiδi j

)

= 1
2

(

N2 − 1
N

3∑

i=1

δii

)

= N2 −1
2

, (8)

where the internal boson line factors have been replaced by the 
corresponding SU (N) projection operators (see Ref. [17]). As can 
be seen in Fig. 1, the color factors are given by (λa)i j(λa)kj′ and 
(λb) jk(λb) j′ i , and they read
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and [13]. The idea of our paper is to start exploring the effects of 
color degrees of freedom on the non-planar diagrams in the sim-
plest possible way, without considering dressed propagators. For 
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mentum fraction η1 = η2 = 1/2. The ladder kernel is considered 
in most of works, but here we also incorporate the cross-ladder 
contribution.
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The weight function g(γ , z) is non-singular, whereas the singu-
larities of the BS amplitude are fully reproduced by this integral. 
The BS amplitude in the form (5) is then substituted into the BS 
equation (4) and after some mathematical transformations, namely 
upon integration in k− = k0 −k3 on both sides of the BS equa-
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2.2. Scalar QCD

The extension of the BSE to a scalar QCD model is obtained 
simply by introducing the color matrices in the interaction vertices 
appearing in the kernel diagrams. The Feynman rules are first used 
and then the kernel dependence on N is derived by performing 
the trace of the product of Gell-Mann matrices, corresponding to 
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where the internal boson line factors have been replaced by the 
corresponding SU (N) projection operators (see Ref. [17]). As can 
be seen in Fig. 1, the color factors are given by (λa)i j(λa)kj′ and 
(λb) jk(λb) j′ i , and they read
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shown in [14] that the non-planar diagrams, like e.g. the cross-
ladder, have a vanishing contribution in the limit Nc → ∞, where 
Nc is the number of colors. SU (N)c theories of QCD in 1 + 1 di-
mensions have been extensively studied by ’t Hooft [15] and also 
by Hornbostel et al. [16].

In this work, we consider a scalar QCD model to study a proto-
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different mass in 3 + 1 dimensions. This is obtained by adding 
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its light-front projection. We study quantitatively the suppression 
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bound state mass and structure, due to the color factors in the ker-
nel for different number of colors Nc = N with N = 2, 3, 4. The 
effects of the non-planar cross-ladder interaction kernel on the 
coupling constant for a given bound state mass as well as in light-
front wave function, and the elastic electromagnetic form factor 
are studied in detail.

This work is organized as follows. In Sec. 2 we briefly introduce 
the Bethe–Salpeter equation and the Nakanishi integral represen-
tation. The formalism for introducing the color factors is also pre-
sented. Then, in Sec. 3 we discuss our numerical results for the 
coupling constants for a given bound state mass, the light-front 
wave function and the elastic electromagnetic form factor. Finally, 
in Sec. 4 we summarize our work and give an outlook.
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The pion is the Goldston Boson of the dynamical chiral symmetry breaking
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in order that axial vector Ward Identity is fulfilled. 
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dom starting from an analytical form of the Bethe–Salpeter (BS) 
amplitude and with the Mandelstam formula compute the electro-
magnetic form factors, like in the case of the ρ-meson [27–29], 
for pseudoscalar mesons (see e.g. [30–33]), transition form fac-
tors between pseudoscalar and vector mesons [34] and generalized 
parton distributions [35,36]. A common feature of these models is 
a constituent quark mass independent of the momentum. On the 
other hand, Euclidean Lattice QCD calculations predict for the light 
quarks a running self-energy with momentum, which at infrared 
scales gives a value compatible with the constituent quark mass 
of about 0.3 GeV. Therefore, phenomenological models defined in 
Minkowski space could profit from using a running quark mass, 
with the proviso that it should be consistent with the ab-initio 
lattice QCD calculations on the Euclidean space for space-like mo-
mentum [37]. Progress in building the bridge between Euclidean 
and Minkowski space calculations have been achieved recently, 
namely, the pion light-front wave function was found from the dy-
namical chiral symmetry breaking [38], the distribution amplitude 
from lattice QCD results [39] and the pion electromagnetic form 
factor on the entire domain of space-like momentum transfer us-
ing the Dyson–Schwinger equation framework applied to QCD [40].

From the general point of view, integral representations of the 
two and three-point functions, i.e. the Källén–Lehmann spectral 
representation [41] and the Nakanishi integral representation [42]
respectively, are an useful tool to enlarge the applicability of Eu-
clidean calculations, like the ones obtained in lattice QCD to built 
the Minkowski space amplitudes. Indeed, recently it was used the 
Källén–Lehmann (KL) representation to obtain the spectral den-
sity from the lattice QCD gluon propagator in the space-like region 
through the solution of an ill-posed problem [43]. It was checked 
that the violation of the positivity constraint of the spectral density 
happens and the absence of gluons from the asymptotic spectrum 
of the theory. Similar conclusion was already found from the solu-
tion of Dyson–Schwinger equations for the gluon propagator [44]. 
With respect to the BS amplitude, the Nakanishi integral represen-
tation (NIR) allied to the light-front projection was applied to solve 
nonperturbative problems in the Minkowski space, as the bound 
state solution of the BS equation in scalar models [45,46], for two 
fermions [47] and the scattering [48,49]. It was also used to inves-
tigate the bound-state structure in Minkowski space starting from 
the BS amplitude [50], where in particular the analytic extension 
of the integral representation to the Euclidean space was carefully 
checked. It would be desirable to perform the study of hadron 
structure using the Nakanishi representation of the BS amplitude 
by extending Euclidean calculations to the Minkowski space with 
a gain in the understanding of the associated observables.

In this work, we focus on the pion structure in Minkowski space 
described in terms of an analytic model of the Bethe–Salpeter am-
plitude combined with Euclidean Lattice QCD results. The model 
takes into account the running quark mass, which will be fitted 
to Lattice QCD data for space-like momentum in the Landau gauge 
[37]. The mass function ansatz has a single pole form added to 
the current quark mass (see e.g. [51,52]), from that we build the 
quark propagator, which is analyzed through the KL spectral rep-
resentation and we will show that the positivity constraints are 
violated. After that, the pion BS amplitude will be built relying on 
the pseudoscalar vertex component, which is directly associated 
to the quark mass function, as dictated by the dynamical chiral 
symmetry breaking requirements in the limit of vanishing current 
quark mass, due to the axial-vector Ward–Takahashi identity (see 
e.g. [6]). Furthermore, the Nakanishi integral representation of the 
pion Bethe–Salpeter amplitude considering the running quark mass 
will be derived, which generalizes the model proposed in [36]. 
The performance of the ansatz is tested against the experimen-
tal data for the pion decay constant and space-like electromag-

netic form factor, and the quark electromagnetic current will be 
derived constrained by the Ward–Takahashi identity to ensure cur-
rent conservation. The proposed ansatz goes beyond previous pion 
BS amplitude models [30,31,35,56,57] by taking into account the 
quark self-energy in the fermion–antifermion–pion vertex and in 
the quark propagators. We believe that improvement is important 
for further applications to compute Minkowski space observables 
associated to the pion light-front wave function, as the generalized 
parton distributions [36] and the transverse pion structure [24,58].

2. Quark model propagator

In general the quark propagator can be written as:

S F (k) = ı Z(k2)
[
/k − M(k2) + ıϵ

]−1
(1)

and it is gauge dependent, while the observables we computed 
are not. In addition, the dynamical mass function M(k2) is 
renormalization-point-independent (see e.g. [53]).

Our model is built to fit the quark propagator in the space-like 
region obtained from Lattice QCD calculations in the Landau gauge 
[37]. This choice is quite popular as it is a smooth gauge in the 
sense that preserves the Lorentz invariance of QCD. The lattice cal-
culations from [37] have two degenerate light u and d quarks and 
a heavier one for the strange quark. This simulation used config-
urations from an improved staggered “Asqtad” action at β = 7.09, 
and our fit uses the result closest to the chiral limit among the 
light bare-quark mass calculations. As a simplification, we do not 
consider the momentum dependence of the quark wave function 
renormalization factor, Z(k2) = 1, and the adopted dressed quark 
propagator is

S F (k) = ı
[
/k − M(k2) + ıϵ

]−1
. (2)

This ansatz suggested long ago [59–62] simplifies our calculations 
of the pion electroweak observables in Minkowski space. We note 
that Lattice QCD results [37] shows some momentum dependence 
in Z(k2), that has a value of about 0.7 close to k2 = 0. In addition 
we use the following mass function parametrization,

M(k2) =m0 −m3
[
k2 − λ2 + iϵ

]−1
, (3)

already applied to fit Lattice QCD calculations [52]. The parameters 
of the running mass function are given by

m0 = 0.014 GeV, m = 0.574 GeV and λ = 0.846 GeV, (4)

which are close to the ones used in [52]. The parameters we use 
fit the experimental pion charge radius and provides fπ close to 
the experimental value, as we will present in our result section. 
The running quark mass function with our choice of parameters is 
shown in Fig. 1 and compared to Lattice QCD calculations [37]. We 
observe that our results are quite close to the lattice results con-
sidering the attributed errors. For comparison we also show the fit 
given in Ref. [51], with a more sophisticated parametrization in-
cluding log’s, which in the present model we didn’t consider with 
the sake to simplify the loop integrations in Minkowski space as-
sociated with the pion electroweak observables.

The model has quark propagator poles for m2
i = M2(m2

i ) (i la-
bels the pole position), which are given by solving the cubic equa-
tions:

mi

(
m2

i − λ2
)

= ±
[
m0

(
m2

i − λ2
)

−m3
]

, (5)

which allows to factorize the denominator of the quark model 
propagator as
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propagator as
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√
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(
(k + P

2 )2 − λ2)2 (/k + /P
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(
(k + P

2 )2 − λ2) m3

∏
i= 1,3((k + P

2 )2 −m2
i + ıϵ)

× N γ5m3
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(
(k − P

2 )2 − λ2)2 (/k − /P
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(
(k − P

2 )2 − λ2) m3

∏
i= 1,3((k − P

2 )2 −m2
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(22)

The position of the time-like poles, namely mi are computed from 
the model parameters m, m0 and λ, determined from the fit to the 
LQCD results for the running quark mass for space-like momen-
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We point out that the choice of the vertex function (21) turns 
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mula:

ψπ (k; P ) = − /k + /P
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(k + P
2 )2 − M2

q + ıϵ
γ5 )π (k, P )

× /k − /P
2 + Mq

(k − P
2 )2 − M2

q + ıϵ
, (23)

Fig. 1. The running quark mass, Eq. (3), as a function of the Euclidean momentum 
p = √−pµpµ , with parameters from (4), is given by the solid line and compared to 
lattice QCD calculations from [37]. The dashed line shows the parametrization used 
in reference [51].

where Mq is a constituent quark mass, and the momentum com-
ponent of the vertex, )π (k, P ) is defined in terms of Pauli–Villars 
regulators:

)π (k, P ) = N

[
1

(k + P
2 )2 −m2

R + ıϵ
+ 1

(k − P
2 )2 −m2

R + ıϵ

]

(24)

for the ansatz from Ref. [31], and

)π (k, P ) = N
1

[
(k + P

2 )2 −m2
R + ıϵ

]
1

[
(k − P

2 )2 −m2
R + ıϵ

] (25)

for the product ansatz used in Ref. [35] and recently in [36] to 
compute the pion generalized parton distributions.

It is worthwhile to point out that the Nakanishi integral rep-
resentation [42] was used as a tool to explore the bound-state 
solution of the Bethe–Salpeter equation for bosons ground state 
[45,46] and excited states [50], for bound state of fermions [47]
and continuum [48,49].

4. Integral representation of the BSA

In order to introduce the integral representation for our model, 
we use the following useful identity:

1
((k + p

2 )2 − µ′ 2 + ıϵ)(k2 − λ2 + ıϵ)(k − p
2 )2 − µ2 + ıϵ)

=

=
+∞∫

−∞
dγ

1∫

−1

dz
g(γ , z;µ′,µ, p)

(
k2 + z k · p + γ + ıϵ

)3 (26)

where

g(γ , z;µ′,µ, p) =

= θ(α)θ(1 − α)
1
2 − α

[θ(1 − 2α − z)θ(z) − θ(z − 1+ 2α)θ(−z)]

(27)

and

α =
p2

4 + λ2 − µ2 − z−1(λ2 + γ )

µ2 − µ′2 + 2z−1(λ2 + γ )
. (28)
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S F (k) = ı

(
k2 − λ2)2 (/k +m0) −

(
k2 − λ2) m3

∏
i=1,3(k

2 −m2
i + ıϵ)

. (6)

With the parameters given above, the poles are real and placed 
at the values of m1 = 0.327 GeV, m2 = 0.644 GeV and m3 =
0.954 GeV. Although the quark model propagator has real poles, 
and m1 resembles the constituent mass, or alternatively
M(k2 = 0) = m0 + m3/λ2 = 0.278 GeV. It is worthwhile to stress 
that quark confinement is associated with the absence of asymp-
totic states of free quarks in QCD. Such physics is suggested to be 
expressed as pair of poles of the quark propagator that have mi-
grated to the complex plane (see e.g. the review [6]). Despite of 
that, we will proceed with this simplified model, which is quite 
practical for building the pion observables in Minkowski space, 
namely the loop integrations associated with the observables are 
easily performed analytically.

The fermion propagator can be written as

S F (k) = ı
[
A(k2) /k + B(k2)

]
. (7)

The spectral decomposition [41]:

A(k2) =
∞∫

0

dµ2 ρA(µ2)

k2 − µ2 + ıε
and B(k2) =

∞∫

0

dµ2 ρB(µ2)

k2 − µ2 + ıε

(8)

where the spectral densities are:

ρA(µ2) = − 1
π

Im [A(µ2)] and ρB(µ
2) = − 1

π
Im [B(µ2)] (9)

For a particle that belongs to the S-matrix representation, which 
is an observable state, the Källén–Lehmann (KL) spectral densities 
satisfy the positivity constraints [41]:

Pa = ρA(µ2) ≥ 0 and Pb = µρA(µ2) − ρB(µ
2) ≥ 0 . (10)

The quark is a non-singlet color state and it is not an observable 
asymptotic state belonging to the S-matrix representation. Thus, 
there is no guarantee that the quark propagator should have a KL 
representation. If it will be possible to have one, it might violate 
the positivity constraints for the spectral density. However, this is 
not a simple issue as the positivity violation is a sufficient but not 
necessary condition for quark confinement (see e.g. [54]). Then, 
positivity violation associated with the quark propagator may not 
be equivalent to confinement, which is a subtle property to de-
fine in presence of dynamical quarks [55]. In addition, the issue 
of physical or nonphysical asymptotic states must be associated 
with the gauge-singlet properties of the object, that excludes of 
course the quarks as being an observable state. In this context, 
we warn the reader that, our phenomenological model does not 
explicitly resolve the issue of quark confinement, like e.g. the con-
fining force between the quark-antiquark, beyond the observation 
that the quark spectral density in the present case is not posi-
tive definite, as we are going to show. A similar quark propagator 
model, proposed recently, violates the reflection positivity and was 
associated to quarks degrees of freedom out of the physical spec-
trum [52]. The detailed discussion presented in this reference is 
particularly illuminating on that point. We can add the example 
of the gluon propagator obtained from Lattice QCD calculations in 
the Landau gauge, which exhibits the violation of the positivity 
constraint in the KL representation [43].

For our model we can compute easily the spectral densities by 
decomposing, the quark model propagator (6), first in partial frac-
tions as:

A(k2) = H2(m1,m2,m3)

k2 −m2
1 + ıϵ

+ H2(m2,m1,m3)

k2 −m2
2 + ıϵ

+ H2(m3,m2,m1)

k2 −m2
3 + ıϵ

(11)

and

B(k2) = H1(m1,m2,m3)

k2 −m2
1 + ıϵ

+ H1(m2,m1,m3)

k2 −m2
2 + ıϵ

+ H1(m3,m2,m1)

k2 −m2
3 + ıϵ

+m0 A(k2) (12)

where

Hn(m1,m2,m3) = (−m3)2−n(m2
1 − λ2)n

(m2
1 −m2

2)(m
2
1 −m2

3)
(13)

which leads easily leads to:

ρA(µ2) = H2(m1,m2,m3) δ
(
µ2 −m2

1

)

+ H2(m2,m1,m3) δ
(
µ2 −m2

2

)

+ H2(m3,m2,m1) δ
(
µ2 −m2

3

)
(14)

and

ρB(µ
2) = H1(m1,m2,m3) δ

(
µ2 −m2

1

)

+ H1(m2,m1,m3) δ
(
µ2 −m2

2

)

+ H1(m3,m2,m1) δ
(
µ2 −m2

3

)
+m0 ρA(µ2) (15)

The constraints in (10) are translated to the coefficients of the 
delta functions, which using (14) and (15) are given by:

Pδ
a (m1,m2,m3) = H2(m1,m2,m3) and

Pδ
b (m1,m2,m3) = H1(m1,m2,m3) +m0 H2(m1,m2,m3) . (16)

As m1 < m2 < m3, one has that Pδ
a (m2, m1, m3) < 0 and

ρA(µ2)|µ2=m2
2

< 0. The actual values are Pδ
a (m1, m2, m3) = 1.49, 

Pδ
a (m2, m1, m3) = −0.580 and Pδ

a (m3, m2, m1) = 0.095.
The other positivity constraint from (10), translated into the co-

efficients of the delta functions turns to be:

Pδ
b (m1,m2,m3) = − (λ2 −m2

1)(m
3 + (m0 −m1)(λ

2 −m2
1))

(m2
1 −m2

2)(m
2
1 −m2

3)
.

(17)

The formula above has to be calculated for each one of the three 
poles of the quark propagators, namely m1, m1 ↔ m2 and m1 ↔
m3. Taking into account the actual values of the poles and param-
eters it results: Pδ

b (m1, m2, m3) ∼ −0.001, Pδ
b (m2, m1, m3) ∼ 0.001

and Pδ
b (m3, m2, m1) = 0.183. In short, we found that the model vi-

olates the positivity constraints for the spectral density and we are 
satisfied by that as the color non-singlet quark cannot be a physi-
cal state.

3. Pion Bethe–Salpeter amplitude model

The pion is a isovector pseudoscalar meson composed mainly 
by a constituent quark and antiquark, i.e., |u ̄d⟩ state with total 
spin zero and negative parity. The key ingredient of the model is 
the chiral limit where the current quark mass vanishes and the 
self-energy is related to the pion BS vertex.

The pion-quark-antiquark vertex denoted by 'π (k, P ) is the 
quark-antiquark-meson BSA with external quark legs removed. In 
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there is no guarantee that the quark propagator should have a KL 
representation. If it will be possible to have one, it might violate 
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necessary condition for quark confinement (see e.g. [54]). Then, 
positivity violation associated with the quark propagator may not 
be equivalent to confinement, which is a subtle property to de-
fine in presence of dynamical quarks [55]. In addition, the issue 
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with the gauge-singlet properties of the object, that excludes of 
course the quarks as being an observable state. In this context, 
we warn the reader that, our phenomenological model does not 
explicitly resolve the issue of quark confinement, like e.g. the con-
fining force between the quark-antiquark, beyond the observation 
that the quark spectral density in the present case is not posi-
tive definite, as we are going to show. A similar quark propagator 
model, proposed recently, violates the reflection positivity and was 
associated to quarks degrees of freedom out of the physical spec-
trum [52]. The detailed discussion presented in this reference is 
particularly illuminating on that point. We can add the example 
of the gluon propagator obtained from Lattice QCD calculations in 
the Landau gauge, which exhibits the violation of the positivity 
constraint in the KL representation [43].
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The pion-quark-antiquark vertex denoted by 'π (k, P ) is the 
quark-antiquark-meson BSA with external quark legs removed. In 
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dom starting from an analytical form of the Bethe–Salpeter (BS) 
amplitude and with the Mandelstam formula compute the electro-
magnetic form factors, like in the case of the ρ-meson [27–29], 
for pseudoscalar mesons (see e.g. [30–33]), transition form fac-
tors between pseudoscalar and vector mesons [34] and generalized 
parton distributions [35,36]. A common feature of these models is 
a constituent quark mass independent of the momentum. On the 
other hand, Euclidean Lattice QCD calculations predict for the light 
quarks a running self-energy with momentum, which at infrared 
scales gives a value compatible with the constituent quark mass 
of about 0.3 GeV. Therefore, phenomenological models defined in 
Minkowski space could profit from using a running quark mass, 
with the proviso that it should be consistent with the ab-initio 
lattice QCD calculations on the Euclidean space for space-like mo-
mentum [37]. Progress in building the bridge between Euclidean 
and Minkowski space calculations have been achieved recently, 
namely, the pion light-front wave function was found from the dy-
namical chiral symmetry breaking [38], the distribution amplitude 
from lattice QCD results [39] and the pion electromagnetic form 
factor on the entire domain of space-like momentum transfer us-
ing the Dyson–Schwinger equation framework applied to QCD [40].

From the general point of view, integral representations of the 
two and three-point functions, i.e. the Källén–Lehmann spectral 
representation [41] and the Nakanishi integral representation [42]
respectively, are an useful tool to enlarge the applicability of Eu-
clidean calculations, like the ones obtained in lattice QCD to built 
the Minkowski space amplitudes. Indeed, recently it was used the 
Källén–Lehmann (KL) representation to obtain the spectral den-
sity from the lattice QCD gluon propagator in the space-like region 
through the solution of an ill-posed problem [43]. It was checked 
that the violation of the positivity constraint of the spectral density 
happens and the absence of gluons from the asymptotic spectrum 
of the theory. Similar conclusion was already found from the solu-
tion of Dyson–Schwinger equations for the gluon propagator [44]. 
With respect to the BS amplitude, the Nakanishi integral represen-
tation (NIR) allied to the light-front projection was applied to solve 
nonperturbative problems in the Minkowski space, as the bound 
state solution of the BS equation in scalar models [45,46], for two 
fermions [47] and the scattering [48,49]. It was also used to inves-
tigate the bound-state structure in Minkowski space starting from 
the BS amplitude [50], where in particular the analytic extension 
of the integral representation to the Euclidean space was carefully 
checked. It would be desirable to perform the study of hadron 
structure using the Nakanishi representation of the BS amplitude 
by extending Euclidean calculations to the Minkowski space with 
a gain in the understanding of the associated observables.

In this work, we focus on the pion structure in Minkowski space 
described in terms of an analytic model of the Bethe–Salpeter am-
plitude combined with Euclidean Lattice QCD results. The model 
takes into account the running quark mass, which will be fitted 
to Lattice QCD data for space-like momentum in the Landau gauge 
[37]. The mass function ansatz has a single pole form added to 
the current quark mass (see e.g. [51,52]), from that we build the 
quark propagator, which is analyzed through the KL spectral rep-
resentation and we will show that the positivity constraints are 
violated. After that, the pion BS amplitude will be built relying on 
the pseudoscalar vertex component, which is directly associated 
to the quark mass function, as dictated by the dynamical chiral 
symmetry breaking requirements in the limit of vanishing current 
quark mass, due to the axial-vector Ward–Takahashi identity (see 
e.g. [6]). Furthermore, the Nakanishi integral representation of the 
pion Bethe–Salpeter amplitude considering the running quark mass 
will be derived, which generalizes the model proposed in [36]. 
The performance of the ansatz is tested against the experimen-
tal data for the pion decay constant and space-like electromag-

netic form factor, and the quark electromagnetic current will be 
derived constrained by the Ward–Takahashi identity to ensure cur-
rent conservation. The proposed ansatz goes beyond previous pion 
BS amplitude models [30,31,35,56,57] by taking into account the 
quark self-energy in the fermion–antifermion–pion vertex and in 
the quark propagators. We believe that improvement is important 
for further applications to compute Minkowski space observables 
associated to the pion light-front wave function, as the generalized 
parton distributions [36] and the transverse pion structure [24,58].

2. Quark model propagator

In general the quark propagator can be written as:

S F (k) = ı Z(k2)
[
/k − M(k2) + ıϵ

]−1
(1)

and it is gauge dependent, while the observables we computed 
are not. In addition, the dynamical mass function M(k2) is 
renormalization-point-independent (see e.g. [53]).

Our model is built to fit the quark propagator in the space-like 
region obtained from Lattice QCD calculations in the Landau gauge 
[37]. This choice is quite popular as it is a smooth gauge in the 
sense that preserves the Lorentz invariance of QCD. The lattice cal-
culations from [37] have two degenerate light u and d quarks and 
a heavier one for the strange quark. This simulation used config-
urations from an improved staggered “Asqtad” action at β = 7.09, 
and our fit uses the result closest to the chiral limit among the 
light bare-quark mass calculations. As a simplification, we do not 
consider the momentum dependence of the quark wave function 
renormalization factor, Z(k2) = 1, and the adopted dressed quark 
propagator is

S F (k) = ı
[
/k − M(k2) + ıϵ

]−1
. (2)

This ansatz suggested long ago [59–62] simplifies our calculations 
of the pion electroweak observables in Minkowski space. We note 
that Lattice QCD results [37] shows some momentum dependence 
in Z(k2), that has a value of about 0.7 close to k2 = 0. In addition 
we use the following mass function parametrization,

M(k2) =m0 −m3
[
k2 − λ2 + iϵ

]−1
, (3)

already applied to fit Lattice QCD calculations [52]. The parameters 
of the running mass function are given by

m0 = 0.014 GeV, m = 0.574 GeV and λ = 0.846 GeV, (4)

which are close to the ones used in [52]. The parameters we use 
fit the experimental pion charge radius and provides fπ close to 
the experimental value, as we will present in our result section. 
The running quark mass function with our choice of parameters is 
shown in Fig. 1 and compared to Lattice QCD calculations [37]. We 
observe that our results are quite close to the lattice results con-
sidering the attributed errors. For comparison we also show the fit 
given in Ref. [51], with a more sophisticated parametrization in-
cluding log’s, which in the present model we didn’t consider with 
the sake to simplify the loop integrations in Minkowski space as-
sociated with the pion electroweak observables.

The model has quark propagator poles for m2
i = M2(m2

i ) (i la-
bels the pole position), which are given by solving the cubic equa-
tions:

mi

(
m2

i − λ2
)

= ±
[
m0

(
m2

i − λ2
)

−m3
]

, (5)

which allows to factorize the denominator of the quark model 
propagator as
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S F (k) = ı

(
k2 − λ2)2 (/k +m0) −

(
k2 − λ2) m3

∏
i=1,3(k

2 −m2
i + ıϵ)

. (6)

With the parameters given above, the poles are real and placed 
at the values of m1 = 0.327 GeV, m2 = 0.644 GeV and m3 =
0.954 GeV. Although the quark model propagator has real poles, 
and m1 resembles the constituent mass, or alternatively
M(k2 = 0) = m0 + m3/λ2 = 0.278 GeV. It is worthwhile to stress 
that quark confinement is associated with the absence of asymp-
totic states of free quarks in QCD. Such physics is suggested to be 
expressed as pair of poles of the quark propagator that have mi-
grated to the complex plane (see e.g. the review [6]). Despite of 
that, we will proceed with this simplified model, which is quite 
practical for building the pion observables in Minkowski space, 
namely the loop integrations associated with the observables are 
easily performed analytically.

The fermion propagator can be written as

S F (k) = ı
[
A(k2) /k + B(k2)

]
. (7)

The spectral decomposition [41]:

A(k2) =
∞∫

0

dµ2 ρA(µ2)

k2 − µ2 + ıε
and B(k2) =

∞∫

0

dµ2 ρB(µ2)

k2 − µ2 + ıε

(8)

where the spectral densities are:

ρA(µ2) = − 1
π

Im [A(µ2)] and ρB(µ
2) = − 1

π
Im [B(µ2)] (9)

For a particle that belongs to the S-matrix representation, which 
is an observable state, the Källén–Lehmann (KL) spectral densities 
satisfy the positivity constraints [41]:

Pa = ρA(µ2) ≥ 0 and Pb = µρA(µ2) − ρB(µ
2) ≥ 0 . (10)

The quark is a non-singlet color state and it is not an observable 
asymptotic state belonging to the S-matrix representation. Thus, 
there is no guarantee that the quark propagator should have a KL 
representation. If it will be possible to have one, it might violate 
the positivity constraints for the spectral density. However, this is 
not a simple issue as the positivity violation is a sufficient but not 
necessary condition for quark confinement (see e.g. [54]). Then, 
positivity violation associated with the quark propagator may not 
be equivalent to confinement, which is a subtle property to de-
fine in presence of dynamical quarks [55]. In addition, the issue 
of physical or nonphysical asymptotic states must be associated 
with the gauge-singlet properties of the object, that excludes of 
course the quarks as being an observable state. In this context, 
we warn the reader that, our phenomenological model does not 
explicitly resolve the issue of quark confinement, like e.g. the con-
fining force between the quark-antiquark, beyond the observation 
that the quark spectral density in the present case is not posi-
tive definite, as we are going to show. A similar quark propagator 
model, proposed recently, violates the reflection positivity and was 
associated to quarks degrees of freedom out of the physical spec-
trum [52]. The detailed discussion presented in this reference is 
particularly illuminating on that point. We can add the example 
of the gluon propagator obtained from Lattice QCD calculations in 
the Landau gauge, which exhibits the violation of the positivity 
constraint in the KL representation [43].

For our model we can compute easily the spectral densities by 
decomposing, the quark model propagator (6), first in partial frac-
tions as:

A(k2) = H2(m1,m2,m3)

k2 −m2
1 + ıϵ

+ H2(m2,m1,m3)

k2 −m2
2 + ıϵ

+ H2(m3,m2,m1)

k2 −m2
3 + ıϵ

(11)

and

B(k2) = H1(m1,m2,m3)

k2 −m2
1 + ıϵ

+ H1(m2,m1,m3)

k2 −m2
2 + ıϵ

+ H1(m3,m2,m1)

k2 −m2
3 + ıϵ

+m0 A(k2) (12)

where

Hn(m1,m2,m3) = (−m3)2−n(m2
1 − λ2)n

(m2
1 −m2

2)(m
2
1 −m2

3)
(13)

which leads easily leads to:

ρA(µ2) = H2(m1,m2,m3) δ
(
µ2 −m2

1

)

+ H2(m2,m1,m3) δ
(
µ2 −m2

2

)

+ H2(m3,m2,m1) δ
(
µ2 −m2

3

)
(14)

and

ρB(µ
2) = H1(m1,m2,m3) δ

(
µ2 −m2

1

)

+ H1(m2,m1,m3) δ
(
µ2 −m2

2

)

+ H1(m3,m2,m1) δ
(
µ2 −m2

3

)
+m0 ρA(µ2) (15)

The constraints in (10) are translated to the coefficients of the 
delta functions, which using (14) and (15) are given by:

Pδ
a (m1,m2,m3) = H2(m1,m2,m3) and

Pδ
b (m1,m2,m3) = H1(m1,m2,m3) +m0 H2(m1,m2,m3) . (16)

As m1 < m2 < m3, one has that Pδ
a (m2, m1, m3) < 0 and

ρA(µ2)|µ2=m2
2

< 0. The actual values are Pδ
a (m1, m2, m3) = 1.49, 

Pδ
a (m2, m1, m3) = −0.580 and Pδ

a (m3, m2, m1) = 0.095.
The other positivity constraint from (10), translated into the co-

efficients of the delta functions turns to be:

Pδ
b (m1,m2,m3) = − (λ2 −m2

1)(m
3 + (m0 −m1)(λ

2 −m2
1))

(m2
1 −m2

2)(m
2
1 −m2

3)
.

(17)

The formula above has to be calculated for each one of the three 
poles of the quark propagators, namely m1, m1 ↔ m2 and m1 ↔
m3. Taking into account the actual values of the poles and param-
eters it results: Pδ

b (m1, m2, m3) ∼ −0.001, Pδ
b (m2, m1, m3) ∼ 0.001

and Pδ
b (m3, m2, m1) = 0.183. In short, we found that the model vi-

olates the positivity constraints for the spectral density and we are 
satisfied by that as the color non-singlet quark cannot be a physi-
cal state.

3. Pion Bethe–Salpeter amplitude model

The pion is a isovector pseudoscalar meson composed mainly 
by a constituent quark and antiquark, i.e., |u ̄d⟩ state with total 
spin zero and negative parity. The key ingredient of the model is 
the chiral limit where the current quark mass vanishes and the 
self-energy is related to the pion BS vertex.

The pion-quark-antiquark vertex denoted by 'π (k, P ) is the 
quark-antiquark-meson BSA with external quark legs removed. In 
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and Pδ
b (m3, m2, m1) = 0.183. In short, we found that the model vi-

olates the positivity constraints for the spectral density and we are 
satisfied by that as the color non-singlet quark cannot be a physi-
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spin zero and negative parity. The key ingredient of the model is 
the chiral limit where the current quark mass vanishes and the 
self-energy is related to the pion BS vertex.
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quark-antiquark-meson BSA with external quark legs removed. In 

88 C.S. Mello et al. / Physics Letters B 766 (2017) 86–93

S F (k) = ı

(
k2 − λ2)2 (/k +m0) −

(
k2 − λ2) m3

∏
i=1,3(k

2 −m2
i + ıϵ)

. (6)

With the parameters given above, the poles are real and placed 
at the values of m1 = 0.327 GeV, m2 = 0.644 GeV and m3 =
0.954 GeV. Although the quark model propagator has real poles, 
and m1 resembles the constituent mass, or alternatively
M(k2 = 0) = m0 + m3/λ2 = 0.278 GeV. It is worthwhile to stress 
that quark confinement is associated with the absence of asymp-
totic states of free quarks in QCD. Such physics is suggested to be 
expressed as pair of poles of the quark propagator that have mi-
grated to the complex plane (see e.g. the review [6]). Despite of 
that, we will proceed with this simplified model, which is quite 
practical for building the pion observables in Minkowski space, 
namely the loop integrations associated with the observables are 
easily performed analytically.
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the Landau gauge, which exhibits the violation of the positivity 
constraint in the KL representation [43].

For our model we can compute easily the spectral densities by 
decomposing, the quark model propagator (6), first in partial frac-
tions as:

A(k2) = H2(m1,m2,m3)

k2 −m2
1 + ıϵ

+ H2(m2,m1,m3)

k2 −m2
2 + ıϵ

+ H2(m3,m2,m1)

k2 −m2
3 + ıϵ

(11)

and

B(k2) = H1(m1,m2,m3)

k2 −m2
1 + ıϵ

+ H1(m2,m1,m3)

k2 −m2
2 + ıϵ

+ H1(m3,m2,m1)

k2 −m2
3 + ıϵ

+m0 A(k2) (12)

where

Hn(m1,m2,m3) = (−m3)2−n(m2
1 − λ2)n

(m2
1 −m2

2)(m
2
1 −m2

3)
(13)

which leads easily leads to:

ρA(µ2) = H2(m1,m2,m3) δ
(
µ2 −m2

1

)

+ H2(m2,m1,m3) δ
(
µ2 −m2

2

)

+ H2(m3,m2,m1) δ
(
µ2 −m2

3

)
(14)

and

ρB(µ
2) = H1(m1,m2,m3) δ

(
µ2 −m2

1

)

+ H1(m2,m1,m3) δ
(
µ2 −m2

2

)

+ H1(m3,m2,m1) δ
(
µ2 −m2

3

)
+m0 ρA(µ2) (15)

The constraints in (10) are translated to the coefficients of the 
delta functions, which using (14) and (15) are given by:

Pδ
a (m1,m2,m3) = H2(m1,m2,m3) and

Pδ
b (m1,m2,m3) = H1(m1,m2,m3) +m0 H2(m1,m2,m3) . (16)

As m1 < m2 < m3, one has that Pδ
a (m2, m1, m3) < 0 and

ρA(µ2)|µ2=m2
2

< 0. The actual values are Pδ
a (m1, m2, m3) = 1.49, 

Pδ
a (m2, m1, m3) = −0.580 and Pδ

a (m3, m2, m1) = 0.095.
The other positivity constraint from (10), translated into the co-

efficients of the delta functions turns to be:

Pδ
b (m1,m2,m3) = − (λ2 −m2

1)(m
3 + (m0 −m1)(λ

2 −m2
1))

(m2
1 −m2

2)(m
2
1 −m2

3)
.

(17)

The formula above has to be calculated for each one of the three 
poles of the quark propagators, namely m1, m1 ↔ m2 and m1 ↔
m3. Taking into account the actual values of the poles and param-
eters it results: Pδ

b (m1, m2, m3) ∼ −0.001, Pδ
b (m2, m1, m3) ∼ 0.001

and Pδ
b (m3, m2, m1) = 0.183. In short, we found that the model vi-

olates the positivity constraints for the spectral density and we are 
satisfied by that as the color non-singlet quark cannot be a physi-
cal state.

3. Pion Bethe–Salpeter amplitude model

The pion is a isovector pseudoscalar meson composed mainly 
by a constituent quark and antiquark, i.e., |u ̄d⟩ state with total 
spin zero and negative parity. The key ingredient of the model is 
the chiral limit where the current quark mass vanishes and the 
self-energy is related to the pion BS vertex.

The pion-quark-antiquark vertex denoted by 'π (k, P ) is the 
quark-antiquark-meson BSA with external quark legs removed. In 

88 C.S. Mello et al. / Physics Letters B 766 (2017) 86–93

S F (k) = ı

(
k2 − λ2)2 (/k +m0) −

(
k2 − λ2) m3

∏
i=1,3(k

2 −m2
i + ıϵ)

. (6)

With the parameters given above, the poles are real and placed 
at the values of m1 = 0.327 GeV, m2 = 0.644 GeV and m3 =
0.954 GeV. Although the quark model propagator has real poles, 
and m1 resembles the constituent mass, or alternatively
M(k2 = 0) = m0 + m3/λ2 = 0.278 GeV. It is worthwhile to stress 
that quark confinement is associated with the absence of asymp-
totic states of free quarks in QCD. Such physics is suggested to be 
expressed as pair of poles of the quark propagator that have mi-
grated to the complex plane (see e.g. the review [6]). Despite of 
that, we will proceed with this simplified model, which is quite 
practical for building the pion observables in Minkowski space, 
namely the loop integrations associated with the observables are 
easily performed analytically.

The fermion propagator can be written as

S F (k) = ı
[
A(k2) /k + B(k2)

]
. (7)

The spectral decomposition [41]:

A(k2) =
∞∫

0

dµ2 ρA(µ2)

k2 − µ2 + ıε
and B(k2) =

∞∫

0

dµ2 ρB(µ2)

k2 − µ2 + ıε

(8)

where the spectral densities are:

ρA(µ2) = − 1
π

Im [A(µ2)] and ρB(µ
2) = − 1

π
Im [B(µ2)] (9)

For a particle that belongs to the S-matrix representation, which 
is an observable state, the Källén–Lehmann (KL) spectral densities 
satisfy the positivity constraints [41]:

Pa = ρA(µ2) ≥ 0 and Pb = µρA(µ2) − ρB(µ
2) ≥ 0 . (10)

The quark is a non-singlet color state and it is not an observable 
asymptotic state belonging to the S-matrix representation. Thus, 
there is no guarantee that the quark propagator should have a KL 
representation. If it will be possible to have one, it might violate 
the positivity constraints for the spectral density. However, this is 
not a simple issue as the positivity violation is a sufficient but not 
necessary condition for quark confinement (see e.g. [54]). Then, 
positivity violation associated with the quark propagator may not 
be equivalent to confinement, which is a subtle property to de-
fine in presence of dynamical quarks [55]. In addition, the issue 
of physical or nonphysical asymptotic states must be associated 
with the gauge-singlet properties of the object, that excludes of 
course the quarks as being an observable state. In this context, 
we warn the reader that, our phenomenological model does not 
explicitly resolve the issue of quark confinement, like e.g. the con-
fining force between the quark-antiquark, beyond the observation 
that the quark spectral density in the present case is not posi-
tive definite, as we are going to show. A similar quark propagator 
model, proposed recently, violates the reflection positivity and was 
associated to quarks degrees of freedom out of the physical spec-
trum [52]. The detailed discussion presented in this reference is 
particularly illuminating on that point. We can add the example 
of the gluon propagator obtained from Lattice QCD calculations in 
the Landau gauge, which exhibits the violation of the positivity 
constraint in the KL representation [43].

For our model we can compute easily the spectral densities by 
decomposing, the quark model propagator (6), first in partial frac-
tions as:

A(k2) = H2(m1,m2,m3)

k2 −m2
1 + ıϵ

+ H2(m2,m1,m3)

k2 −m2
2 + ıϵ

+ H2(m3,m2,m1)

k2 −m2
3 + ıϵ

(11)

and

B(k2) = H1(m1,m2,m3)

k2 −m2
1 + ıϵ

+ H1(m2,m1,m3)

k2 −m2
2 + ıϵ

+ H1(m3,m2,m1)

k2 −m2
3 + ıϵ

+m0 A(k2) (12)

where

Hn(m1,m2,m3) = (−m3)2−n(m2
1 − λ2)n

(m2
1 −m2

2)(m
2
1 −m2

3)
(13)

which leads easily leads to:

ρA(µ2) = H2(m1,m2,m3) δ
(
µ2 −m2

1

)

+ H2(m2,m1,m3) δ
(
µ2 −m2

2

)

+ H2(m3,m2,m1) δ
(
µ2 −m2

3

)
(14)

and

ρB(µ
2) = H1(m1,m2,m3) δ

(
µ2 −m2

1

)

+ H1(m2,m1,m3) δ
(
µ2 −m2

2

)

+ H1(m3,m2,m1) δ
(
µ2 −m2

3

)
+m0 ρA(µ2) (15)

The constraints in (10) are translated to the coefficients of the 
delta functions, which using (14) and (15) are given by:

Pδ
a (m1,m2,m3) = H2(m1,m2,m3) and

Pδ
b (m1,m2,m3) = H1(m1,m2,m3) +m0 H2(m1,m2,m3) . (16)

As m1 < m2 < m3, one has that Pδ
a (m2, m1, m3) < 0 and

ρA(µ2)|µ2=m2
2

< 0. The actual values are Pδ
a (m1, m2, m3) = 1.49, 

Pδ
a (m2, m1, m3) = −0.580 and Pδ

a (m3, m2, m1) = 0.095.
The other positivity constraint from (10), translated into the co-

efficients of the delta functions turns to be:

Pδ
b (m1,m2,m3) = − (λ2 −m2

1)(m
3 + (m0 −m1)(λ

2 −m2
1))

(m2
1 −m2

2)(m
2
1 −m2

3)
.

(17)

The formula above has to be calculated for each one of the three 
poles of the quark propagators, namely m1, m1 ↔ m2 and m1 ↔
m3. Taking into account the actual values of the poles and param-
eters it results: Pδ

b (m1, m2, m3) ∼ −0.001, Pδ
b (m2, m1, m3) ∼ 0.001

and Pδ
b (m3, m2, m1) = 0.183. In short, we found that the model vi-

olates the positivity constraints for the spectral density and we are 
satisfied by that as the color non-singlet quark cannot be a physi-
cal state.

3. Pion Bethe–Salpeter amplitude model

The pion is a isovector pseudoscalar meson composed mainly 
by a constituent quark and antiquark, i.e., |u ̄d⟩ state with total 
spin zero and negative parity. The key ingredient of the model is 
the chiral limit where the current quark mass vanishes and the 
self-energy is related to the pion BS vertex.

The pion-quark-antiquark vertex denoted by 'π (k, P ) is the 
quark-antiquark-meson BSA with external quark legs removed. In 

88 C.S. Mello et al. / Physics Letters B 766 (2017) 86–93

S F (k) = ı

(
k2 − λ2)2 (/k +m0) −

(
k2 − λ2) m3

∏
i=1,3(k

2 −m2
i + ıϵ)

. (6)

With the parameters given above, the poles are real and placed 
at the values of m1 = 0.327 GeV, m2 = 0.644 GeV and m3 =
0.954 GeV. Although the quark model propagator has real poles, 
and m1 resembles the constituent mass, or alternatively
M(k2 = 0) = m0 + m3/λ2 = 0.278 GeV. It is worthwhile to stress 
that quark confinement is associated with the absence of asymp-
totic states of free quarks in QCD. Such physics is suggested to be 
expressed as pair of poles of the quark propagator that have mi-
grated to the complex plane (see e.g. the review [6]). Despite of 
that, we will proceed with this simplified model, which is quite 
practical for building the pion observables in Minkowski space, 
namely the loop integrations associated with the observables are 
easily performed analytically.

The fermion propagator can be written as

S F (k) = ı
[
A(k2) /k + B(k2)

]
. (7)

The spectral decomposition [41]:

A(k2) =
∞∫

0

dµ2 ρA(µ2)

k2 − µ2 + ıε
and B(k2) =

∞∫

0

dµ2 ρB(µ2)

k2 − µ2 + ıε

(8)

where the spectral densities are:

ρA(µ2) = − 1
π

Im [A(µ2)] and ρB(µ
2) = − 1

π
Im [B(µ2)] (9)

For a particle that belongs to the S-matrix representation, which 
is an observable state, the Källén–Lehmann (KL) spectral densities 
satisfy the positivity constraints [41]:

Pa = ρA(µ2) ≥ 0 and Pb = µρA(µ2) − ρB(µ
2) ≥ 0 . (10)

The quark is a non-singlet color state and it is not an observable 
asymptotic state belonging to the S-matrix representation. Thus, 
there is no guarantee that the quark propagator should have a KL 
representation. If it will be possible to have one, it might violate 
the positivity constraints for the spectral density. However, this is 
not a simple issue as the positivity violation is a sufficient but not 
necessary condition for quark confinement (see e.g. [54]). Then, 
positivity violation associated with the quark propagator may not 
be equivalent to confinement, which is a subtle property to de-
fine in presence of dynamical quarks [55]. In addition, the issue 
of physical or nonphysical asymptotic states must be associated 
with the gauge-singlet properties of the object, that excludes of 
course the quarks as being an observable state. In this context, 
we warn the reader that, our phenomenological model does not 
explicitly resolve the issue of quark confinement, like e.g. the con-
fining force between the quark-antiquark, beyond the observation 
that the quark spectral density in the present case is not posi-
tive definite, as we are going to show. A similar quark propagator 
model, proposed recently, violates the reflection positivity and was 
associated to quarks degrees of freedom out of the physical spec-
trum [52]. The detailed discussion presented in this reference is 
particularly illuminating on that point. We can add the example 
of the gluon propagator obtained from Lattice QCD calculations in 
the Landau gauge, which exhibits the violation of the positivity 
constraint in the KL representation [43].

For our model we can compute easily the spectral densities by 
decomposing, the quark model propagator (6), first in partial frac-
tions as:

A(k2) = H2(m1,m2,m3)

k2 −m2
1 + ıϵ

+ H2(m2,m1,m3)

k2 −m2
2 + ıϵ

+ H2(m3,m2,m1)

k2 −m2
3 + ıϵ

(11)

and

B(k2) = H1(m1,m2,m3)

k2 −m2
1 + ıϵ

+ H1(m2,m1,m3)

k2 −m2
2 + ıϵ

+ H1(m3,m2,m1)

k2 −m2
3 + ıϵ

+m0 A(k2) (12)

where

Hn(m1,m2,m3) = (−m3)2−n(m2
1 − λ2)n

(m2
1 −m2

2)(m
2
1 −m2

3)
(13)

which leads easily leads to:

ρA(µ2) = H2(m1,m2,m3) δ
(
µ2 −m2

1

)

+ H2(m2,m1,m3) δ
(
µ2 −m2

2

)

+ H2(m3,m2,m1) δ
(
µ2 −m2

3

)
(14)

and

ρB(µ
2) = H1(m1,m2,m3) δ

(
µ2 −m2

1

)

+ H1(m2,m1,m3) δ
(
µ2 −m2

2

)

+ H1(m3,m2,m1) δ
(
µ2 −m2

3

)
+m0 ρA(µ2) (15)

The constraints in (10) are translated to the coefficients of the 
delta functions, which using (14) and (15) are given by:

Pδ
a (m1,m2,m3) = H2(m1,m2,m3) and

Pδ
b (m1,m2,m3) = H1(m1,m2,m3) +m0 H2(m1,m2,m3) . (16)

As m1 < m2 < m3, one has that Pδ
a (m2, m1, m3) < 0 and

ρA(µ2)|µ2=m2
2

< 0. The actual values are Pδ
a (m1, m2, m3) = 1.49, 

Pδ
a (m2, m1, m3) = −0.580 and Pδ

a (m3, m2, m1) = 0.095.
The other positivity constraint from (10), translated into the co-

efficients of the delta functions turns to be:

Pδ
b (m1,m2,m3) = − (λ2 −m2

1)(m
3 + (m0 −m1)(λ

2 −m2
1))

(m2
1 −m2

2)(m
2
1 −m2

3)
.

(17)

The formula above has to be calculated for each one of the three 
poles of the quark propagators, namely m1, m1 ↔ m2 and m1 ↔
m3. Taking into account the actual values of the poles and param-
eters it results: Pδ

b (m1, m2, m3) ∼ −0.001, Pδ
b (m2, m1, m3) ∼ 0.001

and Pδ
b (m3, m2, m1) = 0.183. In short, we found that the model vi-

olates the positivity constraints for the spectral density and we are 
satisfied by that as the color non-singlet quark cannot be a physi-
cal state.

3. Pion Bethe–Salpeter amplitude model

The pion is a isovector pseudoscalar meson composed mainly 
by a constituent quark and antiquark, i.e., |u ̄d⟩ state with total 
spin zero and negative parity. The key ingredient of the model is 
the chiral limit where the current quark mass vanishes and the 
self-energy is related to the pion BS vertex.

The pion-quark-antiquark vertex denoted by 'π (k, P ) is the 
quark-antiquark-meson BSA with external quark legs removed. In 

C.S. Mello et al. / Physics Letters B 766 (2017) 86–93 87

dom starting from an analytical form of the Bethe–Salpeter (BS) 
amplitude and with the Mandelstam formula compute the electro-
magnetic form factors, like in the case of the ρ-meson [27–29], 
for pseudoscalar mesons (see e.g. [30–33]), transition form fac-
tors between pseudoscalar and vector mesons [34] and generalized 
parton distributions [35,36]. A common feature of these models is 
a constituent quark mass independent of the momentum. On the 
other hand, Euclidean Lattice QCD calculations predict for the light 
quarks a running self-energy with momentum, which at infrared 
scales gives a value compatible with the constituent quark mass 
of about 0.3 GeV. Therefore, phenomenological models defined in 
Minkowski space could profit from using a running quark mass, 
with the proviso that it should be consistent with the ab-initio 
lattice QCD calculations on the Euclidean space for space-like mo-
mentum [37]. Progress in building the bridge between Euclidean 
and Minkowski space calculations have been achieved recently, 
namely, the pion light-front wave function was found from the dy-
namical chiral symmetry breaking [38], the distribution amplitude 
from lattice QCD results [39] and the pion electromagnetic form 
factor on the entire domain of space-like momentum transfer us-
ing the Dyson–Schwinger equation framework applied to QCD [40].

From the general point of view, integral representations of the 
two and three-point functions, i.e. the Källén–Lehmann spectral 
representation [41] and the Nakanishi integral representation [42]
respectively, are an useful tool to enlarge the applicability of Eu-
clidean calculations, like the ones obtained in lattice QCD to built 
the Minkowski space amplitudes. Indeed, recently it was used the 
Källén–Lehmann (KL) representation to obtain the spectral den-
sity from the lattice QCD gluon propagator in the space-like region 
through the solution of an ill-posed problem [43]. It was checked 
that the violation of the positivity constraint of the spectral density 
happens and the absence of gluons from the asymptotic spectrum 
of the theory. Similar conclusion was already found from the solu-
tion of Dyson–Schwinger equations for the gluon propagator [44]. 
With respect to the BS amplitude, the Nakanishi integral represen-
tation (NIR) allied to the light-front projection was applied to solve 
nonperturbative problems in the Minkowski space, as the bound 
state solution of the BS equation in scalar models [45,46], for two 
fermions [47] and the scattering [48,49]. It was also used to inves-
tigate the bound-state structure in Minkowski space starting from 
the BS amplitude [50], where in particular the analytic extension 
of the integral representation to the Euclidean space was carefully 
checked. It would be desirable to perform the study of hadron 
structure using the Nakanishi representation of the BS amplitude 
by extending Euclidean calculations to the Minkowski space with 
a gain in the understanding of the associated observables.

In this work, we focus on the pion structure in Minkowski space 
described in terms of an analytic model of the Bethe–Salpeter am-
plitude combined with Euclidean Lattice QCD results. The model 
takes into account the running quark mass, which will be fitted 
to Lattice QCD data for space-like momentum in the Landau gauge 
[37]. The mass function ansatz has a single pole form added to 
the current quark mass (see e.g. [51,52]), from that we build the 
quark propagator, which is analyzed through the KL spectral rep-
resentation and we will show that the positivity constraints are 
violated. After that, the pion BS amplitude will be built relying on 
the pseudoscalar vertex component, which is directly associated 
to the quark mass function, as dictated by the dynamical chiral 
symmetry breaking requirements in the limit of vanishing current 
quark mass, due to the axial-vector Ward–Takahashi identity (see 
e.g. [6]). Furthermore, the Nakanishi integral representation of the 
pion Bethe–Salpeter amplitude considering the running quark mass 
will be derived, which generalizes the model proposed in [36]. 
The performance of the ansatz is tested against the experimen-
tal data for the pion decay constant and space-like electromag-

netic form factor, and the quark electromagnetic current will be 
derived constrained by the Ward–Takahashi identity to ensure cur-
rent conservation. The proposed ansatz goes beyond previous pion 
BS amplitude models [30,31,35,56,57] by taking into account the 
quark self-energy in the fermion–antifermion–pion vertex and in 
the quark propagators. We believe that improvement is important 
for further applications to compute Minkowski space observables 
associated to the pion light-front wave function, as the generalized 
parton distributions [36] and the transverse pion structure [24,58].

2. Quark model propagator

In general the quark propagator can be written as:
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[
/k − M(k2) + ıϵ

]−1
(1)
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[
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]−1
. (2)
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i = M2(m2

i ) (i la-
bels the pole position), which are given by solving the cubic equa-
tions:

mi

(
m2

i − λ2
)

= ±
[
m0

(
m2

i − λ2
)

−m3
]

, (5)

which allows to factorize the denominator of the quark model 
propagator as
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S F (k) = ı

(
k2 − λ2)2 (/k +m0) −

(
k2 − λ2) m3

∏
i=1,3(k

2 −m2
i + ıϵ)

. (6)

With the parameters given above, the poles are real and placed 
at the values of m1 = 0.327 GeV, m2 = 0.644 GeV and m3 =
0.954 GeV. Although the quark model propagator has real poles, 
and m1 resembles the constituent mass, or alternatively
M(k2 = 0) = m0 + m3/λ2 = 0.278 GeV. It is worthwhile to stress 
that quark confinement is associated with the absence of asymp-
totic states of free quarks in QCD. Such physics is suggested to be 
expressed as pair of poles of the quark propagator that have mi-
grated to the complex plane (see e.g. the review [6]). Despite of 
that, we will proceed with this simplified model, which is quite 
practical for building the pion observables in Minkowski space, 
namely the loop integrations associated with the observables are 
easily performed analytically.

The fermion propagator can be written as

S F (k) = ı
[
A(k2) /k + B(k2)

]
. (7)

The spectral decomposition [41]:

A(k2) =
∞∫

0

dµ2 ρA(µ2)

k2 − µ2 + ıε
and B(k2) =

∞∫

0

dµ2 ρB(µ2)

k2 − µ2 + ıε

(8)

where the spectral densities are:

ρA(µ2) = − 1
π

Im [A(µ2)] and ρB(µ
2) = − 1

π
Im [B(µ2)] (9)

For a particle that belongs to the S-matrix representation, which 
is an observable state, the Källén–Lehmann (KL) spectral densities 
satisfy the positivity constraints [41]:

Pa = ρA(µ2) ≥ 0 and Pb = µρA(µ2) − ρB(µ
2) ≥ 0 . (10)

The quark is a non-singlet color state and it is not an observable 
asymptotic state belonging to the S-matrix representation. Thus, 
there is no guarantee that the quark propagator should have a KL 
representation. If it will be possible to have one, it might violate 
the positivity constraints for the spectral density. However, this is 
not a simple issue as the positivity violation is a sufficient but not 
necessary condition for quark confinement (see e.g. [54]). Then, 
positivity violation associated with the quark propagator may not 
be equivalent to confinement, which is a subtle property to de-
fine in presence of dynamical quarks [55]. In addition, the issue 
of physical or nonphysical asymptotic states must be associated 
with the gauge-singlet properties of the object, that excludes of 
course the quarks as being an observable state. In this context, 
we warn the reader that, our phenomenological model does not 
explicitly resolve the issue of quark confinement, like e.g. the con-
fining force between the quark-antiquark, beyond the observation 
that the quark spectral density in the present case is not posi-
tive definite, as we are going to show. A similar quark propagator 
model, proposed recently, violates the reflection positivity and was 
associated to quarks degrees of freedom out of the physical spec-
trum [52]. The detailed discussion presented in this reference is 
particularly illuminating on that point. We can add the example 
of the gluon propagator obtained from Lattice QCD calculations in 
the Landau gauge, which exhibits the violation of the positivity 
constraint in the KL representation [43].

For our model we can compute easily the spectral densities by 
decomposing, the quark model propagator (6), first in partial frac-
tions as:

A(k2) = H2(m1,m2,m3)

k2 −m2
1 + ıϵ

+ H2(m2,m1,m3)

k2 −m2
2 + ıϵ

+ H2(m3,m2,m1)

k2 −m2
3 + ıϵ

(11)

and

B(k2) = H1(m1,m2,m3)

k2 −m2
1 + ıϵ

+ H1(m2,m1,m3)

k2 −m2
2 + ıϵ

+ H1(m3,m2,m1)

k2 −m2
3 + ıϵ

+m0 A(k2) (12)

where

Hn(m1,m2,m3) = (−m3)2−n(m2
1 − λ2)n

(m2
1 −m2

2)(m
2
1 −m2

3)
(13)

which leads easily leads to:

ρA(µ2) = H2(m1,m2,m3) δ
(
µ2 −m2

1

)

+ H2(m2,m1,m3) δ
(
µ2 −m2

2

)

+ H2(m3,m2,m1) δ
(
µ2 −m2

3

)
(14)

and

ρB(µ
2) = H1(m1,m2,m3) δ

(
µ2 −m2

1

)

+ H1(m2,m1,m3) δ
(
µ2 −m2

2

)

+ H1(m3,m2,m1) δ
(
µ2 −m2

3

)
+m0 ρA(µ2) (15)

The constraints in (10) are translated to the coefficients of the 
delta functions, which using (14) and (15) are given by:

Pδ
a (m1,m2,m3) = H2(m1,m2,m3) and

Pδ
b (m1,m2,m3) = H1(m1,m2,m3) +m0 H2(m1,m2,m3) . (16)

As m1 < m2 < m3, one has that Pδ
a (m2, m1, m3) < 0 and

ρA(µ2)|µ2=m2
2

< 0. The actual values are Pδ
a (m1, m2, m3) = 1.49, 

Pδ
a (m2, m1, m3) = −0.580 and Pδ

a (m3, m2, m1) = 0.095.
The other positivity constraint from (10), translated into the co-

efficients of the delta functions turns to be:

Pδ
b (m1,m2,m3) = − (λ2 −m2

1)(m
3 + (m0 −m1)(λ

2 −m2
1))

(m2
1 −m2

2)(m
2
1 −m2

3)
.

(17)

The formula above has to be calculated for each one of the three 
poles of the quark propagators, namely m1, m1 ↔ m2 and m1 ↔
m3. Taking into account the actual values of the poles and param-
eters it results: Pδ

b (m1, m2, m3) ∼ −0.001, Pδ
b (m2, m1, m3) ∼ 0.001

and Pδ
b (m3, m2, m1) = 0.183. In short, we found that the model vi-

olates the positivity constraints for the spectral density and we are 
satisfied by that as the color non-singlet quark cannot be a physi-
cal state.

3. Pion Bethe–Salpeter amplitude model

The pion is a isovector pseudoscalar meson composed mainly 
by a constituent quark and antiquark, i.e., |u ̄d⟩ state with total 
spin zero and negative parity. The key ingredient of the model is 
the chiral limit where the current quark mass vanishes and the 
self-energy is related to the pion BS vertex.

The pion-quark-antiquark vertex denoted by 'π (k, P ) is the 
quark-antiquark-meson BSA with external quark legs removed. In 
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model, proposed recently, violates the reflection positivity and was 
associated to quarks degrees of freedom out of the physical spec-
trum [52]. The detailed discussion presented in this reference is 
particularly illuminating on that point. We can add the example 
of the gluon propagator obtained from Lattice QCD calculations in 
the Landau gauge, which exhibits the violation of the positivity 
constraint in the KL representation [43].

For our model we can compute easily the spectral densities by 
decomposing, the quark model propagator (6), first in partial frac-
tions as:
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The constraints in (10) are translated to the coefficients of the 
delta functions, which using (14) and (15) are given by:
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a (m1,m2,m3) = H2(m1,m2,m3) and

Pδ
b (m1,m2,m3) = H1(m1,m2,m3) +m0 H2(m1,m2,m3) . (16)

As m1 < m2 < m3, one has that Pδ
a (m2, m1, m3) < 0 and
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2

< 0. The actual values are Pδ
a (m1, m2, m3) = 1.49, 

Pδ
a (m2, m1, m3) = −0.580 and Pδ

a (m3, m2, m1) = 0.095.
The other positivity constraint from (10), translated into the co-
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The formula above has to be calculated for each one of the three 
poles of the quark propagators, namely m1, m1 ↔ m2 and m1 ↔
m3. Taking into account the actual values of the poles and param-
eters it results: Pδ

b (m1, m2, m3) ∼ −0.001, Pδ
b (m2, m1, m3) ∼ 0.001

and Pδ
b (m3, m2, m1) = 0.183. In short, we found that the model vi-

olates the positivity constraints for the spectral density and we are 
satisfied by that as the color non-singlet quark cannot be a physi-
cal state.

3. Pion Bethe–Salpeter amplitude model

The pion is a isovector pseudoscalar meson composed mainly 
by a constituent quark and antiquark, i.e., |u ̄d⟩ state with total 
spin zero and negative parity. The key ingredient of the model is 
the chiral limit where the current quark mass vanishes and the 
self-energy is related to the pion BS vertex.

The pion-quark-antiquark vertex denoted by 'π (k, P ) is the 
quark-antiquark-meson BSA with external quark legs removed. In 
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With the parameters given above, the poles are real and placed 
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and m1 resembles the constituent mass, or alternatively
M(k2 = 0) = m0 + m3/λ2 = 0.278 GeV. It is worthwhile to stress 
that quark confinement is associated with the absence of asymp-
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grated to the complex plane (see e.g. the review [6]). Despite of 
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practical for building the pion observables in Minkowski space, 
namely the loop integrations associated with the observables are 
easily performed analytically.

The fermion propagator can be written as

S F (k) = ı
[
A(k2) /k + B(k2)

]
. (7)

The spectral decomposition [41]:

A(k2) =
∞∫

0

dµ2 ρA(µ2)

k2 − µ2 + ıε
and B(k2) =

∞∫

0

dµ2 ρB(µ2)

k2 − µ2 + ıε

(8)

where the spectral densities are:

ρA(µ2) = − 1
π

Im [A(µ2)] and ρB(µ
2) = − 1

π
Im [B(µ2)] (9)

For a particle that belongs to the S-matrix representation, which 
is an observable state, the Källén–Lehmann (KL) spectral densities 
satisfy the positivity constraints [41]:

Pa = ρA(µ2) ≥ 0 and Pb = µρA(µ2) − ρB(µ
2) ≥ 0 . (10)

The quark is a non-singlet color state and it is not an observable 
asymptotic state belonging to the S-matrix representation. Thus, 
there is no guarantee that the quark propagator should have a KL 
representation. If it will be possible to have one, it might violate 
the positivity constraints for the spectral density. However, this is 
not a simple issue as the positivity violation is a sufficient but not 
necessary condition for quark confinement (see e.g. [54]). Then, 
positivity violation associated with the quark propagator may not 
be equivalent to confinement, which is a subtle property to de-
fine in presence of dynamical quarks [55]. In addition, the issue 
of physical or nonphysical asymptotic states must be associated 
with the gauge-singlet properties of the object, that excludes of 
course the quarks as being an observable state. In this context, 
we warn the reader that, our phenomenological model does not 
explicitly resolve the issue of quark confinement, like e.g. the con-
fining force between the quark-antiquark, beyond the observation 
that the quark spectral density in the present case is not posi-
tive definite, as we are going to show. A similar quark propagator 
model, proposed recently, violates the reflection positivity and was 
associated to quarks degrees of freedom out of the physical spec-
trum [52]. The detailed discussion presented in this reference is 
particularly illuminating on that point. We can add the example 
of the gluon propagator obtained from Lattice QCD calculations in 
the Landau gauge, which exhibits the violation of the positivity 
constraint in the KL representation [43].

For our model we can compute easily the spectral densities by 
decomposing, the quark model propagator (6), first in partial frac-
tions as:

A(k2) = H2(m1,m2,m3)
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1 + ıϵ
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The constraints in (10) are translated to the coefficients of the 
delta functions, which using (14) and (15) are given by:

Pδ
a (m1,m2,m3) = H2(m1,m2,m3) and

Pδ
b (m1,m2,m3) = H1(m1,m2,m3) +m0 H2(m1,m2,m3) . (16)

As m1 < m2 < m3, one has that Pδ
a (m2, m1, m3) < 0 and

ρA(µ2)|µ2=m2
2

< 0. The actual values are Pδ
a (m1, m2, m3) = 1.49, 

Pδ
a (m2, m1, m3) = −0.580 and Pδ

a (m3, m2, m1) = 0.095.
The other positivity constraint from (10), translated into the co-

efficients of the delta functions turns to be:

Pδ
b (m1,m2,m3) = − (λ2 −m2

1)(m
3 + (m0 −m1)(λ

2 −m2
1))
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1 −m2

2)(m
2
1 −m2

3)
.

(17)

The formula above has to be calculated for each one of the three 
poles of the quark propagators, namely m1, m1 ↔ m2 and m1 ↔
m3. Taking into account the actual values of the poles and param-
eters it results: Pδ

b (m1, m2, m3) ∼ −0.001, Pδ
b (m2, m1, m3) ∼ 0.001

and Pδ
b (m3, m2, m1) = 0.183. In short, we found that the model vi-

olates the positivity constraints for the spectral density and we are 
satisfied by that as the color non-singlet quark cannot be a physi-
cal state.

3. Pion Bethe–Salpeter amplitude model

The pion is a isovector pseudoscalar meson composed mainly 
by a constituent quark and antiquark, i.e., |u ̄d⟩ state with total 
spin zero and negative parity. The key ingredient of the model is 
the chiral limit where the current quark mass vanishes and the 
self-energy is related to the pion BS vertex.

The pion-quark-antiquark vertex denoted by 'π (k, P ) is the 
quark-antiquark-meson BSA with external quark legs removed. In 
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0.954 GeV. Although the quark model propagator has real poles, 
and m1 resembles the constituent mass, or alternatively
M(k2 = 0) = m0 + m3/λ2 = 0.278 GeV. It is worthwhile to stress 
that quark confinement is associated with the absence of asymp-
totic states of free quarks in QCD. Such physics is suggested to be 
expressed as pair of poles of the quark propagator that have mi-
grated to the complex plane (see e.g. the review [6]). Despite of 
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that the quark spectral density in the present case is not posi-
tive definite, as we are going to show. A similar quark propagator 
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satisfied by that as the color non-singlet quark cannot be a physi-
cal state.

3. Pion Bethe–Salpeter amplitude model

The pion is a isovector pseudoscalar meson composed mainly 
by a constituent quark and antiquark, i.e., |u ̄d⟩ state with total 
spin zero and negative parity. The key ingredient of the model is 
the chiral limit where the current quark mass vanishes and the 
self-energy is related to the pion BS vertex.

The pion-quark-antiquark vertex denoted by 'π (k, P ) is the 
quark-antiquark-meson BSA with external quark legs removed. In 
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The quark is a non-singlet color state and it is not an observable 
asymptotic state belonging to the S-matrix representation. Thus, 
there is no guarantee that the quark propagator should have a KL 
representation. If it will be possible to have one, it might violate 
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be equivalent to confinement, which is a subtle property to de-
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with the gauge-singlet properties of the object, that excludes of 
course the quarks as being an observable state. In this context, 
we warn the reader that, our phenomenological model does not 
explicitly resolve the issue of quark confinement, like e.g. the con-
fining force between the quark-antiquark, beyond the observation 
that the quark spectral density in the present case is not posi-
tive definite, as we are going to show. A similar quark propagator 
model, proposed recently, violates the reflection positivity and was 
associated to quarks degrees of freedom out of the physical spec-
trum [52]. The detailed discussion presented in this reference is 
particularly illuminating on that point. We can add the example 
of the gluon propagator obtained from Lattice QCD calculations in 
the Landau gauge, which exhibits the violation of the positivity 
constraint in the KL representation [43].
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The formula above has to be calculated for each one of the three 
poles of the quark propagators, namely m1, m1 ↔ m2 and m1 ↔
m3. Taking into account the actual values of the poles and param-
eters it results: Pδ
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the chiral limit where the current quark mass vanishes and the 
self-energy is related to the pion BS vertex.
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totic states of free quarks in QCD. Such physics is suggested to be 
expressed as pair of poles of the quark propagator that have mi-
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b (m3, m2, m1) = 0.183. In short, we found that the model vi-

olates the positivity constraints for the spectral density and we are 
satisfied by that as the color non-singlet quark cannot be a physi-
cal state.

3. Pion Bethe–Salpeter amplitude model

The pion is a isovector pseudoscalar meson composed mainly 
by a constituent quark and antiquark, i.e., |u ̄d⟩ state with total 
spin zero and negative parity. The key ingredient of the model is 
the chiral limit where the current quark mass vanishes and the 
self-energy is related to the pion BS vertex.

The pion-quark-antiquark vertex denoted by 'π (k, P ) is the 
quark-antiquark-meson BSA with external quark legs removed. In 
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With the parameters given above, the poles are real and placed 
at the values of m1 = 0.327 GeV, m2 = 0.644 GeV and m3 =
0.954 GeV. Although the quark model propagator has real poles, 
and m1 resembles the constituent mass, or alternatively
M(k2 = 0) = m0 + m3/λ2 = 0.278 GeV. It is worthwhile to stress 
that quark confinement is associated with the absence of asymp-
totic states of free quarks in QCD. Such physics is suggested to be 
expressed as pair of poles of the quark propagator that have mi-
grated to the complex plane (see e.g. the review [6]). Despite of 
that, we will proceed with this simplified model, which is quite 
practical for building the pion observables in Minkowski space, 
namely the loop integrations associated with the observables are 
easily performed analytically.

The fermion propagator can be written as
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2) = − 1

π
Im [B(µ2)] (9)

For a particle that belongs to the S-matrix representation, which 
is an observable state, the Källén–Lehmann (KL) spectral densities 
satisfy the positivity constraints [41]:

Pa = ρA(µ2) ≥ 0 and Pb = µρA(µ2) − ρB(µ
2) ≥ 0 . (10)

The quark is a non-singlet color state and it is not an observable 
asymptotic state belonging to the S-matrix representation. Thus, 
there is no guarantee that the quark propagator should have a KL 
representation. If it will be possible to have one, it might violate 
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not a simple issue as the positivity violation is a sufficient but not 
necessary condition for quark confinement (see e.g. [54]). Then, 
positivity violation associated with the quark propagator may not 
be equivalent to confinement, which is a subtle property to de-
fine in presence of dynamical quarks [55]. In addition, the issue 
of physical or nonphysical asymptotic states must be associated 
with the gauge-singlet properties of the object, that excludes of 
course the quarks as being an observable state. In this context, 
we warn the reader that, our phenomenological model does not 
explicitly resolve the issue of quark confinement, like e.g. the con-
fining force between the quark-antiquark, beyond the observation 
that the quark spectral density in the present case is not posi-
tive definite, as we are going to show. A similar quark propagator 
model, proposed recently, violates the reflection positivity and was 
associated to quarks degrees of freedom out of the physical spec-
trum [52]. The detailed discussion presented in this reference is 
particularly illuminating on that point. We can add the example 
of the gluon propagator obtained from Lattice QCD calculations in 
the Landau gauge, which exhibits the violation of the positivity 
constraint in the KL representation [43].
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< 0. The actual values are Pδ
a (m1, m2, m3) = 1.49, 

Pδ
a (m2, m1, m3) = −0.580 and Pδ

a (m3, m2, m1) = 0.095.
The other positivity constraint from (10), translated into the co-
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The constraints in (10) are translated to the coefficients of the 
delta functions, which using (14) and (15) are given by:
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a (m1,m2,m3) = H2(m1,m2,m3) and

Pδ
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As m1 < m2 < m3, one has that Pδ
a (m2, m1, m3) < 0 and

ρA(µ2)|µ2=m2
2

< 0. The actual values are Pδ
a (m1, m2, m3) = 1.49, 

Pδ
a (m2, m1, m3) = −0.580 and Pδ

a (m3, m2, m1) = 0.095.
The other positivity constraint from (10), translated into the co-
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The formula above has to be calculated for each one of the three 
poles of the quark propagators, namely m1, m1 ↔ m2 and m1 ↔
m3. Taking into account the actual values of the poles and param-
eters it results: Pδ

b (m1, m2, m3) ∼ −0.001, Pδ
b (m2, m1, m3) ∼ 0.001

and Pδ
b (m3, m2, m1) = 0.183. In short, we found that the model vi-

olates the positivity constraints for the spectral density and we are 
satisfied by that as the color non-singlet quark cannot be a physi-
cal state.

3. Pion Bethe–Salpeter amplitude model

The pion is a isovector pseudoscalar meson composed mainly 
by a constituent quark and antiquark, i.e., |u ̄d⟩ state with total 
spin zero and negative parity. The key ingredient of the model is 
the chiral limit where the current quark mass vanishes and the 
self-energy is related to the pion BS vertex.

The pion-quark-antiquark vertex denoted by 'π (k, P ) is the 
quark-antiquark-meson BSA with external quark legs removed. In 
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With the parameters given above, the poles are real and placed 
at the values of m1 = 0.327 GeV, m2 = 0.644 GeV and m3 =
0.954 GeV. Although the quark model propagator has real poles, 
and m1 resembles the constituent mass, or alternatively
M(k2 = 0) = m0 + m3/λ2 = 0.278 GeV. It is worthwhile to stress 
that quark confinement is associated with the absence of asymp-
totic states of free quarks in QCD. Such physics is suggested to be 
expressed as pair of poles of the quark propagator that have mi-
grated to the complex plane (see e.g. the review [6]). Despite of 
that, we will proceed with this simplified model, which is quite 
practical for building the pion observables in Minkowski space, 
namely the loop integrations associated with the observables are 
easily performed analytically.

The fermion propagator can be written as

S F (k) = ı
[
A(k2) /k + B(k2)
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. (7)

The spectral decomposition [41]:
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2) = − 1

π
Im [B(µ2)] (9)

For a particle that belongs to the S-matrix representation, which 
is an observable state, the Källén–Lehmann (KL) spectral densities 
satisfy the positivity constraints [41]:

Pa = ρA(µ2) ≥ 0 and Pb = µρA(µ2) − ρB(µ
2) ≥ 0 . (10)

The quark is a non-singlet color state and it is not an observable 
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there is no guarantee that the quark propagator should have a KL 
representation. If it will be possible to have one, it might violate 
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necessary condition for quark confinement (see e.g. [54]). Then, 
positivity violation associated with the quark propagator may not 
be equivalent to confinement, which is a subtle property to de-
fine in presence of dynamical quarks [55]. In addition, the issue 
of physical or nonphysical asymptotic states must be associated 
with the gauge-singlet properties of the object, that excludes of 
course the quarks as being an observable state. In this context, 
we warn the reader that, our phenomenological model does not 
explicitly resolve the issue of quark confinement, like e.g. the con-
fining force between the quark-antiquark, beyond the observation 
that the quark spectral density in the present case is not posi-
tive definite, as we are going to show. A similar quark propagator 
model, proposed recently, violates the reflection positivity and was 
associated to quarks degrees of freedom out of the physical spec-
trum [52]. The detailed discussion presented in this reference is 
particularly illuminating on that point. We can add the example 
of the gluon propagator obtained from Lattice QCD calculations in 
the Landau gauge, which exhibits the violation of the positivity 
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The formula above has to be calculated for each one of the three 
poles of the quark propagators, namely m1, m1 ↔ m2 and m1 ↔
m3. Taking into account the actual values of the poles and param-
eters it results: Pδ
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model, proposed recently, violates the reflection positivity and was 
associated to quarks degrees of freedom out of the physical spec-
trum [52]. The detailed discussion presented in this reference is 
particularly illuminating on that point. We can add the example 
of the gluon propagator obtained from Lattice QCD calculations in 
the Landau gauge, which exhibits the violation of the positivity 
constraint in the KL representation [43].

For our model we can compute easily the spectral densities by 
decomposing, the quark model propagator (6), first in partial frac-
tions as:
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The constraints in (10) are translated to the coefficients of the 
delta functions, which using (14) and (15) are given by:
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a (m1,m2,m3) = H2(m1,m2,m3) and

Pδ
b (m1,m2,m3) = H1(m1,m2,m3) +m0 H2(m1,m2,m3) . (16)

As m1 < m2 < m3, one has that Pδ
a (m2, m1, m3) < 0 and
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2

< 0. The actual values are Pδ
a (m1, m2, m3) = 1.49, 

Pδ
a (m2, m1, m3) = −0.580 and Pδ

a (m3, m2, m1) = 0.095.
The other positivity constraint from (10), translated into the co-

efficients of the delta functions turns to be:
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The formula above has to be calculated for each one of the three 
poles of the quark propagators, namely m1, m1 ↔ m2 and m1 ↔
m3. Taking into account the actual values of the poles and param-
eters it results: Pδ

b (m1, m2, m3) ∼ −0.001, Pδ
b (m2, m1, m3) ∼ 0.001

and Pδ
b (m3, m2, m1) = 0.183. In short, we found that the model vi-

olates the positivity constraints for the spectral density and we are 
satisfied by that as the color non-singlet quark cannot be a physi-
cal state.

3. Pion Bethe–Salpeter amplitude model

The pion is a isovector pseudoscalar meson composed mainly 
by a constituent quark and antiquark, i.e., |u ̄d⟩ state with total 
spin zero and negative parity. The key ingredient of the model is 
the chiral limit where the current quark mass vanishes and the 
self-energy is related to the pion BS vertex.

The pion-quark-antiquark vertex denoted by 'π (k, P ) is the 
quark-antiquark-meson BSA with external quark legs removed. In 
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With the parameters given above, the poles are real and placed 
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and m1 resembles the constituent mass, or alternatively
M(k2 = 0) = m0 + m3/λ2 = 0.278 GeV. It is worthwhile to stress 
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that, we will proceed with this simplified model, which is quite 
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practical for building the pion observables in Minkowski space, 
namely the loop integrations associated with the observables are 
easily performed analytically.

The fermion propagator can be written as

S F (k) = ı
[
A(k2) /k + B(k2)

]
. (7)

The spectral decomposition [41]:

A(k2) =
∞∫

0

dµ2 ρA(µ2)

k2 − µ2 + ıε
and B(k2) =

∞∫

0

dµ2 ρB(µ2)

k2 − µ2 + ıε

(8)

where the spectral densities are:

ρA(µ2) = − 1
π

Im [A(µ2)] and ρB(µ
2) = − 1

π
Im [B(µ2)] (9)

For a particle that belongs to the S-matrix representation, which 
is an observable state, the Källén–Lehmann (KL) spectral densities 
satisfy the positivity constraints [41]:

Pa = ρA(µ2) ≥ 0 and Pb = µρA(µ2) − ρB(µ
2) ≥ 0 . (10)

The quark is a non-singlet color state and it is not an observable 
asymptotic state belonging to the S-matrix representation. Thus, 
there is no guarantee that the quark propagator should have a KL 
representation. If it will be possible to have one, it might violate 
the positivity constraints for the spectral density. However, this is 
not a simple issue as the positivity violation is a sufficient but not 
necessary condition for quark confinement (see e.g. [54]). Then, 
positivity violation associated with the quark propagator may not 
be equivalent to confinement, which is a subtle property to de-
fine in presence of dynamical quarks [55]. In addition, the issue 
of physical or nonphysical asymptotic states must be associated 
with the gauge-singlet properties of the object, that excludes of 
course the quarks as being an observable state. In this context, 
we warn the reader that, our phenomenological model does not 
explicitly resolve the issue of quark confinement, like e.g. the con-
fining force between the quark-antiquark, beyond the observation 
that the quark spectral density in the present case is not posi-
tive definite, as we are going to show. A similar quark propagator 
model, proposed recently, violates the reflection positivity and was 
associated to quarks degrees of freedom out of the physical spec-
trum [52]. The detailed discussion presented in this reference is 
particularly illuminating on that point. We can add the example 
of the gluon propagator obtained from Lattice QCD calculations in 
the Landau gauge, which exhibits the violation of the positivity 
constraint in the KL representation [43].

For our model we can compute easily the spectral densities by 
decomposing, the quark model propagator (6), first in partial frac-
tions as:

A(k2) = H2(m1,m2,m3)

k2 −m2
1 + ıϵ

+ H2(m2,m1,m3)

k2 −m2
2 + ıϵ

+ H2(m3,m2,m1)

k2 −m2
3 + ıϵ

(11)

and

B(k2) = H1(m1,m2,m3)

k2 −m2
1 + ıϵ

+ H1(m2,m1,m3)

k2 −m2
2 + ıϵ

+ H1(m3,m2,m1)

k2 −m2
3 + ıϵ

+m0 A(k2) (12)

where

Hn(m1,m2,m3) = (−m3)2−n(m2
1 − λ2)n

(m2
1 −m2

2)(m
2
1 −m2

3)
(13)

which leads easily leads to:

ρA(µ2) = H2(m1,m2,m3) δ
(
µ2 −m2

1

)

+ H2(m2,m1,m3) δ
(
µ2 −m2

2

)

+ H2(m3,m2,m1) δ
(
µ2 −m2

3

)
(14)

and

ρB(µ
2) = H1(m1,m2,m3) δ

(
µ2 −m2

1

)

+ H1(m2,m1,m3) δ
(
µ2 −m2

2

)

+ H1(m3,m2,m1) δ
(
µ2 −m2

3

)
+m0 ρA(µ2) (15)

The constraints in (10) are translated to the coefficients of the 
delta functions, which using (14) and (15) are given by:

Pδ
a (m1,m2,m3) = H2(m1,m2,m3) and

Pδ
b (m1,m2,m3) = H1(m1,m2,m3) +m0 H2(m1,m2,m3) . (16)

As m1 < m2 < m3, one has that Pδ
a (m2, m1, m3) < 0 and

ρA(µ2)|µ2=m2
2

< 0. The actual values are Pδ
a (m1, m2, m3) = 1.49, 

Pδ
a (m2, m1, m3) = −0.580 and Pδ

a (m3, m2, m1) = 0.095.
The other positivity constraint from (10), translated into the co-

efficients of the delta functions turns to be:

Pδ
b (m1,m2,m3) = − (λ2 −m2

1)(m
3 + (m0 −m1)(λ

2 −m2
1))

(m2
1 −m2

2)(m
2
1 −m2

3)
.

(17)

The formula above has to be calculated for each one of the three 
poles of the quark propagators, namely m1, m1 ↔ m2 and m1 ↔
m3. Taking into account the actual values of the poles and param-
eters it results: Pδ

b (m1, m2, m3) ∼ −0.001, Pδ
b (m2, m1, m3) ∼ 0.001

and Pδ
b (m3, m2, m1) = 0.183. In short, we found that the model vi-

olates the positivity constraints for the spectral density and we are 
satisfied by that as the color non-singlet quark cannot be a physi-
cal state.

3. Pion Bethe–Salpeter amplitude model

The pion is a isovector pseudoscalar meson composed mainly 
by a constituent quark and antiquark, i.e., |u ̄d⟩ state with total 
spin zero and negative parity. The key ingredient of the model is 
the chiral limit where the current quark mass vanishes and the 
self-energy is related to the pion BS vertex.

The pion-quark-antiquark vertex denoted by 'π (k, P ) is the 
quark-antiquark-meson BSA with external quark legs removed. In 
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the isovector and pseudoscalar channel the BS vertex has the gen-
eral form:

!π (k; P ) = γ5[ıEπ (k; P ) + /P Fπ (k; P ) + kµPµ /kGπ (k; P )

+ σµνkµPνHπ (k; P )] , (18)

where P2 = m2
π . In our calculations we consider the chiral limit, 

where the current quark mass vanishes and mπ = 0. In this case 
the pion vertex can be written as (see e.g. [6,38]):

fπ Eπ (k, P ) = M(k2)/
√

Z(k2) , (19)

where fπ is the pion electroweak decay constant and only the 
scalar part of the quark self-energy appears in the above equal-
ity.

The present model for the pion BSA, which incorporates the ef-
fects from quark dressing and dynamical chiral symmetry breaking, 
through the running mass, is written as:

ψπ (k; P ) = S F (k + P/2)!π (k; P ) S F (k − P/2), (20)

where the quarks are in a colorless state and k is the relative mo-
mentum.

We consider the chiral limit, namely the current quark mass 
vanishes (m0 = 0) and mπ = 0, where only the contribution of the 
pseudoscalar Dirac matrix survives in the vertex, which simplifies 
even further the model, giving that

!π (k; P ) = ıN γ5 M(k2)|m0= 0 , (21)

where N is the normalization constant found by imposing that 
the electromagnetic form factor is 1 for zero momentum trans-
fer. Then, introducing the factorized form of the quark propagator 
(6) and the vertex function (21) in the pion BSA (20), the present 
model reads:

ψπ (k; P )

= −
(
(k + P

2 )2 − λ2)2 (/k + /P
2 +m0) −

(
(k + P

2 )2 − λ2) m3

∏
i= 1,3((k + P

2 )2 −m2
i + ıϵ)

× N γ5m3

k2 − λ2 + ıϵ

×
(
(k − P

2 )2 − λ2)2 (/k − /P
2 +m0) −

(
(k − P

2 )2 − λ2) m3

∏
i= 1,3((k − P

2 )2 −m2
i + ıϵ)

.

(22)

The position of the time-like poles, namely mi are computed from 
the model parameters m, m0 and λ, determined from the fit to the 
LQCD results for the running quark mass for space-like momen-
tum, as shown in Fig. 1.

We point out that the choice of the vertex function (21) turns 
the loop integrals for the electromagnetic form factor and decay 
constant finite, and eliminates the log-type divergences for ultravi-
olet momentum, which appear when the quark mass and vertex go 
to constant values. Although the running mass of the quark goes to 
m0 for large momentum, the vertex function decreases fast enough 
as ∼ 1/k2, which kills the log-type divergence in the loop integrals.

One should compare with previous models of the pion BSA 
from [31,35,36]. These pion models are summarized by the for-
mula:

ψπ (k; P ) = − /k + /P
2 + Mq

(k + P
2 )2 − M2

q + ıϵ
γ5 )π (k, P )

× /k − /P
2 + Mq

(k − P
2 )2 − M2

q + ıϵ
, (23)

Fig. 1. The running quark mass, Eq. (3), as a function of the Euclidean momentum 
p = √−pµpµ , with parameters from (4), is given by the solid line and compared to 
lattice QCD calculations from [37]. The dashed line shows the parametrization used 
in reference [51].

where Mq is a constituent quark mass, and the momentum com-
ponent of the vertex, )π (k, P ) is defined in terms of Pauli–Villars 
regulators:

)π (k, P ) = N

[
1

(k + P
2 )2 −m2

R + ıϵ
+ 1

(k − P
2 )2 −m2

R + ıϵ

]

(24)

for the ansatz from Ref. [31], and

)π (k, P ) = N
1

[
(k + P

2 )2 −m2
R + ıϵ

]
1

[
(k − P

2 )2 −m2
R + ıϵ

] (25)

for the product ansatz used in Ref. [35] and recently in [36] to 
compute the pion generalized parton distributions.

It is worthwhile to point out that the Nakanishi integral rep-
resentation [42] was used as a tool to explore the bound-state 
solution of the Bethe–Salpeter equation for bosons ground state 
[45,46] and excited states [50], for bound state of fermions [47]
and continuum [48,49].

4. Integral representation of the BSA

In order to introduce the integral representation for our model, 
we use the following useful identity:

1
((k + p

2 )2 − µ′ 2 + ıϵ)(k2 − λ2 + ıϵ)(k − p
2 )2 − µ2 + ıϵ)

=

=
+∞∫

−∞
dγ

1∫

−1

dz
g(γ , z;µ′,µ, p)

(
k2 + z k · p + γ + ıϵ

)3 (26)

where

g(γ , z;µ′,µ, p) =

= θ(α)θ(1 − α)
1
2 − α

[θ(1 − 2α − z)θ(z) − θ(z − 1+ 2α)θ(−z)]

(27)

and

α =
p2

4 + λ2 − µ2 − z−1(λ2 + γ )

µ2 − µ′2 + 2z−1(λ2 + γ )
. (28)
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the pion vertex can be written as (see e.g. [6,38]):
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where fπ is the pion electroweak decay constant and only the 
scalar part of the quark self-energy appears in the above equal-
ity.

The present model for the pion BSA, which incorporates the ef-
fects from quark dressing and dynamical chiral symmetry breaking, 
through the running mass, is written as:

ψπ (k; P ) = S F (k + P/2)!π (k; P ) S F (k − P/2), (20)

where the quarks are in a colorless state and k is the relative mo-
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We consider the chiral limit, namely the current quark mass 
vanishes (m0 = 0) and mπ = 0, where only the contribution of the 
pseudoscalar Dirac matrix survives in the vertex, which simplifies 
even further the model, giving that

!π (k; P ) = ıN γ5 M(k2)|m0= 0 , (21)

where N is the normalization constant found by imposing that 
the electromagnetic form factor is 1 for zero momentum trans-
fer. Then, introducing the factorized form of the quark propagator 
(6) and the vertex function (21) in the pion BSA (20), the present 
model reads:

ψπ (k; P )

= −
(
(k + P

2 )2 − λ2)2 (/k + /P
2 +m0) −

(
(k + P

2 )2 − λ2) m3

∏
i= 1,3((k + P

2 )2 −m2
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× N γ5m3
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×
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(k − P

2 )2 − λ2)2 (/k − /P
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(k − P

2 )2 − λ2) m3
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i + ıϵ)
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(22)

The position of the time-like poles, namely mi are computed from 
the model parameters m, m0 and λ, determined from the fit to the 
LQCD results for the running quark mass for space-like momen-
tum, as shown in Fig. 1.

We point out that the choice of the vertex function (21) turns 
the loop integrals for the electromagnetic form factor and decay 
constant finite, and eliminates the log-type divergences for ultravi-
olet momentum, which appear when the quark mass and vertex go 
to constant values. Although the running mass of the quark goes to 
m0 for large momentum, the vertex function decreases fast enough 
as ∼ 1/k2, which kills the log-type divergence in the loop integrals.

One should compare with previous models of the pion BSA 
from [31,35,36]. These pion models are summarized by the for-
mula:

ψπ (k; P ) = − /k + /P
2 + Mq

(k + P
2 )2 − M2

q + ıϵ
γ5 )π (k, P )

× /k − /P
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Fig. 1. The running quark mass, Eq. (3), as a function of the Euclidean momentum 
p = √−pµpµ , with parameters from (4), is given by the solid line and compared to 
lattice QCD calculations from [37]. The dashed line shows the parametrization used 
in reference [51].

where Mq is a constituent quark mass, and the momentum com-
ponent of the vertex, )π (k, P ) is defined in terms of Pauli–Villars 
regulators:

)π (k, P ) = N

[
1

(k + P
2 )2 −m2

R + ıϵ
+ 1

(k − P
2 )2 −m2

R + ıϵ

]

(24)

for the ansatz from Ref. [31], and

)π (k, P ) = N
1

[
(k + P

2 )2 −m2
R + ıϵ

]
1

[
(k − P

2 )2 −m2
R + ıϵ

] (25)

for the product ansatz used in Ref. [35] and recently in [36] to 
compute the pion generalized parton distributions.

It is worthwhile to point out that the Nakanishi integral rep-
resentation [42] was used as a tool to explore the bound-state 
solution of the Bethe–Salpeter equation for bosons ground state 
[45,46] and excited states [50], for bound state of fermions [47]
and continuum [48,49].

4. Integral representation of the BSA

In order to introduce the integral representation for our model, 
we use the following useful identity:

1
((k + p

2 )2 − µ′ 2 + ıϵ)(k2 − λ2 + ıϵ)(k − p
2 )2 − µ2 + ıϵ)

=

=
+∞∫

−∞
dγ

1∫

−1

dz
g(γ , z;µ′,µ, p)

(
k2 + z k · p + γ + ıϵ

)3 (26)

where

g(γ , z;µ′,µ, p) =

= θ(α)θ(1 − α)
1
2 − α

[θ(1 − 2α − z)θ(z) − θ(z − 1+ 2α)θ(−z)]

(27)

and

α =
p2

4 + λ2 − µ2 − z−1(λ2 + γ )

µ2 − µ′2 + 2z−1(λ2 + γ )
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where fπ is the pion electroweak decay constant and only the 
scalar part of the quark self-energy appears in the above equal-
ity.

The present model for the pion BSA, which incorporates the ef-
fects from quark dressing and dynamical chiral symmetry breaking, 
through the running mass, is written as:

ψπ (k; P ) = S F (k + P/2)!π (k; P ) S F (k − P/2), (20)

where the quarks are in a colorless state and k is the relative mo-
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We consider the chiral limit, namely the current quark mass 
vanishes (m0 = 0) and mπ = 0, where only the contribution of the 
pseudoscalar Dirac matrix survives in the vertex, which simplifies 
even further the model, giving that

!π (k; P ) = ıN γ5 M(k2)|m0= 0 , (21)

where N is the normalization constant found by imposing that 
the electromagnetic form factor is 1 for zero momentum trans-
fer. Then, introducing the factorized form of the quark propagator 
(6) and the vertex function (21) in the pion BSA (20), the present 
model reads:
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= −
(
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The position of the time-like poles, namely mi are computed from 
the model parameters m, m0 and λ, determined from the fit to the 
LQCD results for the running quark mass for space-like momen-
tum, as shown in Fig. 1.

We point out that the choice of the vertex function (21) turns 
the loop integrals for the electromagnetic form factor and decay 
constant finite, and eliminates the log-type divergences for ultravi-
olet momentum, which appear when the quark mass and vertex go 
to constant values. Although the running mass of the quark goes to 
m0 for large momentum, the vertex function decreases fast enough 
as ∼ 1/k2, which kills the log-type divergence in the loop integrals.

One should compare with previous models of the pion BSA 
from [31,35,36]. These pion models are summarized by the for-
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Fig. 1. The running quark mass, Eq. (3), as a function of the Euclidean momentum 
p = √−pµpµ , with parameters from (4), is given by the solid line and compared to 
lattice QCD calculations from [37]. The dashed line shows the parametrization used 
in reference [51].

where Mq is a constituent quark mass, and the momentum com-
ponent of the vertex, )π (k, P ) is defined in terms of Pauli–Villars 
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]
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for the product ansatz used in Ref. [35] and recently in [36] to 
compute the pion generalized parton distributions.

It is worthwhile to point out that the Nakanishi integral rep-
resentation [42] was used as a tool to explore the bound-state 
solution of the Bethe–Salpeter equation for bosons ground state 
[45,46] and excited states [50], for bound state of fermions [47]
and continuum [48,49].

4. Integral representation of the BSA

In order to introduce the integral representation for our model, 
we use the following useful identity:
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((k + p

2 )2 − µ′ 2 + ıϵ)(k2 − λ2 + ıϵ)(k − p
2 )2 − µ2 + ıϵ)

=

=
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S F (k) = ı

(
k2 − λ2)2 (/k +m0) −

(
k2 − λ2) m3

∏
i=1,3(k

2 −m2
i + ıϵ)

. (6)

With the parameters given above, the poles are real and placed 
at the values of m1 = 0.327 GeV, m2 = 0.644 GeV and m3 =
0.954 GeV. Although the quark model propagator has real poles, 
and m1 resembles the constituent mass, or alternatively
M(k2 = 0) = m0 + m3/λ2 = 0.278 GeV. It is worthwhile to stress 
that quark confinement is associated with the absence of asymp-
totic states of free quarks in QCD. Such physics is suggested to be 
expressed as pair of poles of the quark propagator that have mi-
grated to the complex plane (see e.g. the review [6]). Despite of 
that, we will proceed with this simplified model, which is quite 
practical for building the pion observables in Minkowski space, 
namely the loop integrations associated with the observables are 
easily performed analytically.

The fermion propagator can be written as

S F (k) = ı
[
A(k2) /k + B(k2)

]
. (7)

The spectral decomposition [41]:

A(k2) =
∞∫

0

dµ2 ρA(µ2)

k2 − µ2 + ıε
and B(k2) =

∞∫

0

dµ2 ρB(µ2)

k2 − µ2 + ıε

(8)

where the spectral densities are:

ρA(µ2) = − 1
π

Im [A(µ2)] and ρB(µ
2) = − 1

π
Im [B(µ2)] (9)

For a particle that belongs to the S-matrix representation, which 
is an observable state, the Källén–Lehmann (KL) spectral densities 
satisfy the positivity constraints [41]:

Pa = ρA(µ2) ≥ 0 and Pb = µρA(µ2) − ρB(µ
2) ≥ 0 . (10)

The quark is a non-singlet color state and it is not an observable 
asymptotic state belonging to the S-matrix representation. Thus, 
there is no guarantee that the quark propagator should have a KL 
representation. If it will be possible to have one, it might violate 
the positivity constraints for the spectral density. However, this is 
not a simple issue as the positivity violation is a sufficient but not 
necessary condition for quark confinement (see e.g. [54]). Then, 
positivity violation associated with the quark propagator may not 
be equivalent to confinement, which is a subtle property to de-
fine in presence of dynamical quarks [55]. In addition, the issue 
of physical or nonphysical asymptotic states must be associated 
with the gauge-singlet properties of the object, that excludes of 
course the quarks as being an observable state. In this context, 
we warn the reader that, our phenomenological model does not 
explicitly resolve the issue of quark confinement, like e.g. the con-
fining force between the quark-antiquark, beyond the observation 
that the quark spectral density in the present case is not posi-
tive definite, as we are going to show. A similar quark propagator 
model, proposed recently, violates the reflection positivity and was 
associated to quarks degrees of freedom out of the physical spec-
trum [52]. The detailed discussion presented in this reference is 
particularly illuminating on that point. We can add the example 
of the gluon propagator obtained from Lattice QCD calculations in 
the Landau gauge, which exhibits the violation of the positivity 
constraint in the KL representation [43].

For our model we can compute easily the spectral densities by 
decomposing, the quark model propagator (6), first in partial frac-
tions as:

A(k2) = H2(m1,m2,m3)

k2 −m2
1 + ıϵ

+ H2(m2,m1,m3)

k2 −m2
2 + ıϵ

+ H2(m3,m2,m1)

k2 −m2
3 + ıϵ

(11)

and

B(k2) = H1(m1,m2,m3)

k2 −m2
1 + ıϵ

+ H1(m2,m1,m3)

k2 −m2
2 + ıϵ

+ H1(m3,m2,m1)

k2 −m2
3 + ıϵ

+m0 A(k2) (12)

where

Hn(m1,m2,m3) = (−m3)2−n(m2
1 − λ2)n

(m2
1 −m2

2)(m
2
1 −m2

3)
(13)

which leads easily leads to:

ρA(µ2) = H2(m1,m2,m3) δ
(
µ2 −m2

1

)

+ H2(m2,m1,m3) δ
(
µ2 −m2

2

)

+ H2(m3,m2,m1) δ
(
µ2 −m2

3

)
(14)

and

ρB(µ
2) = H1(m1,m2,m3) δ

(
µ2 −m2

1

)

+ H1(m2,m1,m3) δ
(
µ2 −m2

2

)

+ H1(m3,m2,m1) δ
(
µ2 −m2

3

)
+m0 ρA(µ2) (15)

The constraints in (10) are translated to the coefficients of the 
delta functions, which using (14) and (15) are given by:

Pδ
a (m1,m2,m3) = H2(m1,m2,m3) and

Pδ
b (m1,m2,m3) = H1(m1,m2,m3) +m0 H2(m1,m2,m3) . (16)

As m1 < m2 < m3, one has that Pδ
a (m2, m1, m3) < 0 and

ρA(µ2)|µ2=m2
2

< 0. The actual values are Pδ
a (m1, m2, m3) = 1.49, 

Pδ
a (m2, m1, m3) = −0.580 and Pδ

a (m3, m2, m1) = 0.095.
The other positivity constraint from (10), translated into the co-

efficients of the delta functions turns to be:

Pδ
b (m1,m2,m3) = − (λ2 −m2

1)(m
3 + (m0 −m1)(λ

2 −m2
1))

(m2
1 −m2

2)(m
2
1 −m2

3)
.

(17)

The formula above has to be calculated for each one of the three 
poles of the quark propagators, namely m1, m1 ↔ m2 and m1 ↔
m3. Taking into account the actual values of the poles and param-
eters it results: Pδ

b (m1, m2, m3) ∼ −0.001, Pδ
b (m2, m1, m3) ∼ 0.001

and Pδ
b (m3, m2, m1) = 0.183. In short, we found that the model vi-

olates the positivity constraints for the spectral density and we are 
satisfied by that as the color non-singlet quark cannot be a physi-
cal state.

3. Pion Bethe–Salpeter amplitude model

The pion is a isovector pseudoscalar meson composed mainly 
by a constituent quark and antiquark, i.e., |u ̄d⟩ state with total 
spin zero and negative parity. The key ingredient of the model is 
the chiral limit where the current quark mass vanishes and the 
self-energy is related to the pion BS vertex.

The pion-quark-antiquark vertex denoted by 'π (k, P ) is the 
quark-antiquark-meson BSA with external quark legs removed. In 
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the isovector and pseudoscalar channel the BS vertex has the gen-
eral form:

!π (k; P ) = γ5[ıEπ (k; P ) + /P Fπ (k; P ) + kµPµ /kGπ (k; P )

+ σµνkµPνHπ (k; P )] , (18)

where P2 = m2
π . In our calculations we consider the chiral limit, 

where the current quark mass vanishes and mπ = 0. In this case 
the pion vertex can be written as (see e.g. [6,38]):

fπ Eπ (k, P ) = M(k2)/
√

Z(k2) , (19)

where fπ is the pion electroweak decay constant and only the 
scalar part of the quark self-energy appears in the above equal-
ity.

The present model for the pion BSA, which incorporates the ef-
fects from quark dressing and dynamical chiral symmetry breaking, 
through the running mass, is written as:

ψπ (k; P ) = S F (k + P/2)!π (k; P ) S F (k − P/2), (20)

where the quarks are in a colorless state and k is the relative mo-
mentum.

We consider the chiral limit, namely the current quark mass 
vanishes (m0 = 0) and mπ = 0, where only the contribution of the 
pseudoscalar Dirac matrix survives in the vertex, which simplifies 
even further the model, giving that

!π (k; P ) = ıN γ5 M(k2)|m0= 0 , (21)

where N is the normalization constant found by imposing that 
the electromagnetic form factor is 1 for zero momentum trans-
fer. Then, introducing the factorized form of the quark propagator 
(6) and the vertex function (21) in the pion BSA (20), the present 
model reads:

ψπ (k; P )

= −
(
(k + P

2 )2 − λ2)2 (/k + /P
2 +m0) −

(
(k + P

2 )2 − λ2) m3

∏
i= 1,3((k + P

2 )2 −m2
i + ıϵ)

× N γ5m3

k2 − λ2 + ıϵ

×
(
(k − P

2 )2 − λ2)2 (/k − /P
2 +m0) −

(
(k − P

2 )2 − λ2) m3

∏
i= 1,3((k − P

2 )2 −m2
i + ıϵ)

.

(22)

The position of the time-like poles, namely mi are computed from 
the model parameters m, m0 and λ, determined from the fit to the 
LQCD results for the running quark mass for space-like momen-
tum, as shown in Fig. 1.

We point out that the choice of the vertex function (21) turns 
the loop integrals for the electromagnetic form factor and decay 
constant finite, and eliminates the log-type divergences for ultravi-
olet momentum, which appear when the quark mass and vertex go 
to constant values. Although the running mass of the quark goes to 
m0 for large momentum, the vertex function decreases fast enough 
as ∼ 1/k2, which kills the log-type divergence in the loop integrals.

One should compare with previous models of the pion BSA 
from [31,35,36]. These pion models are summarized by the for-
mula:

ψπ (k; P ) = − /k + /P
2 + Mq

(k + P
2 )2 − M2

q + ıϵ
γ5 )π (k, P )

× /k − /P
2 + Mq

(k − P
2 )2 − M2

q + ıϵ
, (23)

Fig. 1. The running quark mass, Eq. (3), as a function of the Euclidean momentum 
p = √−pµpµ , with parameters from (4), is given by the solid line and compared to 
lattice QCD calculations from [37]. The dashed line shows the parametrization used 
in reference [51].

where Mq is a constituent quark mass, and the momentum com-
ponent of the vertex, )π (k, P ) is defined in terms of Pauli–Villars 
regulators:

)π (k, P ) = N

[
1

(k + P
2 )2 −m2

R + ıϵ
+ 1

(k − P
2 )2 −m2

R + ıϵ

]

(24)

for the ansatz from Ref. [31], and

)π (k, P ) = N
1

[
(k + P

2 )2 −m2
R + ıϵ

]
1

[
(k − P

2 )2 −m2
R + ıϵ

] (25)

for the product ansatz used in Ref. [35] and recently in [36] to 
compute the pion generalized parton distributions.

It is worthwhile to point out that the Nakanishi integral rep-
resentation [42] was used as a tool to explore the bound-state 
solution of the Bethe–Salpeter equation for bosons ground state 
[45,46] and excited states [50], for bound state of fermions [47]
and continuum [48,49].

4. Integral representation of the BSA

In order to introduce the integral representation for our model, 
we use the following useful identity:

1
((k + p

2 )2 − µ′ 2 + ıϵ)(k2 − λ2 + ıϵ)(k − p
2 )2 − µ2 + ıϵ)

=

=
+∞∫

−∞
dγ

1∫

−1

dz
g(γ , z;µ′,µ, p)

(
k2 + z k · p + γ + ıϵ

)3 (26)

where

g(γ , z;µ′,µ, p) =

= θ(α)θ(1 − α)
1
2 − α

[θ(1 − 2α − z)θ(z) − θ(z − 1+ 2α)θ(−z)]

(27)

and

α =
p2

4 + λ2 − µ2 − z−1(λ2 + γ )

µ2 − µ′2 + 2z−1(λ2 + γ )
. (28)
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Fig. 3. Pion model electromagnetic form factor as a function of the space-like momentum transfer, Q 2 = −q2, compared to the experimental values: Amendolia et al. [70], 
Baldini et al. [71], Volmer et al. [72], Horn et al. [73], Tadevosyan et al. [74] Huber et al. [75]. In the left frame it is presented the results normalized to the dipole form 
factor, Fπ (Q 2)(1 + Q 2/(0.77 GeV)2), and in the right frame Q 2 Fπ (Q 2).

in the Landau gauge [37] show Z(k2) about 0.7 at low momentum, 
Z(k2) ∼ 0.9 at 1 GeV and monotonically increases to one in the 
ultraviolet region. The net effect of the quark wave function renor-
malization is to damp the propagator in the infrared. This property 
should be reflected in the form factor, which is normalized to the 
pion charge. The main contribution to the integrand of the form 
factor expression, Eq. (36), comes from the loop integral in the 
low momentum region, therefore the quark wave function renor-
malization will enhance the relative importance of the integrand 
in the ultraviolet region with respect to the infrared one. As the 
form factor integrand goes as ∼ k−7 in the ultraviolet region and 
considering the charge normalization, we expect that the effect of 
Z(k2) will be washed out for low-momentum transfers, as well 
as for the decay constant. However, when the momentum trans-
fer is large the form factor goes as ∼ q−2 (cf. Fig. 3) suggesting the 
company of a factor Z(q2), which would be reflected in a slight 
increase of the results compared to the one we showed. In this re-
spect it will be desirable to have data with smaller errors, then the 
ones available for large momentum transfers.

9. Summary

The Minkowski space Bethe–Salpeter amplitude for the pion is 
introduced, based on a model of the quark propagator with self-
energy. The model deals only with a running quark mass, that 
in the chiral limit, namely zero current quark mass, due to the 
axial-vector Ward–Takahashi identity is associated with the pseu-
doscalar component of the vertex function (see e.g. [6]). In this 
case our ansatz for the vertex function is the mass function, apart a 
normalization factor. The running quark mass model [52] has three 
parameters obtained from the fit to the Euclidean Lattice QCD re-
sults in the space-like momentum region [37]. The quark mass 
function has a single pole in the time like region at 0.846 GeV, in-
cludes a current quark mass of 0.014 GeV, and a third scale param-
eter that provides the value of the quark mass at zero momentum 
of 0.278 GeV. The quark propagator with the mass function model 
was decomposed in a form with three single poles, one is placed 
close to the constituent quark mass, and the other two poles are 
about two and three times the constituent quark mass. The Käl-
lén–Lehmann spectral decomposition of the quark propagator was 
analyzed, and we verified that the positivity constraints for the 
spectral densities are violated. This fact is minimally satisfactory 
suggesting that the model has a quark that should not correspond 
to a physical state.

The Nakanishi integral representation [42] of the BS amplitude 
model was worked out, and the corresponding weight function 
derived including both the structure of the vertex and the quark 
self-energy. This generalizes the discussion presented in [36] and 
introduces the model in the perspective of the recent applications 
of the integral representation to solve the bound state Bethe–
Salpeter equation in Minkowski space (see e.g. [50]).

The quantitative performance of the model was checked against 
the pion electroweak observables, namely the decay constant and 
pion space-like electromagnetic form factor. In the last case, to en-
sure current conservation, the quark electromagnetic current was 
constructed from the self-energy in order to fulfill the Ward–
Takahashi identity. Technically, we used the light-front momentum 
variables with the plus component of the axial-vector and vec-
tor currents to extract the weak decay constant and form factor 
with the Drell–Yan condition (q+ = 0). The plus component of both 
axial-vector and electromagnetic current are free of zero mode 
contributions (see e.g. [30]), which simplified our calculations. The 
resulting form factor and decay constant computed in Minkowski 
space are consistent with the experimental data.

The proposed ansatz generalizes previous models of the pion 
Bethe–Salpeter amplitude [30,31,35,36,57] by taking into account 
the quark self-energy in the fermion–antifermion–pion vertex and 
in the quark propagators, important for further applications to 
compute generalized parton distributions [36] and also the trans-
verse pion structure [24,58]. In addition the present model pro-
vides further insights on the valence wave function of the pion, 
which is extracted from the integral representation by projecting 
the BS amplitude on to the light-front (see e.g. [76,47]), allowing 
to access the rich body of parton distribution functions, envisaged 
in future applications.

Acknowledgements

The authors thank Giovanni Salmè and Orlando Oliveira for 
useful discussions. This work was partly supported by the Fun-
dação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) 
[grant nos. 2015/16295-5 and 2013/26258-4], Conselho Nacional 
de Desenvolvimento Científico e Tecnológico (CNPq) [grant nos. 
308025/2015-6 and 308486/2015-3] and Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior (CAPES) of Brazil.

C.S. Mello et al. / Physics Letters B 766 (2017) 86–93 93

References

[1] J. Dudek, et al., Eur. Phys. J. A 48 (2012) 187.
[2] I. Montvay, G. Münster (Eds.), Quantum Fields on a Lattice, Cambridge Univer-

sity Press, 1997.
[3] George F. Sterman, Paul Stoler, Annu. Rev. Nucl. Part. Sci. 47 (1997) 193.
[4] A.H. Mueller, Nucl. Phys. A 654 (1999) 37C.
[5] S.R. Beane, W. Detmold, K. Orginos, M.J. Savage, Prog. Part. Nucl. Phys. 66 

(2011) 1.
[6] I.C. Cloët, C.D. Roberts, Prog. Part. Nucl. Phys. 77 (2014) 1.
[7] S.J. Brodsky, H.-C. Pauli, S.S. Pinsky, Phys. Rep. 301 (1998) 299.
[8] J.P. Vary, Nucl. Phys. Proc. Suppl. 251–252 (2014) 155.
[9] D. Chakrabarti, X. Zhao, H. Honkanen, R. Manohar, P. Maris, J.P. Vary, Phys. Rev. 

D 89 (2014) 116004.
[10] P. Wiecki, Y. Li, X. Zhao, P. Maris, J.P. Vary, Phys. Rev. D 91 (2015) 105009.
[11] P. Wiecki, Y. Li, X. Zhao, P. Maris, J.P. Vary, Few-Body Syst. 56 (2015) 489.
[12] Y. Li, V.A. Karmanov, P. Maris, J.P. Vary, Few-Body Syst. 56 (2015) 495.
[13] Y. Li, P. Maris, X. Zhao, J.P. Vary, Phys. Lett. B 758 (2016) 118.
[14] L. Adhikari, Y. Li, X. Zhao, P. Maris, J.P. Vary, A.A. El-Hady, Phys. Rev. C 93 (2016) 

055202.
[15] W. Broniowski, S. Prelovsek, L. Santelj, E. Ruiz Arriola, Phys. Lett. B 686 (2010) 

313.
[16] A.E. Dorokhov, W. Broniowski, E. Ruiz Arriola, Phys. Rev. D 84 (2011) 074015.
[17] F. Gross, Phys. Rev. 186 (1969) 1448.
[18] E.P. Biernat, F. Gross, T. Peña, A. Stadler, Phys. Rev. D 89 (2014) 016005.
[19] E.P. Biernat, F. Gross, T. Peña, A. Stadler, Few-Body Syst. 55 (2014) 705.
[20] M.T. Peña, S. Leitão, E.P. Biernat, A. Stadler, J.E. Ribeiro, F. Gross, Few-Body Syst. 

57 (2016) 467.
[21] E.P. Biernat, F. Gross, T. Peña, A. Stadler, Phys. Rev. D 89 (2014) 016006.
[22] E.P. Biernat, F. Gross, M.T. Peña, A. Stadler, Phys. Rev. D 92 (2015) 076011.
[23] H.-M. Choi, C.-R. Ji, Z. Li, H.-Y. Ryu, Phys. Rev. C 92 (2015) 055203.
[24] S. Noguera, S. Scopetta, J. High Energy Phys. 11 (2015) 102.
[25] M.V. Terentév, Sov. J. Nucl. Phys. 24 (1976) 106;

L.A. Kondratyuk, M.V. Terentév, Sov. J. Nucl. Phys. 31 (1980) 561.
[26] T. Frederico, G.A. Miller, Phys. Rev. D 45 (1992) 4207;

Phys. Rev. D 50 (1994) 210.
[27] J.P.B.C. de Melo, T. Frederico, Phys. Rev. C 55 (1997) 2043.
[28] B.L.G. Bakker, H.-M. Choi, C.-R. Ji, Phys. Rev. D 65 (2002) 116001.
[29] C.S. Mello, A.N. da Silva, J.P.B.C. de Melo, T. Frederico, Few-Body Syst. 56 (2015) 

509.
[30] J.P.B.C. de Melo, H.W.L. Naus, T. Frederico, Phys. Rev. C 59 (1999) 2278.
[31] J.P.B.C. de Melo, T. Frederico, E. Pace, G. Salmé, Nucl. Phys. A 707 (2002) 399;

Braz. J. Phys. 33 (2003) 301.
[32] E.O. da Silva, J.P.B.C. de Melo, B. El-Bennich, V.S. Filho, Phys. Rev. C 86 (2012) 

038202.
[33] G.H.S. Yabusaki, I. Ahmed, M. Ali Paracha, J.P.B.C. de Melo, B. El-Bennich, Phys. 

Rev. D 92 (2015) 034017.
[34] B.L.G. Bakker, H.-M. Choi, C.-R. Ji, Phys. Rev. D 67 (2003) 113007.
[35] T. Frederico, E. Pace, B. Pasquini, G. Salmè, Phys. Rev. D 80 (2009) 054021.
[36] C. Fanelli, E. Pace, G. Romanelli, G. Salmè, M. Salmistraro, Eur. Phys. J. C 76 

(2016) 253.

[37] M.B. Parappilly, P.O. Bowman, U.M. Heller, D.B. Leinweber, A.G. Williams, J.B. 
Zhang, Phys. Rev. D 73 (2006) 054504.

[38] L. Chang, I.C. Cloët, J.J. Cobos-Martinez, C.D. Roberts, S.M. Schmidt, P.C. Tandy, 
Phys. Rev. Lett. 110 (2013) 132001.

[39] I.C. Cloët, L. Chang, C.D. Roberts, S.M. Schmidt, P.C. Tandy, Phys. Rev. Lett. 111 
(2013) 092001.

[40] L. Chang, I.C. Cloët, C.D. Roberts, S.M. Schmidt, P.C. Tandy, Phys. Rev. Lett. 111 
(2013) 141802.

[41] C. Itzykson, J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980.
[42] N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach, New 

York, 1971.
[43] D. Dudal, O. Oliveira, P.J. Silva, Phys. Rev. D 89 (2014) 014010.
[44] S. Strauss, C.S. Fischer, C. Kellermann, Phys. Rev. Lett. 109 (2012) 252001.
[45] J. Carbonell, V.A. Karmanov, Eur. Phys. J. A 27 (2006) 1.
[46] T. Frederico, G. Salmè, M. Viviani, Phys. Rev. D 89 (2014) 016010.
[47] J. Carbonell, V.A. Karmanov, Eur. Phys. J. A 46 (2010) 387.
[48] T. Frederico, G. Salmè, M. Viviani, Phys. Rev. D 85 (2012) 036009.
[49] T. Frederico, G. Salmè, M. Viviani, Eur. Phys. J. C 75 (2015) 398.
[50] C. Gutierrez, V. Gigante, T. Frederico, G. Salmè, M. Viviani, L. Tomio, Phys. Lett. 

B 759 (2016) 131.
[51] E. Rojas, J.P.B.C. de Melo, B. El-Bennich, O. Oliveira, T. Frederico, J. High Energy 

Phys. 1310 (2013) 193.
[52] D. Dudal, M.S. Guimarães, L.F. Palhares, S.P. Sorella, Ann. Phys. 365 (2016) 155.
[53] C.S. Fischer, R. Alkofer, Phys. Rev. D 67 (2003) 094020.
[54] R. Alkofer, W. Detmold, C.S. Fischer, P. Maris, Phys. Rev. D 70 (2004) 014014.
[55] J. Greensite, Lect. Notes Phys. 821 (2011) 1.
[56] J.P.B.C. de Melo, T. Frederico, E. Pace, G. Salmè, Phys. Lett. B 581 (2004) 75.
[57] J.P.B.C. de Melo, T. Frederico, E. Pace, G. Salmè, Phys. Rev. D 73 (2006) 074013.
[58] C. Lorcé, B. Pasquini, P. Schweitzer, Eur. Phys. J. C 76 (2016) 415.
[59] H. Pagels, S. Stokar, Phys. Rev. D 20 (1979) 2947.
[60] J.M. Cornwall, Phys. Rev. D 22 (1980) 1452.
[61] H. Pagels, S. Stokar, Phys. Rev. D 22 (1980) 2876.
[62] J.M. Cornwall, Phys. Rev. D 26 (1982) 1453.
[63] J.C. Ward, Phys. Rev. 78 (1950) 182.
[64] Y. Takahashi, Nuovo Cimento 6 (1957) 371.
[65] M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory, 

Addison–Wesley, Reading, USA, 1995, p. 842.
[66] H.-M. Choi, C.-R. Ji, Phys. Rev. D 91 (2015) 014018.
[67] K.A. Olive, et al., Particle Data Group, Chin. Phys. C 38 (2014) 090001, and 2015 

update.
[68] R. Tarrach, Z. Phys. C 2 (1979) 221.
[69] S.B. Gerasimov, Sov. J. Nucl. Phys. 29 (1979) 259;

S.B. Gerasimov, Sov. J. Nucl. Phys. 32 (1980) 156 (Erratum).
[70] S.R. Amendolia, et al., Phys. Lett. B 146 (1984) 116.
[71] R. Baldini, E. Pasqualucci, S. Dubnicka, P. Gauzzi, S. Pacetti, Y. Srivastava, Nucl. 

Phys. A 666 (2000) 38.
[72] J. Volmer, et al., Phys. Rev. Lett. 86 (2001) 1713.
[73] T. Horn, et al., Phys. Rev. Lett. 97 (2006) 192001.
[74] V. Tadevosyan, et al., Phys. Rev. C 75 (2007) 055205.
[75] G.M. Huber, et al., Phys. Rev. C 78 (2008) 045203.
[76] T. Frederico, G. Salmè, Few-Body Syst. 49 (2011) 163.

C.S. Mello et al. / Physics Letters B 766 (2017) 86–93 89

the isovector and pseudoscalar channel the BS vertex has the gen-
eral form:

!π (k; P ) = γ5[ıEπ (k; P ) + /P Fπ (k; P ) + kµPµ /kGπ (k; P )

+ σµνkµPνHπ (k; P )] , (18)

where P2 = m2
π . In our calculations we consider the chiral limit, 

where the current quark mass vanishes and mπ = 0. In this case 
the pion vertex can be written as (see e.g. [6,38]):

fπ Eπ (k, P ) = M(k2)/
√

Z(k2) , (19)

where fπ is the pion electroweak decay constant and only the 
scalar part of the quark self-energy appears in the above equal-
ity.

The present model for the pion BSA, which incorporates the ef-
fects from quark dressing and dynamical chiral symmetry breaking, 
through the running mass, is written as:

ψπ (k; P ) = S F (k + P/2)!π (k; P ) S F (k − P/2), (20)

where the quarks are in a colorless state and k is the relative mo-
mentum.

We consider the chiral limit, namely the current quark mass 
vanishes (m0 = 0) and mπ = 0, where only the contribution of the 
pseudoscalar Dirac matrix survives in the vertex, which simplifies 
even further the model, giving that

!π (k; P ) = ıN γ5 M(k2)|m0= 0 , (21)

where N is the normalization constant found by imposing that 
the electromagnetic form factor is 1 for zero momentum trans-
fer. Then, introducing the factorized form of the quark propagator 
(6) and the vertex function (21) in the pion BSA (20), the present 
model reads:

ψπ (k; P )

= −
(
(k + P

2 )2 − λ2)2 (/k + /P
2 +m0) −

(
(k + P

2 )2 − λ2) m3

∏
i= 1,3((k + P

2 )2 −m2
i + ıϵ)

× N γ5m3

k2 − λ2 + ıϵ

×
(
(k − P

2 )2 − λ2)2 (/k − /P
2 +m0) −

(
(k − P

2 )2 − λ2) m3

∏
i= 1,3((k − P

2 )2 −m2
i + ıϵ)

.

(22)

The position of the time-like poles, namely mi are computed from 
the model parameters m, m0 and λ, determined from the fit to the 
LQCD results for the running quark mass for space-like momen-
tum, as shown in Fig. 1.

We point out that the choice of the vertex function (21) turns 
the loop integrals for the electromagnetic form factor and decay 
constant finite, and eliminates the log-type divergences for ultravi-
olet momentum, which appear when the quark mass and vertex go 
to constant values. Although the running mass of the quark goes to 
m0 for large momentum, the vertex function decreases fast enough 
as ∼ 1/k2, which kills the log-type divergence in the loop integrals.

One should compare with previous models of the pion BSA 
from [31,35,36]. These pion models are summarized by the for-
mula:

ψπ (k; P ) = − /k + /P
2 + Mq

(k + P
2 )2 − M2

q + ıϵ
γ5 )π (k, P )

× /k − /P
2 + Mq

(k − P
2 )2 − M2

q + ıϵ
, (23)

Fig. 1. The running quark mass, Eq. (3), as a function of the Euclidean momentum 
p = √−pµpµ , with parameters from (4), is given by the solid line and compared to 
lattice QCD calculations from [37]. The dashed line shows the parametrization used 
in reference [51].

where Mq is a constituent quark mass, and the momentum com-
ponent of the vertex, )π (k, P ) is defined in terms of Pauli–Villars 
regulators:

)π (k, P ) = N

[
1

(k + P
2 )2 −m2

R + ıϵ
+ 1

(k − P
2 )2 −m2

R + ıϵ

]

(24)

for the ansatz from Ref. [31], and

)π (k, P ) = N
1

[
(k + P

2 )2 −m2
R + ıϵ

]
1

[
(k − P

2 )2 −m2
R + ıϵ

] (25)

for the product ansatz used in Ref. [35] and recently in [36] to 
compute the pion generalized parton distributions.

It is worthwhile to point out that the Nakanishi integral rep-
resentation [42] was used as a tool to explore the bound-state 
solution of the Bethe–Salpeter equation for bosons ground state 
[45,46] and excited states [50], for bound state of fermions [47]
and continuum [48,49].

4. Integral representation of the BSA

In order to introduce the integral representation for our model, 
we use the following useful identity:

1
((k + p

2 )2 − µ′ 2 + ıϵ)(k2 − λ2 + ıϵ)(k − p
2 )2 − µ2 + ıϵ)

=

=
+∞∫

−∞
dγ

1∫

−1

dz
g(γ , z;µ′,µ, p)

(
k2 + z k · p + γ + ıϵ

)3 (26)

where

g(γ , z;µ′,µ, p) =

= θ(α)θ(1 − α)
1
2 − α

[θ(1 − 2α − z)θ(z) − θ(z − 1+ 2α)θ(−z)]

(27)

and

α =
p2

4 + λ2 − µ2 − z−1(λ2 + γ )

µ2 − µ′2 + 2z−1(λ2 + γ )
. (28)
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the isovector and pseudoscalar channel the BS vertex has the gen-
eral form:

!π (k; P ) = γ5[ıEπ (k; P ) + /P Fπ (k; P ) + kµPµ /kGπ (k; P )

+ σµνkµPνHπ (k; P )] , (18)

where P2 = m2
π . In our calculations we consider the chiral limit, 

where the current quark mass vanishes and mπ = 0. In this case 
the pion vertex can be written as (see e.g. [6,38]):

fπ Eπ (k, P ) = M(k2)/
√

Z(k2) , (19)

where fπ is the pion electroweak decay constant and only the 
scalar part of the quark self-energy appears in the above equal-
ity.

The present model for the pion BSA, which incorporates the ef-
fects from quark dressing and dynamical chiral symmetry breaking, 
through the running mass, is written as:

ψπ (k; P ) = S F (k + P/2)!π (k; P ) S F (k − P/2), (20)

where the quarks are in a colorless state and k is the relative mo-
mentum.

We consider the chiral limit, namely the current quark mass 
vanishes (m0 = 0) and mπ = 0, where only the contribution of the 
pseudoscalar Dirac matrix survives in the vertex, which simplifies 
even further the model, giving that

!π (k; P ) = ıN γ5 M(k2)|m0= 0 , (21)

where N is the normalization constant found by imposing that 
the electromagnetic form factor is 1 for zero momentum trans-
fer. Then, introducing the factorized form of the quark propagator 
(6) and the vertex function (21) in the pion BSA (20), the present 
model reads:

ψπ (k; P )

= −
(
(k + P

2 )2 − λ2)2 (/k + /P
2 +m0) −

(
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.

(22)

The position of the time-like poles, namely mi are computed from 
the model parameters m, m0 and λ, determined from the fit to the 
LQCD results for the running quark mass for space-like momen-
tum, as shown in Fig. 1.

We point out that the choice of the vertex function (21) turns 
the loop integrals for the electromagnetic form factor and decay 
constant finite, and eliminates the log-type divergences for ultravi-
olet momentum, which appear when the quark mass and vertex go 
to constant values. Although the running mass of the quark goes to 
m0 for large momentum, the vertex function decreases fast enough 
as ∼ 1/k2, which kills the log-type divergence in the loop integrals.

One should compare with previous models of the pion BSA 
from [31,35,36]. These pion models are summarized by the for-
mula:

ψπ (k; P ) = − /k + /P
2 + Mq

(k + P
2 )2 − M2

q + ıϵ
γ5 )π (k, P )

× /k − /P
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Fig. 1. The running quark mass, Eq. (3), as a function of the Euclidean momentum 
p = √−pµpµ , with parameters from (4), is given by the solid line and compared to 
lattice QCD calculations from [37]. The dashed line shows the parametrization used 
in reference [51].

where Mq is a constituent quark mass, and the momentum com-
ponent of the vertex, )π (k, P ) is defined in terms of Pauli–Villars 
regulators:

)π (k, P ) = N

[
1

(k + P
2 )2 −m2

R + ıϵ
+ 1

(k − P
2 )2 −m2

R + ıϵ

]

(24)

for the ansatz from Ref. [31], and

)π (k, P ) = N
1
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]
1
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(k − P

2 )2 −m2
R + ıϵ

] (25)

for the product ansatz used in Ref. [35] and recently in [36] to 
compute the pion generalized parton distributions.

It is worthwhile to point out that the Nakanishi integral rep-
resentation [42] was used as a tool to explore the bound-state 
solution of the Bethe–Salpeter equation for bosons ground state 
[45,46] and excited states [50], for bound state of fermions [47]
and continuum [48,49].

4. Integral representation of the BSA

In order to introduce the integral representation for our model, 
we use the following useful identity:

1
((k + p

2 )2 − µ′ 2 + ıϵ)(k2 − λ2 + ıϵ)(k − p
2 )2 − µ2 + ıϵ)

=

=
+∞∫
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)3 (26)

where
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= θ(α)θ(1 − α)
1
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[θ(1 − 2α − z)θ(z) − θ(z − 1+ 2α)θ(−z)]
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and

α =
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µ2 − µ′2 + 2z−1(λ2 + γ )
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dom starting from an analytical form of the Bethe–Salpeter (BS) 
amplitude and with the Mandelstam formula compute the electro-
magnetic form factors, like in the case of the ρ-meson [27–29], 
for pseudoscalar mesons (see e.g. [30–33]), transition form fac-
tors between pseudoscalar and vector mesons [34] and generalized 
parton distributions [35,36]. A common feature of these models is 
a constituent quark mass independent of the momentum. On the 
other hand, Euclidean Lattice QCD calculations predict for the light 
quarks a running self-energy with momentum, which at infrared 
scales gives a value compatible with the constituent quark mass 
of about 0.3 GeV. Therefore, phenomenological models defined in 
Minkowski space could profit from using a running quark mass, 
with the proviso that it should be consistent with the ab-initio 
lattice QCD calculations on the Euclidean space for space-like mo-
mentum [37]. Progress in building the bridge between Euclidean 
and Minkowski space calculations have been achieved recently, 
namely, the pion light-front wave function was found from the dy-
namical chiral symmetry breaking [38], the distribution amplitude 
from lattice QCD results [39] and the pion electromagnetic form 
factor on the entire domain of space-like momentum transfer us-
ing the Dyson–Schwinger equation framework applied to QCD [40].

From the general point of view, integral representations of the 
two and three-point functions, i.e. the Källén–Lehmann spectral 
representation [41] and the Nakanishi integral representation [42]
respectively, are an useful tool to enlarge the applicability of Eu-
clidean calculations, like the ones obtained in lattice QCD to built 
the Minkowski space amplitudes. Indeed, recently it was used the 
Källén–Lehmann (KL) representation to obtain the spectral den-
sity from the lattice QCD gluon propagator in the space-like region 
through the solution of an ill-posed problem [43]. It was checked 
that the violation of the positivity constraint of the spectral density 
happens and the absence of gluons from the asymptotic spectrum 
of the theory. Similar conclusion was already found from the solu-
tion of Dyson–Schwinger equations for the gluon propagator [44]. 
With respect to the BS amplitude, the Nakanishi integral represen-
tation (NIR) allied to the light-front projection was applied to solve 
nonperturbative problems in the Minkowski space, as the bound 
state solution of the BS equation in scalar models [45,46], for two 
fermions [47] and the scattering [48,49]. It was also used to inves-
tigate the bound-state structure in Minkowski space starting from 
the BS amplitude [50], where in particular the analytic extension 
of the integral representation to the Euclidean space was carefully 
checked. It would be desirable to perform the study of hadron 
structure using the Nakanishi representation of the BS amplitude 
by extending Euclidean calculations to the Minkowski space with 
a gain in the understanding of the associated observables.

In this work, we focus on the pion structure in Minkowski space 
described in terms of an analytic model of the Bethe–Salpeter am-
plitude combined with Euclidean Lattice QCD results. The model 
takes into account the running quark mass, which will be fitted 
to Lattice QCD data for space-like momentum in the Landau gauge 
[37]. The mass function ansatz has a single pole form added to 
the current quark mass (see e.g. [51,52]), from that we build the 
quark propagator, which is analyzed through the KL spectral rep-
resentation and we will show that the positivity constraints are 
violated. After that, the pion BS amplitude will be built relying on 
the pseudoscalar vertex component, which is directly associated 
to the quark mass function, as dictated by the dynamical chiral 
symmetry breaking requirements in the limit of vanishing current 
quark mass, due to the axial-vector Ward–Takahashi identity (see 
e.g. [6]). Furthermore, the Nakanishi integral representation of the 
pion Bethe–Salpeter amplitude considering the running quark mass 
will be derived, which generalizes the model proposed in [36]. 
The performance of the ansatz is tested against the experimen-
tal data for the pion decay constant and space-like electromag-

netic form factor, and the quark electromagnetic current will be 
derived constrained by the Ward–Takahashi identity to ensure cur-
rent conservation. The proposed ansatz goes beyond previous pion 
BS amplitude models [30,31,35,56,57] by taking into account the 
quark self-energy in the fermion–antifermion–pion vertex and in 
the quark propagators. We believe that improvement is important 
for further applications to compute Minkowski space observables 
associated to the pion light-front wave function, as the generalized 
parton distributions [36] and the transverse pion structure [24,58].

2. Quark model propagator

In general the quark propagator can be written as:

S F (k) = ı Z(k2)
[
/k − M(k2) + ıϵ

]−1
(1)

and it is gauge dependent, while the observables we computed 
are not. In addition, the dynamical mass function M(k2) is 
renormalization-point-independent (see e.g. [53]).

Our model is built to fit the quark propagator in the space-like 
region obtained from Lattice QCD calculations in the Landau gauge 
[37]. This choice is quite popular as it is a smooth gauge in the 
sense that preserves the Lorentz invariance of QCD. The lattice cal-
culations from [37] have two degenerate light u and d quarks and 
a heavier one for the strange quark. This simulation used config-
urations from an improved staggered “Asqtad” action at β = 7.09, 
and our fit uses the result closest to the chiral limit among the 
light bare-quark mass calculations. As a simplification, we do not 
consider the momentum dependence of the quark wave function 
renormalization factor, Z(k2) = 1, and the adopted dressed quark 
propagator is

S F (k) = ı
[
/k − M(k2) + ıϵ

]−1
. (2)

This ansatz suggested long ago [59–62] simplifies our calculations 
of the pion electroweak observables in Minkowski space. We note 
that Lattice QCD results [37] shows some momentum dependence 
in Z(k2), that has a value of about 0.7 close to k2 = 0. In addition 
we use the following mass function parametrization,

M(k2) =m0 −m3
[
k2 − λ2 + iϵ

]−1
, (3)

already applied to fit Lattice QCD calculations [52]. The parameters 
of the running mass function are given by

m0 = 0.014 GeV, m = 0.574 GeV and λ = 0.846 GeV, (4)

which are close to the ones used in [52]. The parameters we use 
fit the experimental pion charge radius and provides fπ close to 
the experimental value, as we will present in our result section. 
The running quark mass function with our choice of parameters is 
shown in Fig. 1 and compared to Lattice QCD calculations [37]. We 
observe that our results are quite close to the lattice results con-
sidering the attributed errors. For comparison we also show the fit 
given in Ref. [51], with a more sophisticated parametrization in-
cluding log’s, which in the present model we didn’t consider with 
the sake to simplify the loop integrations in Minkowski space as-
sociated with the pion electroweak observables.

The model has quark propagator poles for m2
i = M2(m2

i ) (i la-
bels the pole position), which are given by solving the cubic equa-
tions:

mi

(
m2

i − λ2
)

= ±
[
m0

(
m2

i − λ2
)

−m3
]

, (5)

which allows to factorize the denominator of the quark model 
propagator as
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the isovector and pseudoscalar channel the BS vertex has the gen-
eral form:

!π (k; P ) = γ5[ıEπ (k; P ) + /P Fπ (k; P ) + kµPµ /kGπ (k; P )

+ σµνkµPνHπ (k; P )] , (18)

where P2 = m2
π . In our calculations we consider the chiral limit, 

where the current quark mass vanishes and mπ = 0. In this case 
the pion vertex can be written as (see e.g. [6,38]):

fπ Eπ (k, P ) = M(k2)/
√

Z(k2) , (19)

where fπ is the pion electroweak decay constant and only the 
scalar part of the quark self-energy appears in the above equal-
ity.

The present model for the pion BSA, which incorporates the ef-
fects from quark dressing and dynamical chiral symmetry breaking, 
through the running mass, is written as:

ψπ (k; P ) = S F (k + P/2)!π (k; P ) S F (k − P/2), (20)

where the quarks are in a colorless state and k is the relative mo-
mentum.

We consider the chiral limit, namely the current quark mass 
vanishes (m0 = 0) and mπ = 0, where only the contribution of the 
pseudoscalar Dirac matrix survives in the vertex, which simplifies 
even further the model, giving that

!π (k; P ) = ıN γ5 M(k2)|m0= 0 , (21)

where N is the normalization constant found by imposing that 
the electromagnetic form factor is 1 for zero momentum trans-
fer. Then, introducing the factorized form of the quark propagator 
(6) and the vertex function (21) in the pion BSA (20), the present 
model reads:

ψπ (k; P )

= −
(
(k + P

2 )2 − λ2)2 (/k + /P
2 +m0) −

(
(k + P

2 )2 − λ2) m3

∏
i= 1,3((k + P

2 )2 −m2
i + ıϵ)

× N γ5m3

k2 − λ2 + ıϵ

×
(
(k − P

2 )2 − λ2)2 (/k − /P
2 +m0) −

(
(k − P

2 )2 − λ2) m3

∏
i= 1,3((k − P

2 )2 −m2
i + ıϵ)

.

(22)

The position of the time-like poles, namely mi are computed from 
the model parameters m, m0 and λ, determined from the fit to the 
LQCD results for the running quark mass for space-like momen-
tum, as shown in Fig. 1.

We point out that the choice of the vertex function (21) turns 
the loop integrals for the electromagnetic form factor and decay 
constant finite, and eliminates the log-type divergences for ultravi-
olet momentum, which appear when the quark mass and vertex go 
to constant values. Although the running mass of the quark goes to 
m0 for large momentum, the vertex function decreases fast enough 
as ∼ 1/k2, which kills the log-type divergence in the loop integrals.

One should compare with previous models of the pion BSA 
from [31,35,36]. These pion models are summarized by the for-
mula:

ψπ (k; P ) = − /k + /P
2 + Mq

(k + P
2 )2 − M2

q + ıϵ
γ5 )π (k, P )

× /k − /P
2 + Mq

(k − P
2 )2 − M2

q + ıϵ
, (23)

Fig. 1. The running quark mass, Eq. (3), as a function of the Euclidean momentum 
p = √−pµpµ , with parameters from (4), is given by the solid line and compared to 
lattice QCD calculations from [37]. The dashed line shows the parametrization used 
in reference [51].

where Mq is a constituent quark mass, and the momentum com-
ponent of the vertex, )π (k, P ) is defined in terms of Pauli–Villars 
regulators:

)π (k, P ) = N

[
1

(k + P
2 )2 −m2

R + ıϵ
+ 1

(k − P
2 )2 −m2

R + ıϵ

]

(24)

for the ansatz from Ref. [31], and

)π (k, P ) = N
1

[
(k + P

2 )2 −m2
R + ıϵ

]
1

[
(k − P

2 )2 −m2
R + ıϵ

] (25)

for the product ansatz used in Ref. [35] and recently in [36] to 
compute the pion generalized parton distributions.

It is worthwhile to point out that the Nakanishi integral rep-
resentation [42] was used as a tool to explore the bound-state 
solution of the Bethe–Salpeter equation for bosons ground state 
[45,46] and excited states [50], for bound state of fermions [47]
and continuum [48,49].

4. Integral representation of the BSA

In order to introduce the integral representation for our model, 
we use the following useful identity:

1
((k + p

2 )2 − µ′ 2 + ıϵ)(k2 − λ2 + ıϵ)(k − p
2 )2 − µ2 + ıϵ)

=

=
+∞∫

−∞
dγ

1∫

−1

dz
g(γ , z;µ′,µ, p)

(
k2 + z k · p + γ + ıϵ

)3 (26)

where

g(γ , z;µ′,µ, p) =

= θ(α)θ(1 − α)
1
2 − α

[θ(1 − 2α − z)θ(z) − θ(z − 1+ 2α)θ(−z)]

(27)

and

α =
p2

4 + λ2 − µ2 − z−1(λ2 + γ )

µ2 − µ′2 + 2z−1(λ2 + γ )
. (28)
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the isovector and pseudoscalar channel the BS vertex has the gen-
eral form:

!π (k; P ) = γ5[ıEπ (k; P ) + /P Fπ (k; P ) + kµPµ /kGπ (k; P )

+ σµνkµPνHπ (k; P )] , (18)

where P2 = m2
π . In our calculations we consider the chiral limit, 

where the current quark mass vanishes and mπ = 0. In this case 
the pion vertex can be written as (see e.g. [6,38]):

fπ Eπ (k, P ) = M(k2)/
√

Z(k2) , (19)

where fπ is the pion electroweak decay constant and only the 
scalar part of the quark self-energy appears in the above equal-
ity.

The present model for the pion BSA, which incorporates the ef-
fects from quark dressing and dynamical chiral symmetry breaking, 
through the running mass, is written as:

ψπ (k; P ) = S F (k + P/2)!π (k; P ) S F (k − P/2), (20)

where the quarks are in a colorless state and k is the relative mo-
mentum.

We consider the chiral limit, namely the current quark mass 
vanishes (m0 = 0) and mπ = 0, where only the contribution of the 
pseudoscalar Dirac matrix survives in the vertex, which simplifies 
even further the model, giving that

!π (k; P ) = ıN γ5 M(k2)|m0= 0 , (21)

where N is the normalization constant found by imposing that 
the electromagnetic form factor is 1 for zero momentum trans-
fer. Then, introducing the factorized form of the quark propagator 
(6) and the vertex function (21) in the pion BSA (20), the present 
model reads:

ψπ (k; P )

= −
(
(k + P

2 )2 − λ2)2 (/k + /P
2 +m0) −
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(22)

The position of the time-like poles, namely mi are computed from 
the model parameters m, m0 and λ, determined from the fit to the 
LQCD results for the running quark mass for space-like momen-
tum, as shown in Fig. 1.

We point out that the choice of the vertex function (21) turns 
the loop integrals for the electromagnetic form factor and decay 
constant finite, and eliminates the log-type divergences for ultravi-
olet momentum, which appear when the quark mass and vertex go 
to constant values. Although the running mass of the quark goes to 
m0 for large momentum, the vertex function decreases fast enough 
as ∼ 1/k2, which kills the log-type divergence in the loop integrals.

One should compare with previous models of the pion BSA 
from [31,35,36]. These pion models are summarized by the for-
mula:

ψπ (k; P ) = − /k + /P
2 + Mq

(k + P
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q + ıϵ
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Fig. 1. The running quark mass, Eq. (3), as a function of the Euclidean momentum 
p = √−pµpµ , with parameters from (4), is given by the solid line and compared to 
lattice QCD calculations from [37]. The dashed line shows the parametrization used 
in reference [51].

where Mq is a constituent quark mass, and the momentum com-
ponent of the vertex, )π (k, P ) is defined in terms of Pauli–Villars 
regulators:
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for the ansatz from Ref. [31], and

)π (k, P ) = N
1

[
(k + P

2 )2 −m2
R + ıϵ

]
1

[
(k − P

2 )2 −m2
R + ıϵ

] (25)

for the product ansatz used in Ref. [35] and recently in [36] to 
compute the pion generalized parton distributions.

It is worthwhile to point out that the Nakanishi integral rep-
resentation [42] was used as a tool to explore the bound-state 
solution of the Bethe–Salpeter equation for bosons ground state 
[45,46] and excited states [50], for bound state of fermions [47]
and continuum [48,49].

4. Integral representation of the BSA

In order to introduce the integral representation for our model, 
we use the following useful identity:
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the isovector and pseudoscalar channel the BS vertex has the gen-
eral form:

!π (k; P ) = γ5[ıEπ (k; P ) + /P Fπ (k; P ) + kµPµ /kGπ (k; P )

+ σµνkµPνHπ (k; P )] , (18)

where P2 = m2
π . In our calculations we consider the chiral limit, 

where the current quark mass vanishes and mπ = 0. In this case 
the pion vertex can be written as (see e.g. [6,38]):

fπ Eπ (k, P ) = M(k2)/
√

Z(k2) , (19)

where fπ is the pion electroweak decay constant and only the 
scalar part of the quark self-energy appears in the above equal-
ity.

The present model for the pion BSA, which incorporates the ef-
fects from quark dressing and dynamical chiral symmetry breaking, 
through the running mass, is written as:

ψπ (k; P ) = S F (k + P/2)!π (k; P ) S F (k − P/2), (20)

where the quarks are in a colorless state and k is the relative mo-
mentum.

We consider the chiral limit, namely the current quark mass 
vanishes (m0 = 0) and mπ = 0, where only the contribution of the 
pseudoscalar Dirac matrix survives in the vertex, which simplifies 
even further the model, giving that

!π (k; P ) = ıN γ5 M(k2)|m0= 0 , (21)

where N is the normalization constant found by imposing that 
the electromagnetic form factor is 1 for zero momentum trans-
fer. Then, introducing the factorized form of the quark propagator 
(6) and the vertex function (21) in the pion BSA (20), the present 
model reads:

ψπ (k; P )

= −
(
(k + P

2 )2 − λ2)2 (/k + /P
2 +m0) −

(
(k + P

2 )2 − λ2) m3

∏
i= 1,3((k + P

2 )2 −m2
i + ıϵ)

× N γ5m3

k2 − λ2 + ıϵ

×
(
(k − P

2 )2 − λ2)2 (/k − /P
2 +m0) −

(
(k − P

2 )2 − λ2) m3

∏
i= 1,3((k − P

2 )2 −m2
i + ıϵ)

.

(22)

The position of the time-like poles, namely mi are computed from 
the model parameters m, m0 and λ, determined from the fit to the 
LQCD results for the running quark mass for space-like momen-
tum, as shown in Fig. 1.

We point out that the choice of the vertex function (21) turns 
the loop integrals for the electromagnetic form factor and decay 
constant finite, and eliminates the log-type divergences for ultravi-
olet momentum, which appear when the quark mass and vertex go 
to constant values. Although the running mass of the quark goes to 
m0 for large momentum, the vertex function decreases fast enough 
as ∼ 1/k2, which kills the log-type divergence in the loop integrals.

One should compare with previous models of the pion BSA 
from [31,35,36]. These pion models are summarized by the for-
mula:

ψπ (k; P ) = − /k + /P
2 + Mq

(k + P
2 )2 − M2

q + ıϵ
γ5 )π (k, P )

× /k − /P
2 + Mq

(k − P
2 )2 − M2

q + ıϵ
, (23)

Fig. 1. The running quark mass, Eq. (3), as a function of the Euclidean momentum 
p = √−pµpµ , with parameters from (4), is given by the solid line and compared to 
lattice QCD calculations from [37]. The dashed line shows the parametrization used 
in reference [51].

where Mq is a constituent quark mass, and the momentum com-
ponent of the vertex, )π (k, P ) is defined in terms of Pauli–Villars 
regulators:

)π (k, P ) = N

[
1

(k + P
2 )2 −m2

R + ıϵ
+ 1

(k − P
2 )2 −m2

R + ıϵ

]

(24)

for the ansatz from Ref. [31], and

)π (k, P ) = N
1

[
(k + P

2 )2 −m2
R + ıϵ

]
1

[
(k − P

2 )2 −m2
R + ıϵ

] (25)

for the product ansatz used in Ref. [35] and recently in [36] to 
compute the pion generalized parton distributions.

It is worthwhile to point out that the Nakanishi integral rep-
resentation [42] was used as a tool to explore the bound-state 
solution of the Bethe–Salpeter equation for bosons ground state 
[45,46] and excited states [50], for bound state of fermions [47]
and continuum [48,49].

4. Integral representation of the BSA

In order to introduce the integral representation for our model, 
we use the following useful identity:

1
((k + p

2 )2 − µ′ 2 + ıϵ)(k2 − λ2 + ıϵ)(k − p
2 )2 − µ2 + ıϵ)

=

=
+∞∫

−∞
dγ

1∫

−1

dz
g(γ , z;µ′,µ, p)

(
k2 + z k · p + γ + ıϵ

)3 (26)

where

g(γ , z;µ′,µ, p) =

= θ(α)θ(1 − α)
1
2 − α

[θ(1 − 2α − z)θ(z) − θ(z − 1+ 2α)θ(−z)]

(27)

and

α =
p2

4 + λ2 − µ2 − z−1(λ2 + γ )

µ2 − µ′2 + 2z−1(λ2 + γ )
. (28)

Other examples of analytic vertex models with fixed 
constituent quark masses
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the isovector and pseudoscalar channel the BS vertex has the gen-
eral form:

!π (k; P ) = γ5[ıEπ (k; P ) + /P Fπ (k; P ) + kµPµ /kGπ (k; P )

+ σµνkµPνHπ (k; P )] , (18)

where P2 = m2
π . In our calculations we consider the chiral limit, 

where the current quark mass vanishes and mπ = 0. In this case 
the pion vertex can be written as (see e.g. [6,38]):

fπ Eπ (k, P ) = M(k2)/
√

Z(k2) , (19)

where fπ is the pion electroweak decay constant and only the 
scalar part of the quark self-energy appears in the above equal-
ity.

The present model for the pion BSA, which incorporates the ef-
fects from quark dressing and dynamical chiral symmetry breaking, 
through the running mass, is written as:

ψπ (k; P ) = S F (k + P/2)!π (k; P ) S F (k − P/2), (20)

where the quarks are in a colorless state and k is the relative mo-
mentum.

We consider the chiral limit, namely the current quark mass 
vanishes (m0 = 0) and mπ = 0, where only the contribution of the 
pseudoscalar Dirac matrix survives in the vertex, which simplifies 
even further the model, giving that

!π (k; P ) = ıN γ5 M(k2)|m0= 0 , (21)

where N is the normalization constant found by imposing that 
the electromagnetic form factor is 1 for zero momentum trans-
fer. Then, introducing the factorized form of the quark propagator 
(6) and the vertex function (21) in the pion BSA (20), the present 
model reads:

ψπ (k; P )

= −
(
(k + P

2 )2 − λ2)2 (/k + /P
2 +m0) −

(
(k + P

2 )2 − λ2) m3

∏
i= 1,3((k + P

2 )2 −m2
i + ıϵ)

× N γ5m3

k2 − λ2 + ıϵ

×
(
(k − P

2 )2 − λ2)2 (/k − /P
2 +m0) −

(
(k − P

2 )2 − λ2) m3

∏
i= 1,3((k − P

2 )2 −m2
i + ıϵ)

.

(22)

The position of the time-like poles, namely mi are computed from 
the model parameters m, m0 and λ, determined from the fit to the 
LQCD results for the running quark mass for space-like momen-
tum, as shown in Fig. 1.

We point out that the choice of the vertex function (21) turns 
the loop integrals for the electromagnetic form factor and decay 
constant finite, and eliminates the log-type divergences for ultravi-
olet momentum, which appear when the quark mass and vertex go 
to constant values. Although the running mass of the quark goes to 
m0 for large momentum, the vertex function decreases fast enough 
as ∼ 1/k2, which kills the log-type divergence in the loop integrals.

One should compare with previous models of the pion BSA 
from [31,35,36]. These pion models are summarized by the for-
mula:

ψπ (k; P ) = − /k + /P
2 + Mq

(k + P
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q + ıϵ
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Fig. 1. The running quark mass, Eq. (3), as a function of the Euclidean momentum 
p = √−pµpµ , with parameters from (4), is given by the solid line and compared to 
lattice QCD calculations from [37]. The dashed line shows the parametrization used 
in reference [51].

where Mq is a constituent quark mass, and the momentum com-
ponent of the vertex, )π (k, P ) is defined in terms of Pauli–Villars 
regulators:

)π (k, P ) = N
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for the ansatz from Ref. [31], and
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]
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for the product ansatz used in Ref. [35] and recently in [36] to 
compute the pion generalized parton distributions.

It is worthwhile to point out that the Nakanishi integral rep-
resentation [42] was used as a tool to explore the bound-state 
solution of the Bethe–Salpeter equation for bosons ground state 
[45,46] and excited states [50], for bound state of fermions [47]
and continuum [48,49].

4. Integral representation of the BSA

In order to introduce the integral representation for our model, 
we use the following useful identity:

1
((k + p

2 )2 − µ′ 2 + ıϵ)(k2 − λ2 + ıϵ)(k − p
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and
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. (28)
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the isovector and pseudoscalar channel the BS vertex has the gen-
eral form:

!π (k; P ) = γ5[ıEπ (k; P ) + /P Fπ (k; P ) + kµPµ /kGπ (k; P )

+ σµνkµPνHπ (k; P )] , (18)

where P2 = m2
π . In our calculations we consider the chiral limit, 

where the current quark mass vanishes and mπ = 0. In this case 
the pion vertex can be written as (see e.g. [6,38]):

fπ Eπ (k, P ) = M(k2)/
√

Z(k2) , (19)

where fπ is the pion electroweak decay constant and only the 
scalar part of the quark self-energy appears in the above equal-
ity.

The present model for the pion BSA, which incorporates the ef-
fects from quark dressing and dynamical chiral symmetry breaking, 
through the running mass, is written as:

ψπ (k; P ) = S F (k + P/2)!π (k; P ) S F (k − P/2), (20)

where the quarks are in a colorless state and k is the relative mo-
mentum.

We consider the chiral limit, namely the current quark mass 
vanishes (m0 = 0) and mπ = 0, where only the contribution of the 
pseudoscalar Dirac matrix survives in the vertex, which simplifies 
even further the model, giving that

!π (k; P ) = ıN γ5 M(k2)|m0= 0 , (21)

where N is the normalization constant found by imposing that 
the electromagnetic form factor is 1 for zero momentum trans-
fer. Then, introducing the factorized form of the quark propagator 
(6) and the vertex function (21) in the pion BSA (20), the present 
model reads:
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The position of the time-like poles, namely mi are computed from 
the model parameters m, m0 and λ, determined from the fit to the 
LQCD results for the running quark mass for space-like momen-
tum, as shown in Fig. 1.

We point out that the choice of the vertex function (21) turns 
the loop integrals for the electromagnetic form factor and decay 
constant finite, and eliminates the log-type divergences for ultravi-
olet momentum, which appear when the quark mass and vertex go 
to constant values. Although the running mass of the quark goes to 
m0 for large momentum, the vertex function decreases fast enough 
as ∼ 1/k2, which kills the log-type divergence in the loop integrals.

One should compare with previous models of the pion BSA 
from [31,35,36]. These pion models are summarized by the for-
mula:

ψπ (k; P ) = − /k + /P
2 + Mq
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Fig. 1. The running quark mass, Eq. (3), as a function of the Euclidean momentum 
p = √−pµpµ , with parameters from (4), is given by the solid line and compared to 
lattice QCD calculations from [37]. The dashed line shows the parametrization used 
in reference [51].

where Mq is a constituent quark mass, and the momentum com-
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for the product ansatz used in Ref. [35] and recently in [36] to 
compute the pion generalized parton distributions.

It is worthwhile to point out that the Nakanishi integral rep-
resentation [42] was used as a tool to explore the bound-state 
solution of the Bethe–Salpeter equation for bosons ground state 
[45,46] and excited states [50], for bound state of fermions [47]
and continuum [48,49].

4. Integral representation of the BSA

In order to introduce the integral representation for our model, 
we use the following useful identity:
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the isovector and pseudoscalar channel the BS vertex has the gen-
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!π (k; P ) = γ5[ıEπ (k; P ) + /P Fπ (k; P ) + kµPµ /kGπ (k; P )

+ σµνkµPνHπ (k; P )] , (18)

where P2 = m2
π . In our calculations we consider the chiral limit, 

where the current quark mass vanishes and mπ = 0. In this case 
the pion vertex can be written as (see e.g. [6,38]):

fπ Eπ (k, P ) = M(k2)/
√

Z(k2) , (19)

where fπ is the pion electroweak decay constant and only the 
scalar part of the quark self-energy appears in the above equal-
ity.

The present model for the pion BSA, which incorporates the ef-
fects from quark dressing and dynamical chiral symmetry breaking, 
through the running mass, is written as:

ψπ (k; P ) = S F (k + P/2)!π (k; P ) S F (k − P/2), (20)

where the quarks are in a colorless state and k is the relative mo-
mentum.

We consider the chiral limit, namely the current quark mass 
vanishes (m0 = 0) and mπ = 0, where only the contribution of the 
pseudoscalar Dirac matrix survives in the vertex, which simplifies 
even further the model, giving that

!π (k; P ) = ıN γ5 M(k2)|m0= 0 , (21)

where N is the normalization constant found by imposing that 
the electromagnetic form factor is 1 for zero momentum trans-
fer. Then, introducing the factorized form of the quark propagator 
(6) and the vertex function (21) in the pion BSA (20), the present 
model reads:
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= −
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The position of the time-like poles, namely mi are computed from 
the model parameters m, m0 and λ, determined from the fit to the 
LQCD results for the running quark mass for space-like momen-
tum, as shown in Fig. 1.

We point out that the choice of the vertex function (21) turns 
the loop integrals for the electromagnetic form factor and decay 
constant finite, and eliminates the log-type divergences for ultravi-
olet momentum, which appear when the quark mass and vertex go 
to constant values. Although the running mass of the quark goes to 
m0 for large momentum, the vertex function decreases fast enough 
as ∼ 1/k2, which kills the log-type divergence in the loop integrals.

One should compare with previous models of the pion BSA 
from [31,35,36]. These pion models are summarized by the for-
mula:

ψπ (k; P ) = − /k + /P
2 + Mq
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q + ıϵ
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Fig. 1. The running quark mass, Eq. (3), as a function of the Euclidean momentum 
p = √−pµpµ , with parameters from (4), is given by the solid line and compared to 
lattice QCD calculations from [37]. The dashed line shows the parametrization used 
in reference [51].

where Mq is a constituent quark mass, and the momentum com-
ponent of the vertex, )π (k, P ) is defined in terms of Pauli–Villars 
regulators:

)π (k, P ) = N
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+ 1
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for the ansatz from Ref. [31], and
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1
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]
1
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2 )2 −m2
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] (25)

for the product ansatz used in Ref. [35] and recently in [36] to 
compute the pion generalized parton distributions.

It is worthwhile to point out that the Nakanishi integral rep-
resentation [42] was used as a tool to explore the bound-state 
solution of the Bethe–Salpeter equation for bosons ground state 
[45,46] and excited states [50], for bound state of fermions [47]
and continuum [48,49].

4. Integral representation of the BSA

In order to introduce the integral representation for our model, 
we use the following useful identity:

1
((k + p

2 )2 − µ′ 2 + ıϵ)(k2 − λ2 + ıϵ)(k − p
2 )2 − µ2 + ıϵ)

=

=
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the isovector and pseudoscalar channel the BS vertex has the gen-
eral form:

!π (k; P ) = γ5[ıEπ (k; P ) + /P Fπ (k; P ) + kµPµ /kGπ (k; P )

+ σµνkµPνHπ (k; P )] , (18)

where P2 = m2
π . In our calculations we consider the chiral limit, 

where the current quark mass vanishes and mπ = 0. In this case 
the pion vertex can be written as (see e.g. [6,38]):

fπ Eπ (k, P ) = M(k2)/
√

Z(k2) , (19)

where fπ is the pion electroweak decay constant and only the 
scalar part of the quark self-energy appears in the above equal-
ity.

The present model for the pion BSA, which incorporates the ef-
fects from quark dressing and dynamical chiral symmetry breaking, 
through the running mass, is written as:

ψπ (k; P ) = S F (k + P/2)!π (k; P ) S F (k − P/2), (20)

where the quarks are in a colorless state and k is the relative mo-
mentum.

We consider the chiral limit, namely the current quark mass 
vanishes (m0 = 0) and mπ = 0, where only the contribution of the 
pseudoscalar Dirac matrix survives in the vertex, which simplifies 
even further the model, giving that

!π (k; P ) = ıN γ5 M(k2)|m0= 0 , (21)

where N is the normalization constant found by imposing that 
the electromagnetic form factor is 1 for zero momentum trans-
fer. Then, introducing the factorized form of the quark propagator 
(6) and the vertex function (21) in the pion BSA (20), the present 
model reads:
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= −
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The position of the time-like poles, namely mi are computed from 
the model parameters m, m0 and λ, determined from the fit to the 
LQCD results for the running quark mass for space-like momen-
tum, as shown in Fig. 1.

We point out that the choice of the vertex function (21) turns 
the loop integrals for the electromagnetic form factor and decay 
constant finite, and eliminates the log-type divergences for ultravi-
olet momentum, which appear when the quark mass and vertex go 
to constant values. Although the running mass of the quark goes to 
m0 for large momentum, the vertex function decreases fast enough 
as ∼ 1/k2, which kills the log-type divergence in the loop integrals.

One should compare with previous models of the pion BSA 
from [31,35,36]. These pion models are summarized by the for-
mula:

ψπ (k; P ) = − /k + /P
2 + Mq

(k + P
2 )2 − M2

q + ıϵ
γ5 )π (k, P )

× /k − /P
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Fig. 1. The running quark mass, Eq. (3), as a function of the Euclidean momentum 
p = √−pµpµ , with parameters from (4), is given by the solid line and compared to 
lattice QCD calculations from [37]. The dashed line shows the parametrization used 
in reference [51].

where Mq is a constituent quark mass, and the momentum com-
ponent of the vertex, )π (k, P ) is defined in terms of Pauli–Villars 
regulators:
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for the ansatz from Ref. [31], and
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1
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]
1
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for the product ansatz used in Ref. [35] and recently in [36] to 
compute the pion generalized parton distributions.

It is worthwhile to point out that the Nakanishi integral rep-
resentation [42] was used as a tool to explore the bound-state 
solution of the Bethe–Salpeter equation for bosons ground state 
[45,46] and excited states [50], for bound state of fermions [47]
and continuum [48,49].

4. Integral representation of the BSA

In order to introduce the integral representation for our model, 
we use the following useful identity:
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((k + p
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!π (k; P ) = γ5[ıEπ (k; P ) + /P Fπ (k; P ) + kµPµ /kGπ (k; P )

+ σµνkµPνHπ (k; P )] , (18)

where P2 = m2
π . In our calculations we consider the chiral limit, 

where the current quark mass vanishes and mπ = 0. In this case 
the pion vertex can be written as (see e.g. [6,38]):

fπ Eπ (k, P ) = M(k2)/
√

Z(k2) , (19)

where fπ is the pion electroweak decay constant and only the 
scalar part of the quark self-energy appears in the above equal-
ity.

The present model for the pion BSA, which incorporates the ef-
fects from quark dressing and dynamical chiral symmetry breaking, 
through the running mass, is written as:

ψπ (k; P ) = S F (k + P/2)!π (k; P ) S F (k − P/2), (20)

where the quarks are in a colorless state and k is the relative mo-
mentum.

We consider the chiral limit, namely the current quark mass 
vanishes (m0 = 0) and mπ = 0, where only the contribution of the 
pseudoscalar Dirac matrix survives in the vertex, which simplifies 
even further the model, giving that

!π (k; P ) = ıN γ5 M(k2)|m0= 0 , (21)

where N is the normalization constant found by imposing that 
the electromagnetic form factor is 1 for zero momentum trans-
fer. Then, introducing the factorized form of the quark propagator 
(6) and the vertex function (21) in the pion BSA (20), the present 
model reads:
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The position of the time-like poles, namely mi are computed from 
the model parameters m, m0 and λ, determined from the fit to the 
LQCD results for the running quark mass for space-like momen-
tum, as shown in Fig. 1.

We point out that the choice of the vertex function (21) turns 
the loop integrals for the electromagnetic form factor and decay 
constant finite, and eliminates the log-type divergences for ultravi-
olet momentum, which appear when the quark mass and vertex go 
to constant values. Although the running mass of the quark goes to 
m0 for large momentum, the vertex function decreases fast enough 
as ∼ 1/k2, which kills the log-type divergence in the loop integrals.

One should compare with previous models of the pion BSA 
from [31,35,36]. These pion models are summarized by the for-
mula:
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Fig. 1. The running quark mass, Eq. (3), as a function of the Euclidean momentum 
p = √−pµpµ , with parameters from (4), is given by the solid line and compared to 
lattice QCD calculations from [37]. The dashed line shows the parametrization used 
in reference [51].

where Mq is a constituent quark mass, and the momentum com-
ponent of the vertex, )π (k, P ) is defined in terms of Pauli–Villars 
regulators:
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for the ansatz from Ref. [31], and
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]
1
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for the product ansatz used in Ref. [35] and recently in [36] to 
compute the pion generalized parton distributions.

It is worthwhile to point out that the Nakanishi integral rep-
resentation [42] was used as a tool to explore the bound-state 
solution of the Bethe–Salpeter equation for bosons ground state 
[45,46] and excited states [50], for bound state of fermions [47]
and continuum [48,49].

4. Integral representation of the BSA

In order to introduce the integral representation for our model, 
we use the following useful identity:
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2 )2 − µ′ 2 + ıϵ)(k2 − λ2 + ıϵ)(k − p
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and
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:
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= Nc

∫
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Tr

[
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× +
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, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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×
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where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )
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tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].
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Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ
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the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+
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i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.
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menta, and q = P ′ − P is the momentum transfer carried by the 
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where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
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limit (mu = md̄) it follows that:
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and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+
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π (P , P ′; q) = 0, besides the nor-

malization condition +µ
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The impulse approximation preserves the electromagnetic cur-
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)
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×
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where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
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dγ

1∫

−1

dz
gi(γ , z; p)
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k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
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0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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×
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where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:
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+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫
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dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
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quark or the dressed antiquark in the pion.
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µ
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menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:
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〈
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µ
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µ

π+,d̄
(P , P ′;q) , (35)

where +µ
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+
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π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 
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where the dressed quark propagator is given by Eq. (2). Simple 
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tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].
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Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:

Dressed quark photon vertex

Space-like
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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The support in γ bounded from below and it is implicitly given by 
the theta’s in α as expressed by the formula (27).

The pion BS amplitude can be written alternatively as:

ψπ (k; P ) = −
[
A(k2q) /kq + B(k2q)

] N γ5

k2 − λ2 + ıϵ

×
[
A(k2q) /kq + B(k2q)

]
, (29)

where kq = k + P/2 and kq = k − P/2. Noting that the quark propa-
gator model can be written via the spectral representation given in 
Eqs. (8), where the denominator has a simple form one can easily 
manipulate the BS amplitude (29) to have it written as in the el-
egant Nakanishi integral representation form. Four terms with the 
form given by the auxiliary identity (26) appear and one can write 
that:

ψπ (k; P ) = γ5 χ1(k, P ) + /kq γ5 χ2(k, P ) + γ5 /kq χ3(k, P )

+ /kq γ5 /kq χ4(k, P ) , (30)

where

χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)

The Nakanishi weight functions given by:

gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
4, C4) = (A, A). Although we have expressed the Nakanishi in-

tegral representation with Eq. (31), the support in γ is bounded 
from below (cf. Eq. (27)). The four terms of the BSA (30) can be 
rewritten with standard orthogonal Dirac operators, which was al-
ready used to solve the BS equation in ladder approximation [47].

5. Electroweak decay constant

Another relevant quantity to be used study our model is the 
pion decay constant, fπ . It is defined through the matrix ele-
ment of the partially conserved axial-vector current, ⟨0|Aµ

i |π j⟩ =
ıPµ fπδi j . Following Ref. [26], we take Aµ

i = q̄γ µγ 5 τi
2 q, and our 

model (29) for the pion BSA. After the color and isospin algebra, 
one finds the following expression for the decay constant:

Pµ fπ = Nc

∫
d4k

(2π)4
Tr

[
γ µγ 5ψπ (k; P )

]
, (33)

where Nc is the number of colors. Technically, we performed first 
the integration on k− = k0 − k3 and choose the plus component 
of the axial current (A+

i = A0
i + A3

i ). In this way the formula for 
the decay constant can also be written in terms of the valence 
component of the light-front wave function of our model (see e.g. 
[7,31]).

6. Electromagnetic form factor

The pion composite structure from the nonperturbative physics 
of confinement and DCSB, which are incorporated in our model, 
are revealed in the elastic electromagnetic form factor. The meson-
photon vertex is computed with the impulse approximation, where 
it is used the pion BSA model (29), the quark propagator (2) with 
a running mass (3) fitted to lattice QCD calculations. The impulse 

approximation to the pion-photon vertex makes evident the main 
elements of our model. In physical terms, in the impulse approx-
imation the photon probes nonperturbatively either the dressed 
quark or the dressed antiquark in the pion.

We denote the general pion-photon vertex by +
µ
π (P , P ′; q), 

where P and P ′ are, respectively, the initial and final meson mo-
menta, and q = P ′ − P is the momentum transfer carried by the 
virtual photon. The pion-photon vertex is thus given by:

−ı +
µ
π (P , P ′;q) ≡

〈
π(P ′)

∣∣ Jµ |π(P )⟩ = (P + P ′)µFπ (Q 2) , (34)

where Q 2 = −q2, |π(P )⟩ is the pion state and Jµ the electromag-
netic current operator.

The building blocks of the impulse approximation are: (i) the 
nonperturbative quark-photon vertex +µ

q (k′, k; q) with q = k′ − k, 
namely the dressed quark current; (ii) the dressed quark and anti-
quark propagators; and (iii) the pion-quark vertex. In the impulse 
approximation, the meson-photon vertex is written as the sum of 
two terms,

+
µ
π+(P , P ′;q) = Q̂ u+

µ
π+,u(P , P ′;q) + Q̂ d̄+

µ

π+,d̄
(P , P ′;q) , (35)

where +µ
π+,u(P , P ′; q) is the contribution to the pion-photon ver-

tex from the coupling of the photon with the up quark and 
+

µ

π+,d̄
(P , P ′; q) comes from the down quark. The electromagnetic 

charges are Q̂ u and Q̂ d̄ . Using appropriate momentum labelling, 
+

µ
π+,u(P , P ′; q) is given by:

+
µ
π+,u(P , P ′;q)

= Nc

∫
d4k

(2π)4
Tr

[
S F (k′ − P ′/2)+̄π+(k′; P ′)S F (k′ + P ′/2)

× +
µ
u (k′ + P ′/2,k + P/2; P )S F (k + P/2)+π+(k; P )

]
, (36)

where k is the loop integration variable, k′ = k + q/2 and the trace 
is performed over Dirac indices. The final pion state is described by 
the vertex function +̄π+(k; P ) = +π+(k; −P ′). A similar expression 
for +µ

π+,d
(P , P ′; q) can be written down. In the isospin symmetric 

limit (mu = md̄) it follows that:

+
µ
π ,u(P , P ′;q) = +

µ

π ,d̄
(P , P ′;q) , (37)

and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator

The conservation of the electromagnetic current is a fundamen-
tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+

µ
π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy

+
µ
π+,u(P , P ;q = 0) = +

µ

π+,d̄
(P , P ;q = 0) = 2 ı Pµ and

qµ+
µ
π+,u(P , P ′;q) = qµ+

µ

π+,d̄
(P , P ′;q) = 0. (38)

The impulse approximation preserves the electromagnetic cur-
rent conservation automatically, Eq. (38), provided that the quark-
photon vertex satisfies the Ward–Takahashi identity (WTI) [63–65]:

qµ+
µ
q (p′, p;q) = S−1

F (p′) − S−1
F (p) , (39)

where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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The support in γ bounded from below and it is implicitly given by 
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]
, (29)
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χi(k, P ) =
+∞∫

−∞
dγ

1∫

−1

dz
gi(γ , z; p)

(
k2 + z k · p + γ + ıϵ

)3 . (31)
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gi(γ , z; p)

= −N
∞∫

0

dµ2

∞∫

0

dµ′2ρC ′
i
(µ′2)ρCi (µ

2) g(γ , z;µ′,µ, p) , (32)

where (C ′
1, C1) = (B, B), (C ′

2, C2) = (A, B), (C ′
3, C3) = (B, A) and 

(C ′
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and therefore in our model there is only one independent quark 
electromagnetic vertex.

7. Dressed quark current operator
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tal physical constraint that model has to fulfill. The form of the 
meson-photon vertex and its form factor should reflect such con-
straint, which requires that qµ+
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π (P , P ′; q) = 0, besides the nor-

malization condition +µ
π (P , P ; q = 0) = 2 ı Pµ . Therefore, the indi-

vidual quark and antiquark contributions, Eq. (35), has to satisfy
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The impulse approximation preserves the electromagnetic cur-
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where the dressed quark propagator is given by Eq. (2). Simple 
manipulation of the WTI above, allows to isolate the quark-photon 
vertex:
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Fig. 2. Pion charge radius (left-frame) and decay constant (right-frame) as a function of the quark mass given for Mq ≡ M
(
k2 = 0

)
. The experimental data for the charge 

radius and decay constant [67] are given by the horizontal lines.

−ı !
µ
q (p′, p;q) = γ µ − m3(p′ + p)µ

D(p′ 2)D(p2)
, (40)

where the denominator is defined by the function D(p2) =(
p2 − λ2 + iϵ

)
and q = p′ − p is the incoming photon momenta. 

The general form of the quark-photon satisfies the WTI, Lorentz 
symmetry, and the correct perturbative limit in the ultraviolet 
limit. We expect that with the BSA from (29) and the quark-photon 
vertex given above, the asymptotic power-law ultraviolet behavior
of the pion form factor as predicted in QCD [7] could be recovered.

8. Results

The pion electroweak observables are obtained from Eq. (33)
for fπ and from Eq. (36) for the pion electromagnetic form fac-
tor with the quark-photon vertex (40) satisfying the WTI with 
the quark propagator (2) to ensure current conservation. The pion 
Bethe–Salpeter amplitude is given by (29) and the normalization 
factor, N , is obtained from the condition that Fπ (0) = 1. In the 
actual calculations we use mπ = 138 MeV.

Our framework allows to compute the loop integrals in
Minkowski space and technically we perform the analytical inte-
grations with light-front momentum. We use the plus components 
of the axial-vector and vector currents to obtain the pion decay 
constant and form factor, respectively. The Breit-frame with the 
Drell–Yan condition (q+ = q0 + q3 = 0) is chosen to compute the 
pion form factor, which maximally avoids contributions from end-
points or Z -diagrams in the limit of q+ → 0 (see e.g. [30] and 
for a recent discussion [66]). The integration over the light-front 
energy k− := k0 − k3 is performed analytically via the Cauchy 
residue theorem, and we checked that our model has no end-
point contributions for the plus components of the axial-vector 
and vector currents. The remaining integrations in k+ = k0 + k3

and k⊥≡ kx,ky are performed numerically.
The choice of parameters for the quark mass function given 

in (4) provides rπ = 0.672 fm, fπ = 90 MeV and the dimension-
less product rπ fπ = 0.306 compared to the experimental values 
of rexpπ = 0.672 ± 0.008 fm [67], f expπ = 92.42 ± 0.021 MeV [67]
and rexpπ f expπ = 0.315 ± 0.04. Next, we allow some variation on the 
value of the scale parameter m, which moves the quark mass given 
by Mq ≡ M

(
k2 = 0

)
to study the sensitivity of rπ and fπ to the 

model scale. This parameter in the running mass formula (3) is 
changed, while the other two are fixed in the calculations.

In Fig. 2, the results for the pion charge radius and decay con-
stant are shown as function of the quark mass, Mq , and com-

pared with the experimental data. We observe that the radius 
decreases with Mq , naturally due to the relative increase of the 
mass scale and the concomitant decrease of the length scale by 
& Mq/Mq ∼ −&rπ /rπ , which can be checked by the results in the 
left-frame of the figure. Then, the decrease of the pion radius, is 
related to the increase of the binding, when the mass increases for 
a fixed pion mass. At the same time the model has a simultaneous 
increase of fπ with the quark mass, as naively the qq̄ pair tends 
to be in a more compact configuration with the increase of the 
probability for the pair to overlap, which leads to a qualitative con-
sistence with the relation rπ fπ = √

Nc/2π [68,69], obtained in the 
limit of a constant quark-pion vertex. We remind that, relativistic 
constituent quark models approximately verifies this relation (see 
e.g. [26]) as well as for the pion obtained within Dyson–Schwinger 
calculations (see e.g. [6]).

In Fig. 3, we present the numerical calculations of the pion 
form factor Fπ using our pion BS amplitude model from Eq. (22)
and compare to the experimental data [70–75]. The bare quark-
antiquark-photon vertex, !µ(p, k; q) = ı γ µ , is inappropriate
since it violates current conservation as expressed by the
Ward–Takahashi identity, namely Eq. (39), with the dressed quark 
propagator. We enforced the WTI by building a quark electro-
magnetic current that satisfies Eq. (39) with the model dressed 
quark propagator from Eq. (2). That results in the non-trivial quark-
photon vertex given by Eq. (40), that carries the momentum scale 
λ = 0.846 GeV associated with the nonperturbative QCD physics 
contained in the mass function for the space-like momentum. The 
magnitude of the chiral symmetry breaking is associated with the 
constituent quark mass Mq = M(k2 = 0) ∼ 0.3 GeV. This mass scale 
and λ are the essential information that constraint the quark cur-
rent, pion BSA and consequently the electroweak observables.

Although the inclusion of the self-energy in the vertex con-
serves electromagnetic current via the vector WTI, the role of 
the vector meson excitations mixing with the photon seems less 
evident in the model. We just mention that in the time-like re-
gion the virtual photon can break into pair of quark and anti-
quark, which has the threshold given by the sum of two poles 
of the quark propagator, and with respect to the lower masses is 
2 m1 = 0.646 GeV, pretty close to the ρ meson mass of 0.776 GeV. 
On the other hand, this points to the limitation of the model, 
where no individual propagation of the vector meson or width can 
be clearly seen contributing to the form factor, as has been intro-
duced in a previous light-front quark model of the pion [56,57].

The model assumed the quark wave function renormalization 
equal to one, while the results from the Lattice QCD calculations 
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Fig. 2. Pion charge radius (left-frame) and decay constant (right-frame) as a function of the quark mass given for Mq ≡ M
(
k2 = 0

)
. The experimental data for the charge 

radius and decay constant [67] are given by the horizontal lines.
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D(p′ 2)D(p2)
, (40)

where the denominator is defined by the function D(p2) =(
p2 − λ2 + iϵ

)
and q = p′ − p is the incoming photon momenta. 

The general form of the quark-photon satisfies the WTI, Lorentz 
symmetry, and the correct perturbative limit in the ultraviolet 
limit. We expect that with the BSA from (29) and the quark-photon 
vertex given above, the asymptotic power-law ultraviolet behavior
of the pion form factor as predicted in QCD [7] could be recovered.

8. Results

The pion electroweak observables are obtained from Eq. (33)
for fπ and from Eq. (36) for the pion electromagnetic form fac-
tor with the quark-photon vertex (40) satisfying the WTI with 
the quark propagator (2) to ensure current conservation. The pion 
Bethe–Salpeter amplitude is given by (29) and the normalization 
factor, N , is obtained from the condition that Fπ (0) = 1. In the 
actual calculations we use mπ = 138 MeV.

Our framework allows to compute the loop integrals in
Minkowski space and technically we perform the analytical inte-
grations with light-front momentum. We use the plus components 
of the axial-vector and vector currents to obtain the pion decay 
constant and form factor, respectively. The Breit-frame with the 
Drell–Yan condition (q+ = q0 + q3 = 0) is chosen to compute the 
pion form factor, which maximally avoids contributions from end-
points or Z -diagrams in the limit of q+ → 0 (see e.g. [30] and 
for a recent discussion [66]). The integration over the light-front 
energy k− := k0 − k3 is performed analytically via the Cauchy 
residue theorem, and we checked that our model has no end-
point contributions for the plus components of the axial-vector 
and vector currents. The remaining integrations in k+ = k0 + k3

and k⊥≡ kx,ky are performed numerically.
The choice of parameters for the quark mass function given 

in (4) provides rπ = 0.672 fm, fπ = 90 MeV and the dimension-
less product rπ fπ = 0.306 compared to the experimental values 
of rexpπ = 0.672 ± 0.008 fm [67], f expπ = 92.42 ± 0.021 MeV [67]
and rexpπ f expπ = 0.315 ± 0.04. Next, we allow some variation on the 
value of the scale parameter m, which moves the quark mass given 
by Mq ≡ M

(
k2 = 0
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to study the sensitivity of rπ and fπ to the 

model scale. This parameter in the running mass formula (3) is 
changed, while the other two are fixed in the calculations.

In Fig. 2, the results for the pion charge radius and decay con-
stant are shown as function of the quark mass, Mq , and com-

pared with the experimental data. We observe that the radius 
decreases with Mq , naturally due to the relative increase of the 
mass scale and the concomitant decrease of the length scale by 
& Mq/Mq ∼ −&rπ /rπ , which can be checked by the results in the 
left-frame of the figure. Then, the decrease of the pion radius, is 
related to the increase of the binding, when the mass increases for 
a fixed pion mass. At the same time the model has a simultaneous 
increase of fπ with the quark mass, as naively the qq̄ pair tends 
to be in a more compact configuration with the increase of the 
probability for the pair to overlap, which leads to a qualitative con-
sistence with the relation rπ fπ = √

Nc/2π [68,69], obtained in the 
limit of a constant quark-pion vertex. We remind that, relativistic 
constituent quark models approximately verifies this relation (see 
e.g. [26]) as well as for the pion obtained within Dyson–Schwinger 
calculations (see e.g. [6]).

In Fig. 3, we present the numerical calculations of the pion 
form factor Fπ using our pion BS amplitude model from Eq. (22)
and compare to the experimental data [70–75]. The bare quark-
antiquark-photon vertex, !µ(p, k; q) = ı γ µ , is inappropriate
since it violates current conservation as expressed by the
Ward–Takahashi identity, namely Eq. (39), with the dressed quark 
propagator. We enforced the WTI by building a quark electro-
magnetic current that satisfies Eq. (39) with the model dressed 
quark propagator from Eq. (2). That results in the non-trivial quark-
photon vertex given by Eq. (40), that carries the momentum scale 
λ = 0.846 GeV associated with the nonperturbative QCD physics 
contained in the mass function for the space-like momentum. The 
magnitude of the chiral symmetry breaking is associated with the 
constituent quark mass Mq = M(k2 = 0) ∼ 0.3 GeV. This mass scale 
and λ are the essential information that constraint the quark cur-
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Although the inclusion of the self-energy in the vertex con-
serves electromagnetic current via the vector WTI, the role of 
the vector meson excitations mixing with the photon seems less 
evident in the model. We just mention that in the time-like re-
gion the virtual photon can break into pair of quark and anti-
quark, which has the threshold given by the sum of two poles 
of the quark propagator, and with respect to the lower masses is 
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On the other hand, this points to the limitation of the model, 
where no individual propagation of the vector meson or width can 
be clearly seen contributing to the form factor, as has been intro-
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Fig. 2. Pion charge radius (left-frame) and decay constant (right-frame) as a function of the quark mass given for Mq ≡ M
(
k2 = 0

)
. The experimental data for the charge 

radius and decay constant [67] are given by the horizontal lines.
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On the other hand, this points to the limitation of the model, 
where no individual propagation of the vector meson or width can 
be clearly seen contributing to the form factor, as has been intro-
duced in a previous light-front quark model of the pion [56,57].

The model assumed the quark wave function renormalization 
equal to one, while the results from the Lattice QCD calculations 
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Fig. 2. Pion charge radius (left-frame) and decay constant (right-frame) as a function of the quark mass given for Mq ≡ M
(
k2 = 0

)
. The experimental data for the charge 

radius and decay constant [67] are given by the horizontal lines.
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where the denominator is defined by the function D(p2) =(
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)
and q = p′ − p is the incoming photon momenta. 

The general form of the quark-photon satisfies the WTI, Lorentz 
symmetry, and the correct perturbative limit in the ultraviolet 
limit. We expect that with the BSA from (29) and the quark-photon 
vertex given above, the asymptotic power-law ultraviolet behavior
of the pion form factor as predicted in QCD [7] could be recovered.

8. Results

The pion electroweak observables are obtained from Eq. (33)
for fπ and from Eq. (36) for the pion electromagnetic form fac-
tor with the quark-photon vertex (40) satisfying the WTI with 
the quark propagator (2) to ensure current conservation. The pion 
Bethe–Salpeter amplitude is given by (29) and the normalization 
factor, N , is obtained from the condition that Fπ (0) = 1. In the 
actual calculations we use mπ = 138 MeV.

Our framework allows to compute the loop integrals in
Minkowski space and technically we perform the analytical inte-
grations with light-front momentum. We use the plus components 
of the axial-vector and vector currents to obtain the pion decay 
constant and form factor, respectively. The Breit-frame with the 
Drell–Yan condition (q+ = q0 + q3 = 0) is chosen to compute the 
pion form factor, which maximally avoids contributions from end-
points or Z -diagrams in the limit of q+ → 0 (see e.g. [30] and 
for a recent discussion [66]). The integration over the light-front 
energy k− := k0 − k3 is performed analytically via the Cauchy 
residue theorem, and we checked that our model has no end-
point contributions for the plus components of the axial-vector 
and vector currents. The remaining integrations in k+ = k0 + k3

and k⊥≡ kx,ky are performed numerically.
The choice of parameters for the quark mass function given 

in (4) provides rπ = 0.672 fm, fπ = 90 MeV and the dimension-
less product rπ fπ = 0.306 compared to the experimental values 
of rexpπ = 0.672 ± 0.008 fm [67], f expπ = 92.42 ± 0.021 MeV [67]
and rexpπ f expπ = 0.315 ± 0.04. Next, we allow some variation on the 
value of the scale parameter m, which moves the quark mass given 
by Mq ≡ M

(
k2 = 0

)
to study the sensitivity of rπ and fπ to the 

model scale. This parameter in the running mass formula (3) is 
changed, while the other two are fixed in the calculations.

In Fig. 2, the results for the pion charge radius and decay con-
stant are shown as function of the quark mass, Mq , and com-

pared with the experimental data. We observe that the radius 
decreases with Mq , naturally due to the relative increase of the 
mass scale and the concomitant decrease of the length scale by 
& Mq/Mq ∼ −&rπ /rπ , which can be checked by the results in the 
left-frame of the figure. Then, the decrease of the pion radius, is 
related to the increase of the binding, when the mass increases for 
a fixed pion mass. At the same time the model has a simultaneous 
increase of fπ with the quark mass, as naively the qq̄ pair tends 
to be in a more compact configuration with the increase of the 
probability for the pair to overlap, which leads to a qualitative con-
sistence with the relation rπ fπ = √

Nc/2π [68,69], obtained in the 
limit of a constant quark-pion vertex. We remind that, relativistic 
constituent quark models approximately verifies this relation (see 
e.g. [26]) as well as for the pion obtained within Dyson–Schwinger 
calculations (see e.g. [6]).

In Fig. 3, we present the numerical calculations of the pion 
form factor Fπ using our pion BS amplitude model from Eq. (22)
and compare to the experimental data [70–75]. The bare quark-
antiquark-photon vertex, !µ(p, k; q) = ı γ µ , is inappropriate
since it violates current conservation as expressed by the
Ward–Takahashi identity, namely Eq. (39), with the dressed quark 
propagator. We enforced the WTI by building a quark electro-
magnetic current that satisfies Eq. (39) with the model dressed 
quark propagator from Eq. (2). That results in the non-trivial quark-
photon vertex given by Eq. (40), that carries the momentum scale 
λ = 0.846 GeV associated with the nonperturbative QCD physics 
contained in the mass function for the space-like momentum. The 
magnitude of the chiral symmetry breaking is associated with the 
constituent quark mass Mq = M(k2 = 0) ∼ 0.3 GeV. This mass scale 
and λ are the essential information that constraint the quark cur-
rent, pion BSA and consequently the electroweak observables.

Although the inclusion of the self-energy in the vertex con-
serves electromagnetic current via the vector WTI, the role of 
the vector meson excitations mixing with the photon seems less 
evident in the model. We just mention that in the time-like re-
gion the virtual photon can break into pair of quark and anti-
quark, which has the threshold given by the sum of two poles 
of the quark propagator, and with respect to the lower masses is 
2 m1 = 0.646 GeV, pretty close to the ρ meson mass of 0.776 GeV. 
On the other hand, this points to the limitation of the model, 
where no individual propagation of the vector meson or width can 
be clearly seen contributing to the form factor, as has been intro-
duced in a previous light-front quark model of the pion [56,57].

The model assumed the quark wave function renormalization 
equal to one, while the results from the Lattice QCD calculations 
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The general form of the quark-photon satisfies the WTI, Lorentz 
symmetry, and the correct perturbative limit in the ultraviolet 
limit. We expect that with the BSA from (29) and the quark-photon 
vertex given above, the asymptotic power-law ultraviolet behavior
of the pion form factor as predicted in QCD [7] could be recovered.
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tor with the quark-photon vertex (40) satisfying the WTI with 
the quark propagator (2) to ensure current conservation. The pion 
Bethe–Salpeter amplitude is given by (29) and the normalization 
factor, N , is obtained from the condition that Fπ (0) = 1. In the 
actual calculations we use mπ = 138 MeV.

Our framework allows to compute the loop integrals in
Minkowski space and technically we perform the analytical inte-
grations with light-front momentum. We use the plus components 
of the axial-vector and vector currents to obtain the pion decay 
constant and form factor, respectively. The Breit-frame with the 
Drell–Yan condition (q+ = q0 + q3 = 0) is chosen to compute the 
pion form factor, which maximally avoids contributions from end-
points or Z -diagrams in the limit of q+ → 0 (see e.g. [30] and 
for a recent discussion [66]). The integration over the light-front 
energy k− := k0 − k3 is performed analytically via the Cauchy 
residue theorem, and we checked that our model has no end-
point contributions for the plus components of the axial-vector 
and vector currents. The remaining integrations in k+ = k0 + k3

and k⊥≡ kx,ky are performed numerically.
The choice of parameters for the quark mass function given 

in (4) provides rπ = 0.672 fm, fπ = 90 MeV and the dimension-
less product rπ fπ = 0.306 compared to the experimental values 
of rexpπ = 0.672 ± 0.008 fm [67], f expπ = 92.42 ± 0.021 MeV [67]
and rexpπ f expπ = 0.315 ± 0.04. Next, we allow some variation on the 
value of the scale parameter m, which moves the quark mass given 
by Mq ≡ M

(
k2 = 0
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to study the sensitivity of rπ and fπ to the 

model scale. This parameter in the running mass formula (3) is 
changed, while the other two are fixed in the calculations.

In Fig. 2, the results for the pion charge radius and decay con-
stant are shown as function of the quark mass, Mq , and com-

pared with the experimental data. We observe that the radius 
decreases with Mq , naturally due to the relative increase of the 
mass scale and the concomitant decrease of the length scale by 
& Mq/Mq ∼ −&rπ /rπ , which can be checked by the results in the 
left-frame of the figure. Then, the decrease of the pion radius, is 
related to the increase of the binding, when the mass increases for 
a fixed pion mass. At the same time the model has a simultaneous 
increase of fπ with the quark mass, as naively the qq̄ pair tends 
to be in a more compact configuration with the increase of the 
probability for the pair to overlap, which leads to a qualitative con-
sistence with the relation rπ fπ = √

Nc/2π [68,69], obtained in the 
limit of a constant quark-pion vertex. We remind that, relativistic 
constituent quark models approximately verifies this relation (see 
e.g. [26]) as well as for the pion obtained within Dyson–Schwinger 
calculations (see e.g. [6]).

In Fig. 3, we present the numerical calculations of the pion 
form factor Fπ using our pion BS amplitude model from Eq. (22)
and compare to the experimental data [70–75]. The bare quark-
antiquark-photon vertex, !µ(p, k; q) = ı γ µ , is inappropriate
since it violates current conservation as expressed by the
Ward–Takahashi identity, namely Eq. (39), with the dressed quark 
propagator. We enforced the WTI by building a quark electro-
magnetic current that satisfies Eq. (39) with the model dressed 
quark propagator from Eq. (2). That results in the non-trivial quark-
photon vertex given by Eq. (40), that carries the momentum scale 
λ = 0.846 GeV associated with the nonperturbative QCD physics 
contained in the mass function for the space-like momentum. The 
magnitude of the chiral symmetry breaking is associated with the 
constituent quark mass Mq = M(k2 = 0) ∼ 0.3 GeV. This mass scale 
and λ are the essential information that constraint the quark cur-
rent, pion BSA and consequently the electroweak observables.

Although the inclusion of the self-energy in the vertex con-
serves electromagnetic current via the vector WTI, the role of 
the vector meson excitations mixing with the photon seems less 
evident in the model. We just mention that in the time-like re-
gion the virtual photon can break into pair of quark and anti-
quark, which has the threshold given by the sum of two poles 
of the quark propagator, and with respect to the lower masses is 
2 m1 = 0.646 GeV, pretty close to the ρ meson mass of 0.776 GeV. 
On the other hand, this points to the limitation of the model, 
where no individual propagation of the vector meson or width can 
be clearly seen contributing to the form factor, as has been intro-
duced in a previous light-front quark model of the pion [56,57].

The model assumed the quark wave function renormalization 
equal to one, while the results from the Lattice QCD calculations 
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The general form of the quark-photon satisfies the WTI, Lorentz 
symmetry, and the correct perturbative limit in the ultraviolet 
limit. We expect that with the BSA from (29) and the quark-photon 
vertex given above, the asymptotic power-law ultraviolet behavior
of the pion form factor as predicted in QCD [7] could be recovered.

8. Results

The pion electroweak observables are obtained from Eq. (33)
for fπ and from Eq. (36) for the pion electromagnetic form fac-
tor with the quark-photon vertex (40) satisfying the WTI with 
the quark propagator (2) to ensure current conservation. The pion 
Bethe–Salpeter amplitude is given by (29) and the normalization 
factor, N , is obtained from the condition that Fπ (0) = 1. In the 
actual calculations we use mπ = 138 MeV.

Our framework allows to compute the loop integrals in
Minkowski space and technically we perform the analytical inte-
grations with light-front momentum. We use the plus components 
of the axial-vector and vector currents to obtain the pion decay 
constant and form factor, respectively. The Breit-frame with the 
Drell–Yan condition (q+ = q0 + q3 = 0) is chosen to compute the 
pion form factor, which maximally avoids contributions from end-
points or Z -diagrams in the limit of q+ → 0 (see e.g. [30] and 
for a recent discussion [66]). The integration over the light-front 
energy k− := k0 − k3 is performed analytically via the Cauchy 
residue theorem, and we checked that our model has no end-
point contributions for the plus components of the axial-vector 
and vector currents. The remaining integrations in k+ = k0 + k3

and k⊥≡ kx,ky are performed numerically.
The choice of parameters for the quark mass function given 

in (4) provides rπ = 0.672 fm, fπ = 90 MeV and the dimension-
less product rπ fπ = 0.306 compared to the experimental values 
of rexpπ = 0.672 ± 0.008 fm [67], f expπ = 92.42 ± 0.021 MeV [67]
and rexpπ f expπ = 0.315 ± 0.04. Next, we allow some variation on the 
value of the scale parameter m, which moves the quark mass given 
by Mq ≡ M

(
k2 = 0

)
to study the sensitivity of rπ and fπ to the 

model scale. This parameter in the running mass formula (3) is 
changed, while the other two are fixed in the calculations.

In Fig. 2, the results for the pion charge radius and decay con-
stant are shown as function of the quark mass, Mq , and com-

pared with the experimental data. We observe that the radius 
decreases with Mq , naturally due to the relative increase of the 
mass scale and the concomitant decrease of the length scale by 
& Mq/Mq ∼ −&rπ /rπ , which can be checked by the results in the 
left-frame of the figure. Then, the decrease of the pion radius, is 
related to the increase of the binding, when the mass increases for 
a fixed pion mass. At the same time the model has a simultaneous 
increase of fπ with the quark mass, as naively the qq̄ pair tends 
to be in a more compact configuration with the increase of the 
probability for the pair to overlap, which leads to a qualitative con-
sistence with the relation rπ fπ = √

Nc/2π [68,69], obtained in the 
limit of a constant quark-pion vertex. We remind that, relativistic 
constituent quark models approximately verifies this relation (see 
e.g. [26]) as well as for the pion obtained within Dyson–Schwinger 
calculations (see e.g. [6]).

In Fig. 3, we present the numerical calculations of the pion 
form factor Fπ using our pion BS amplitude model from Eq. (22)
and compare to the experimental data [70–75]. The bare quark-
antiquark-photon vertex, !µ(p, k; q) = ı γ µ , is inappropriate
since it violates current conservation as expressed by the
Ward–Takahashi identity, namely Eq. (39), with the dressed quark 
propagator. We enforced the WTI by building a quark electro-
magnetic current that satisfies Eq. (39) with the model dressed 
quark propagator from Eq. (2). That results in the non-trivial quark-
photon vertex given by Eq. (40), that carries the momentum scale 
λ = 0.846 GeV associated with the nonperturbative QCD physics 
contained in the mass function for the space-like momentum. The 
magnitude of the chiral symmetry breaking is associated with the 
constituent quark mass Mq = M(k2 = 0) ∼ 0.3 GeV. This mass scale 
and λ are the essential information that constraint the quark cur-
rent, pion BSA and consequently the electroweak observables.

Although the inclusion of the self-energy in the vertex con-
serves electromagnetic current via the vector WTI, the role of 
the vector meson excitations mixing with the photon seems less 
evident in the model. We just mention that in the time-like re-
gion the virtual photon can break into pair of quark and anti-
quark, which has the threshold given by the sum of two poles 
of the quark propagator, and with respect to the lower masses is 
2 m1 = 0.646 GeV, pretty close to the ρ meson mass of 0.776 GeV. 
On the other hand, this points to the limitation of the model, 
where no individual propagation of the vector meson or width can 
be clearly seen contributing to the form factor, as has been intro-
duced in a previous light-front quark model of the pion [56,57].

The model assumed the quark wave function renormalization 
equal to one, while the results from the Lattice QCD calculations 
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and q = p′ − p is the incoming photon momenta. 

The general form of the quark-photon satisfies the WTI, Lorentz 
symmetry, and the correct perturbative limit in the ultraviolet 
limit. We expect that with the BSA from (29) and the quark-photon 
vertex given above, the asymptotic power-law ultraviolet behavior
of the pion form factor as predicted in QCD [7] could be recovered.

8. Results

The pion electroweak observables are obtained from Eq. (33)
for fπ and from Eq. (36) for the pion electromagnetic form fac-
tor with the quark-photon vertex (40) satisfying the WTI with 
the quark propagator (2) to ensure current conservation. The pion 
Bethe–Salpeter amplitude is given by (29) and the normalization 
factor, N , is obtained from the condition that Fπ (0) = 1. In the 
actual calculations we use mπ = 138 MeV.

Our framework allows to compute the loop integrals in
Minkowski space and technically we perform the analytical inte-
grations with light-front momentum. We use the plus components 
of the axial-vector and vector currents to obtain the pion decay 
constant and form factor, respectively. The Breit-frame with the 
Drell–Yan condition (q+ = q0 + q3 = 0) is chosen to compute the 
pion form factor, which maximally avoids contributions from end-
points or Z -diagrams in the limit of q+ → 0 (see e.g. [30] and 
for a recent discussion [66]). The integration over the light-front 
energy k− := k0 − k3 is performed analytically via the Cauchy 
residue theorem, and we checked that our model has no end-
point contributions for the plus components of the axial-vector 
and vector currents. The remaining integrations in k+ = k0 + k3

and k⊥≡ kx,ky are performed numerically.
The choice of parameters for the quark mass function given 

in (4) provides rπ = 0.672 fm, fπ = 90 MeV and the dimension-
less product rπ fπ = 0.306 compared to the experimental values 
of rexpπ = 0.672 ± 0.008 fm [67], f expπ = 92.42 ± 0.021 MeV [67]
and rexpπ f expπ = 0.315 ± 0.04. Next, we allow some variation on the 
value of the scale parameter m, which moves the quark mass given 
by Mq ≡ M

(
k2 = 0

)
to study the sensitivity of rπ and fπ to the 

model scale. This parameter in the running mass formula (3) is 
changed, while the other two are fixed in the calculations.

In Fig. 2, the results for the pion charge radius and decay con-
stant are shown as function of the quark mass, Mq , and com-

pared with the experimental data. We observe that the radius 
decreases with Mq , naturally due to the relative increase of the 
mass scale and the concomitant decrease of the length scale by 
& Mq/Mq ∼ −&rπ /rπ , which can be checked by the results in the 
left-frame of the figure. Then, the decrease of the pion radius, is 
related to the increase of the binding, when the mass increases for 
a fixed pion mass. At the same time the model has a simultaneous 
increase of fπ with the quark mass, as naively the qq̄ pair tends 
to be in a more compact configuration with the increase of the 
probability for the pair to overlap, which leads to a qualitative con-
sistence with the relation rπ fπ = √

Nc/2π [68,69], obtained in the 
limit of a constant quark-pion vertex. We remind that, relativistic 
constituent quark models approximately verifies this relation (see 
e.g. [26]) as well as for the pion obtained within Dyson–Schwinger 
calculations (see e.g. [6]).

In Fig. 3, we present the numerical calculations of the pion 
form factor Fπ using our pion BS amplitude model from Eq. (22)
and compare to the experimental data [70–75]. The bare quark-
antiquark-photon vertex, !µ(p, k; q) = ı γ µ , is inappropriate
since it violates current conservation as expressed by the
Ward–Takahashi identity, namely Eq. (39), with the dressed quark 
propagator. We enforced the WTI by building a quark electro-
magnetic current that satisfies Eq. (39) with the model dressed 
quark propagator from Eq. (2). That results in the non-trivial quark-
photon vertex given by Eq. (40), that carries the momentum scale 
λ = 0.846 GeV associated with the nonperturbative QCD physics 
contained in the mass function for the space-like momentum. The 
magnitude of the chiral symmetry breaking is associated with the 
constituent quark mass Mq = M(k2 = 0) ∼ 0.3 GeV. This mass scale 
and λ are the essential information that constraint the quark cur-
rent, pion BSA and consequently the electroweak observables.

Although the inclusion of the self-energy in the vertex con-
serves electromagnetic current via the vector WTI, the role of 
the vector meson excitations mixing with the photon seems less 
evident in the model. We just mention that in the time-like re-
gion the virtual photon can break into pair of quark and anti-
quark, which has the threshold given by the sum of two poles 
of the quark propagator, and with respect to the lower masses is 
2 m1 = 0.646 GeV, pretty close to the ρ meson mass of 0.776 GeV. 
On the other hand, this points to the limitation of the model, 
where no individual propagation of the vector meson or width can 
be clearly seen contributing to the form factor, as has been intro-
duced in a previous light-front quark model of the pion [56,57].

The model assumed the quark wave function renormalization 
equal to one, while the results from the Lattice QCD calculations 
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(
k2 = 0
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The general form of the quark-photon satisfies the WTI, Lorentz 
symmetry, and the correct perturbative limit in the ultraviolet 
limit. We expect that with the BSA from (29) and the quark-photon 
vertex given above, the asymptotic power-law ultraviolet behavior
of the pion form factor as predicted in QCD [7] could be recovered.
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The pion electroweak observables are obtained from Eq. (33)
for fπ and from Eq. (36) for the pion electromagnetic form fac-
tor with the quark-photon vertex (40) satisfying the WTI with 
the quark propagator (2) to ensure current conservation. The pion 
Bethe–Salpeter amplitude is given by (29) and the normalization 
factor, N , is obtained from the condition that Fπ (0) = 1. In the 
actual calculations we use mπ = 138 MeV.

Our framework allows to compute the loop integrals in
Minkowski space and technically we perform the analytical inte-
grations with light-front momentum. We use the plus components 
of the axial-vector and vector currents to obtain the pion decay 
constant and form factor, respectively. The Breit-frame with the 
Drell–Yan condition (q+ = q0 + q3 = 0) is chosen to compute the 
pion form factor, which maximally avoids contributions from end-
points or Z -diagrams in the limit of q+ → 0 (see e.g. [30] and 
for a recent discussion [66]). The integration over the light-front 
energy k− := k0 − k3 is performed analytically via the Cauchy 
residue theorem, and we checked that our model has no end-
point contributions for the plus components of the axial-vector 
and vector currents. The remaining integrations in k+ = k0 + k3

and k⊥≡ kx,ky are performed numerically.
The choice of parameters for the quark mass function given 

in (4) provides rπ = 0.672 fm, fπ = 90 MeV and the dimension-
less product rπ fπ = 0.306 compared to the experimental values 
of rexpπ = 0.672 ± 0.008 fm [67], f expπ = 92.42 ± 0.021 MeV [67]
and rexpπ f expπ = 0.315 ± 0.04. Next, we allow some variation on the 
value of the scale parameter m, which moves the quark mass given 
by Mq ≡ M

(
k2 = 0

)
to study the sensitivity of rπ and fπ to the 

model scale. This parameter in the running mass formula (3) is 
changed, while the other two are fixed in the calculations.

In Fig. 2, the results for the pion charge radius and decay con-
stant are shown as function of the quark mass, Mq , and com-

pared with the experimental data. We observe that the radius 
decreases with Mq , naturally due to the relative increase of the 
mass scale and the concomitant decrease of the length scale by 
& Mq/Mq ∼ −&rπ /rπ , which can be checked by the results in the 
left-frame of the figure. Then, the decrease of the pion radius, is 
related to the increase of the binding, when the mass increases for 
a fixed pion mass. At the same time the model has a simultaneous 
increase of fπ with the quark mass, as naively the qq̄ pair tends 
to be in a more compact configuration with the increase of the 
probability for the pair to overlap, which leads to a qualitative con-
sistence with the relation rπ fπ = √

Nc/2π [68,69], obtained in the 
limit of a constant quark-pion vertex. We remind that, relativistic 
constituent quark models approximately verifies this relation (see 
e.g. [26]) as well as for the pion obtained within Dyson–Schwinger 
calculations (see e.g. [6]).

In Fig. 3, we present the numerical calculations of the pion 
form factor Fπ using our pion BS amplitude model from Eq. (22)
and compare to the experimental data [70–75]. The bare quark-
antiquark-photon vertex, !µ(p, k; q) = ı γ µ , is inappropriate
since it violates current conservation as expressed by the
Ward–Takahashi identity, namely Eq. (39), with the dressed quark 
propagator. We enforced the WTI by building a quark electro-
magnetic current that satisfies Eq. (39) with the model dressed 
quark propagator from Eq. (2). That results in the non-trivial quark-
photon vertex given by Eq. (40), that carries the momentum scale 
λ = 0.846 GeV associated with the nonperturbative QCD physics 
contained in the mass function for the space-like momentum. The 
magnitude of the chiral symmetry breaking is associated with the 
constituent quark mass Mq = M(k2 = 0) ∼ 0.3 GeV. This mass scale 
and λ are the essential information that constraint the quark cur-
rent, pion BSA and consequently the electroweak observables.

Although the inclusion of the self-energy in the vertex con-
serves electromagnetic current via the vector WTI, the role of 
the vector meson excitations mixing with the photon seems less 
evident in the model. We just mention that in the time-like re-
gion the virtual photon can break into pair of quark and anti-
quark, which has the threshold given by the sum of two poles 
of the quark propagator, and with respect to the lower masses is 
2 m1 = 0.646 GeV, pretty close to the ρ meson mass of 0.776 GeV. 
On the other hand, this points to the limitation of the model, 
where no individual propagation of the vector meson or width can 
be clearly seen contributing to the form factor, as has been intro-
duced in a previous light-front quark model of the pion [56,57].

The model assumed the quark wave function renormalization 
equal to one, while the results from the Lattice QCD calculations 

C.S. Mello et al. / Physics Letters B 766 (2017) 86–93 93

References

[1] J. Dudek, et al., Eur. Phys. J. A 48 (2012) 187.
[2] I. Montvay, G. Münster (Eds.), Quantum Fields on a Lattice, Cambridge Univer-

sity Press, 1997.
[3] George F. Sterman, Paul Stoler, Annu. Rev. Nucl. Part. Sci. 47 (1997) 193.
[4] A.H. Mueller, Nucl. Phys. A 654 (1999) 37C.
[5] S.R. Beane, W. Detmold, K. Orginos, M.J. Savage, Prog. Part. Nucl. Phys. 66 

(2011) 1.
[6] I.C. Cloët, C.D. Roberts, Prog. Part. Nucl. Phys. 77 (2014) 1.
[7] S.J. Brodsky, H.-C. Pauli, S.S. Pinsky, Phys. Rep. 301 (1998) 299.
[8] J.P. Vary, Nucl. Phys. Proc. Suppl. 251–252 (2014) 155.
[9] D. Chakrabarti, X. Zhao, H. Honkanen, R. Manohar, P. Maris, J.P. Vary, Phys. Rev. 

D 89 (2014) 116004.
[10] P. Wiecki, Y. Li, X. Zhao, P. Maris, J.P. Vary, Phys. Rev. D 91 (2015) 105009.
[11] P. Wiecki, Y. Li, X. Zhao, P. Maris, J.P. Vary, Few-Body Syst. 56 (2015) 489.
[12] Y. Li, V.A. Karmanov, P. Maris, J.P. Vary, Few-Body Syst. 56 (2015) 495.
[13] Y. Li, P. Maris, X. Zhao, J.P. Vary, Phys. Lett. B 758 (2016) 118.
[14] L. Adhikari, Y. Li, X. Zhao, P. Maris, J.P. Vary, A.A. El-Hady, Phys. Rev. C 93 (2016) 

055202.
[15] W. Broniowski, S. Prelovsek, L. Santelj, E. Ruiz Arriola, Phys. Lett. B 686 (2010) 

313.
[16] A.E. Dorokhov, W. Broniowski, E. Ruiz Arriola, Phys. Rev. D 84 (2011) 074015.
[17] F. Gross, Phys. Rev. 186 (1969) 1448.
[18] E.P. Biernat, F. Gross, T. Peña, A. Stadler, Phys. Rev. D 89 (2014) 016005.
[19] E.P. Biernat, F. Gross, T. Peña, A. Stadler, Few-Body Syst. 55 (2014) 705.
[20] M.T. Peña, S. Leitão, E.P. Biernat, A. Stadler, J.E. Ribeiro, F. Gross, Few-Body Syst. 

57 (2016) 467.
[21] E.P. Biernat, F. Gross, T. Peña, A. Stadler, Phys. Rev. D 89 (2014) 016006.
[22] E.P. Biernat, F. Gross, M.T. Peña, A. Stadler, Phys. Rev. D 92 (2015) 076011.
[23] H.-M. Choi, C.-R. Ji, Z. Li, H.-Y. Ryu, Phys. Rev. C 92 (2015) 055203.
[24] S. Noguera, S. Scopetta, J. High Energy Phys. 11 (2015) 102.
[25] M.V. Terentév, Sov. J. Nucl. Phys. 24 (1976) 106;

L.A. Kondratyuk, M.V. Terentév, Sov. J. Nucl. Phys. 31 (1980) 561.
[26] T. Frederico, G.A. Miller, Phys. Rev. D 45 (1992) 4207;

Phys. Rev. D 50 (1994) 210.
[27] J.P.B.C. de Melo, T. Frederico, Phys. Rev. C 55 (1997) 2043.
[28] B.L.G. Bakker, H.-M. Choi, C.-R. Ji, Phys. Rev. D 65 (2002) 116001.
[29] C.S. Mello, A.N. da Silva, J.P.B.C. de Melo, T. Frederico, Few-Body Syst. 56 (2015) 

509.
[30] J.P.B.C. de Melo, H.W.L. Naus, T. Frederico, Phys. Rev. C 59 (1999) 2278.
[31] J.P.B.C. de Melo, T. Frederico, E. Pace, G. Salmé, Nucl. Phys. A 707 (2002) 399;

Braz. J. Phys. 33 (2003) 301.
[32] E.O. da Silva, J.P.B.C. de Melo, B. El-Bennich, V.S. Filho, Phys. Rev. C 86 (2012) 

038202.
[33] G.H.S. Yabusaki, I. Ahmed, M. Ali Paracha, J.P.B.C. de Melo, B. El-Bennich, Phys. 

Rev. D 92 (2015) 034017.
[34] B.L.G. Bakker, H.-M. Choi, C.-R. Ji, Phys. Rev. D 67 (2003) 113007.
[35] T. Frederico, E. Pace, B. Pasquini, G. Salmè, Phys. Rev. D 80 (2009) 054021.
[36] C. Fanelli, E. Pace, G. Romanelli, G. Salmè, M. Salmistraro, Eur. Phys. J. C 76 

(2016) 253.

[37] M.B. Parappilly, P.O. Bowman, U.M. Heller, D.B. Leinweber, A.G. Williams, J.B. 
Zhang, Phys. Rev. D 73 (2006) 054504.

[38] L. Chang, I.C. Cloët, J.J. Cobos-Martinez, C.D. Roberts, S.M. Schmidt, P.C. Tandy, 
Phys. Rev. Lett. 110 (2013) 132001.

[39] I.C. Cloët, L. Chang, C.D. Roberts, S.M. Schmidt, P.C. Tandy, Phys. Rev. Lett. 111 
(2013) 092001.

[40] L. Chang, I.C. Cloët, C.D. Roberts, S.M. Schmidt, P.C. Tandy, Phys. Rev. Lett. 111 
(2013) 141802.

[41] C. Itzykson, J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980.
[42] N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach, New 

York, 1971.
[43] D. Dudal, O. Oliveira, P.J. Silva, Phys. Rev. D 89 (2014) 014010.
[44] S. Strauss, C.S. Fischer, C. Kellermann, Phys. Rev. Lett. 109 (2012) 252001.
[45] J. Carbonell, V.A. Karmanov, Eur. Phys. J. A 27 (2006) 1.
[46] T. Frederico, G. Salmè, M. Viviani, Phys. Rev. D 89 (2014) 016010.
[47] J. Carbonell, V.A. Karmanov, Eur. Phys. J. A 46 (2010) 387.
[48] T. Frederico, G. Salmè, M. Viviani, Phys. Rev. D 85 (2012) 036009.
[49] T. Frederico, G. Salmè, M. Viviani, Eur. Phys. J. C 75 (2015) 398.
[50] C. Gutierrez, V. Gigante, T. Frederico, G. Salmè, M. Viviani, L. Tomio, Phys. Lett. 

B 759 (2016) 131.
[51] E. Rojas, J.P.B.C. de Melo, B. El-Bennich, O. Oliveira, T. Frederico, J. High Energy 

Phys. 1310 (2013) 193.
[52] D. Dudal, M.S. Guimarães, L.F. Palhares, S.P. Sorella, Ann. Phys. 365 (2016) 155.
[53] C.S. Fischer, R. Alkofer, Phys. Rev. D 67 (2003) 094020.
[54] R. Alkofer, W. Detmold, C.S. Fischer, P. Maris, Phys. Rev. D 70 (2004) 014014.
[55] J. Greensite, Lect. Notes Phys. 821 (2011) 1.
[56] J.P.B.C. de Melo, T. Frederico, E. Pace, G. Salmè, Phys. Lett. B 581 (2004) 75.
[57] J.P.B.C. de Melo, T. Frederico, E. Pace, G. Salmè, Phys. Rev. D 73 (2006) 074013.
[58] C. Lorcé, B. Pasquini, P. Schweitzer, Eur. Phys. J. C 76 (2016) 415.
[59] H. Pagels, S. Stokar, Phys. Rev. D 20 (1979) 2947.
[60] J.M. Cornwall, Phys. Rev. D 22 (1980) 1452.
[61] H. Pagels, S. Stokar, Phys. Rev. D 22 (1980) 2876.
[62] J.M. Cornwall, Phys. Rev. D 26 (1982) 1453.
[63] J.C. Ward, Phys. Rev. 78 (1950) 182.
[64] Y. Takahashi, Nuovo Cimento 6 (1957) 371.
[65] M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory, 

Addison–Wesley, Reading, USA, 1995, p. 842.
[66] H.-M. Choi, C.-R. Ji, Phys. Rev. D 91 (2015) 014018.
[67] K.A. Olive, et al., Particle Data Group, Chin. Phys. C 38 (2014) 090001, and 2015 

update.
[68] R. Tarrach, Z. Phys. C 2 (1979) 221.
[69] S.B. Gerasimov, Sov. J. Nucl. Phys. 29 (1979) 259;

S.B. Gerasimov, Sov. J. Nucl. Phys. 32 (1980) 156 (Erratum).
[70] S.R. Amendolia, et al., Phys. Lett. B 146 (1984) 116.
[71] R. Baldini, E. Pasqualucci, S. Dubnicka, P. Gauzzi, S. Pacetti, Y. Srivastava, Nucl. 

Phys. A 666 (2000) 38.
[72] J. Volmer, et al., Phys. Rev. Lett. 86 (2001) 1713.
[73] T. Horn, et al., Phys. Rev. Lett. 97 (2006) 192001.
[74] V. Tadevosyan, et al., Phys. Rev. C 75 (2007) 055205.
[75] G.M. Huber, et al., Phys. Rev. C 78 (2008) 045203.
[76] T. Frederico, G. Salmè, Few-Body Syst. 49 (2011) 163.

C.S. Mello et al. / Physics Letters B 766 (2017) 86–93 91

Fig. 2. Pion charge radius (left-frame) and decay constant (right-frame) as a function of the quark mass given for Mq ≡ M
(
k2 = 0

)
. The experimental data for the charge 

radius and decay constant [67] are given by the horizontal lines.

−ı !
µ
q (p′, p;q) = γ µ − m3(p′ + p)µ

D(p′ 2)D(p2)
, (40)

where the denominator is defined by the function D(p2) =(
p2 − λ2 + iϵ

)
and q = p′ − p is the incoming photon momenta. 

The general form of the quark-photon satisfies the WTI, Lorentz 
symmetry, and the correct perturbative limit in the ultraviolet 
limit. We expect that with the BSA from (29) and the quark-photon 
vertex given above, the asymptotic power-law ultraviolet behavior
of the pion form factor as predicted in QCD [7] could be recovered.

8. Results

The pion electroweak observables are obtained from Eq. (33)
for fπ and from Eq. (36) for the pion electromagnetic form fac-
tor with the quark-photon vertex (40) satisfying the WTI with 
the quark propagator (2) to ensure current conservation. The pion 
Bethe–Salpeter amplitude is given by (29) and the normalization 
factor, N , is obtained from the condition that Fπ (0) = 1. In the 
actual calculations we use mπ = 138 MeV.

Our framework allows to compute the loop integrals in
Minkowski space and technically we perform the analytical inte-
grations with light-front momentum. We use the plus components 
of the axial-vector and vector currents to obtain the pion decay 
constant and form factor, respectively. The Breit-frame with the 
Drell–Yan condition (q+ = q0 + q3 = 0) is chosen to compute the 
pion form factor, which maximally avoids contributions from end-
points or Z -diagrams in the limit of q+ → 0 (see e.g. [30] and 
for a recent discussion [66]). The integration over the light-front 
energy k− := k0 − k3 is performed analytically via the Cauchy 
residue theorem, and we checked that our model has no end-
point contributions for the plus components of the axial-vector 
and vector currents. The remaining integrations in k+ = k0 + k3

and k⊥≡ kx,ky are performed numerically.
The choice of parameters for the quark mass function given 

in (4) provides rπ = 0.672 fm, fπ = 90 MeV and the dimension-
less product rπ fπ = 0.306 compared to the experimental values 
of rexpπ = 0.672 ± 0.008 fm [67], f expπ = 92.42 ± 0.021 MeV [67]
and rexpπ f expπ = 0.315 ± 0.04. Next, we allow some variation on the 
value of the scale parameter m, which moves the quark mass given 
by Mq ≡ M

(
k2 = 0

)
to study the sensitivity of rπ and fπ to the 

model scale. This parameter in the running mass formula (3) is 
changed, while the other two are fixed in the calculations.

In Fig. 2, the results for the pion charge radius and decay con-
stant are shown as function of the quark mass, Mq , and com-

pared with the experimental data. We observe that the radius 
decreases with Mq , naturally due to the relative increase of the 
mass scale and the concomitant decrease of the length scale by 
& Mq/Mq ∼ −&rπ /rπ , which can be checked by the results in the 
left-frame of the figure. Then, the decrease of the pion radius, is 
related to the increase of the binding, when the mass increases for 
a fixed pion mass. At the same time the model has a simultaneous 
increase of fπ with the quark mass, as naively the qq̄ pair tends 
to be in a more compact configuration with the increase of the 
probability for the pair to overlap, which leads to a qualitative con-
sistence with the relation rπ fπ = √

Nc/2π [68,69], obtained in the 
limit of a constant quark-pion vertex. We remind that, relativistic 
constituent quark models approximately verifies this relation (see 
e.g. [26]) as well as for the pion obtained within Dyson–Schwinger 
calculations (see e.g. [6]).

In Fig. 3, we present the numerical calculations of the pion 
form factor Fπ using our pion BS amplitude model from Eq. (22)
and compare to the experimental data [70–75]. The bare quark-
antiquark-photon vertex, !µ(p, k; q) = ı γ µ , is inappropriate
since it violates current conservation as expressed by the
Ward–Takahashi identity, namely Eq. (39), with the dressed quark 
propagator. We enforced the WTI by building a quark electro-
magnetic current that satisfies Eq. (39) with the model dressed 
quark propagator from Eq. (2). That results in the non-trivial quark-
photon vertex given by Eq. (40), that carries the momentum scale 
λ = 0.846 GeV associated with the nonperturbative QCD physics 
contained in the mass function for the space-like momentum. The 
magnitude of the chiral symmetry breaking is associated with the 
constituent quark mass Mq = M(k2 = 0) ∼ 0.3 GeV. This mass scale 
and λ are the essential information that constraint the quark cur-
rent, pion BSA and consequently the electroweak observables.

Although the inclusion of the self-energy in the vertex con-
serves electromagnetic current via the vector WTI, the role of 
the vector meson excitations mixing with the photon seems less 
evident in the model. We just mention that in the time-like re-
gion the virtual photon can break into pair of quark and anti-
quark, which has the threshold given by the sum of two poles 
of the quark propagator, and with respect to the lower masses is 
2 m1 = 0.646 GeV, pretty close to the ρ meson mass of 0.776 GeV. 
On the other hand, this points to the limitation of the model, 
where no individual propagation of the vector meson or width can 
be clearly seen contributing to the form factor, as has been intro-
duced in a previous light-front quark model of the pion [56,57].

The model assumed the quark wave function renormalization 
equal to one, while the results from the Lattice QCD calculations 
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Fig. 2. Pion charge radius (left-frame) and decay constant (right-frame) as a function of the quark mass given for Mq ≡ M
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of the pion form factor as predicted in QCD [7] could be recovered.
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tor with the quark-photon vertex (40) satisfying the WTI with 
the quark propagator (2) to ensure current conservation. The pion 
Bethe–Salpeter amplitude is given by (29) and the normalization 
factor, N , is obtained from the condition that Fπ (0) = 1. In the 
actual calculations we use mπ = 138 MeV.

Our framework allows to compute the loop integrals in
Minkowski space and technically we perform the analytical inte-
grations with light-front momentum. We use the plus components 
of the axial-vector and vector currents to obtain the pion decay 
constant and form factor, respectively. The Breit-frame with the 
Drell–Yan condition (q+ = q0 + q3 = 0) is chosen to compute the 
pion form factor, which maximally avoids contributions from end-
points or Z -diagrams in the limit of q+ → 0 (see e.g. [30] and 
for a recent discussion [66]). The integration over the light-front 
energy k− := k0 − k3 is performed analytically via the Cauchy 
residue theorem, and we checked that our model has no end-
point contributions for the plus components of the axial-vector 
and vector currents. The remaining integrations in k+ = k0 + k3

and k⊥≡ kx,ky are performed numerically.
The choice of parameters for the quark mass function given 

in (4) provides rπ = 0.672 fm, fπ = 90 MeV and the dimension-
less product rπ fπ = 0.306 compared to the experimental values 
of rexpπ = 0.672 ± 0.008 fm [67], f expπ = 92.42 ± 0.021 MeV [67]
and rexpπ f expπ = 0.315 ± 0.04. Next, we allow some variation on the 
value of the scale parameter m, which moves the quark mass given 
by Mq ≡ M

(
k2 = 0

)
to study the sensitivity of rπ and fπ to the 

model scale. This parameter in the running mass formula (3) is 
changed, while the other two are fixed in the calculations.

In Fig. 2, the results for the pion charge radius and decay con-
stant are shown as function of the quark mass, Mq , and com-

pared with the experimental data. We observe that the radius 
decreases with Mq , naturally due to the relative increase of the 
mass scale and the concomitant decrease of the length scale by 
& Mq/Mq ∼ −&rπ /rπ , which can be checked by the results in the 
left-frame of the figure. Then, the decrease of the pion radius, is 
related to the increase of the binding, when the mass increases for 
a fixed pion mass. At the same time the model has a simultaneous 
increase of fπ with the quark mass, as naively the qq̄ pair tends 
to be in a more compact configuration with the increase of the 
probability for the pair to overlap, which leads to a qualitative con-
sistence with the relation rπ fπ = √

Nc/2π [68,69], obtained in the 
limit of a constant quark-pion vertex. We remind that, relativistic 
constituent quark models approximately verifies this relation (see 
e.g. [26]) as well as for the pion obtained within Dyson–Schwinger 
calculations (see e.g. [6]).

In Fig. 3, we present the numerical calculations of the pion 
form factor Fπ using our pion BS amplitude model from Eq. (22)
and compare to the experimental data [70–75]. The bare quark-
antiquark-photon vertex, !µ(p, k; q) = ı γ µ , is inappropriate
since it violates current conservation as expressed by the
Ward–Takahashi identity, namely Eq. (39), with the dressed quark 
propagator. We enforced the WTI by building a quark electro-
magnetic current that satisfies Eq. (39) with the model dressed 
quark propagator from Eq. (2). That results in the non-trivial quark-
photon vertex given by Eq. (40), that carries the momentum scale 
λ = 0.846 GeV associated with the nonperturbative QCD physics 
contained in the mass function for the space-like momentum. The 
magnitude of the chiral symmetry breaking is associated with the 
constituent quark mass Mq = M(k2 = 0) ∼ 0.3 GeV. This mass scale 
and λ are the essential information that constraint the quark cur-
rent, pion BSA and consequently the electroweak observables.

Although the inclusion of the self-energy in the vertex con-
serves electromagnetic current via the vector WTI, the role of 
the vector meson excitations mixing with the photon seems less 
evident in the model. We just mention that in the time-like re-
gion the virtual photon can break into pair of quark and anti-
quark, which has the threshold given by the sum of two poles 
of the quark propagator, and with respect to the lower masses is 
2 m1 = 0.646 GeV, pretty close to the ρ meson mass of 0.776 GeV. 
On the other hand, this points to the limitation of the model, 
where no individual propagation of the vector meson or width can 
be clearly seen contributing to the form factor, as has been intro-
duced in a previous light-front quark model of the pion [56,57].
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Fig. 3. Pion model electromagnetic form factor as a function of the space-like momentum transfer, Q 2 = −q2, compared to the experimental values: Amendolia et al. [70], 
Baldini et al. [71], Volmer et al. [72], Horn et al. [73], Tadevosyan et al. [74] Huber et al. [75]. In the left frame it is presented the results normalized to the dipole form 
factor, Fπ (Q 2)(1 + Q 2/(0.77 GeV)2), and in the right frame Q 2 Fπ (Q 2).

in the Landau gauge [37] show Z(k2) about 0.7 at low momentum, 
Z(k2) ∼ 0.9 at 1 GeV and monotonically increases to one in the 
ultraviolet region. The net effect of the quark wave function renor-
malization is to damp the propagator in the infrared. This property 
should be reflected in the form factor, which is normalized to the 
pion charge. The main contribution to the integrand of the form 
factor expression, Eq. (36), comes from the loop integral in the 
low momentum region, therefore the quark wave function renor-
malization will enhance the relative importance of the integrand 
in the ultraviolet region with respect to the infrared one. As the 
form factor integrand goes as ∼ k−7 in the ultraviolet region and 
considering the charge normalization, we expect that the effect of 
Z(k2) will be washed out for low-momentum transfers, as well 
as for the decay constant. However, when the momentum trans-
fer is large the form factor goes as ∼ q−2 (cf. Fig. 3) suggesting the 
company of a factor Z(q2), which would be reflected in a slight 
increase of the results compared to the one we showed. In this re-
spect it will be desirable to have data with smaller errors, then the 
ones available for large momentum transfers.

9. Summary

The Minkowski space Bethe–Salpeter amplitude for the pion is 
introduced, based on a model of the quark propagator with self-
energy. The model deals only with a running quark mass, that 
in the chiral limit, namely zero current quark mass, due to the 
axial-vector Ward–Takahashi identity is associated with the pseu-
doscalar component of the vertex function (see e.g. [6]). In this 
case our ansatz for the vertex function is the mass function, apart a 
normalization factor. The running quark mass model [52] has three 
parameters obtained from the fit to the Euclidean Lattice QCD re-
sults in the space-like momentum region [37]. The quark mass 
function has a single pole in the time like region at 0.846 GeV, in-
cludes a current quark mass of 0.014 GeV, and a third scale param-
eter that provides the value of the quark mass at zero momentum 
of 0.278 GeV. The quark propagator with the mass function model 
was decomposed in a form with three single poles, one is placed 
close to the constituent quark mass, and the other two poles are 
about two and three times the constituent quark mass. The Käl-
lén–Lehmann spectral decomposition of the quark propagator was 
analyzed, and we verified that the positivity constraints for the 
spectral densities are violated. This fact is minimally satisfactory 
suggesting that the model has a quark that should not correspond 
to a physical state.

The Nakanishi integral representation [42] of the BS amplitude 
model was worked out, and the corresponding weight function 
derived including both the structure of the vertex and the quark 
self-energy. This generalizes the discussion presented in [36] and 
introduces the model in the perspective of the recent applications 
of the integral representation to solve the bound state Bethe–
Salpeter equation in Minkowski space (see e.g. [50]).

The quantitative performance of the model was checked against 
the pion electroweak observables, namely the decay constant and 
pion space-like electromagnetic form factor. In the last case, to en-
sure current conservation, the quark electromagnetic current was 
constructed from the self-energy in order to fulfill the Ward–
Takahashi identity. Technically, we used the light-front momentum 
variables with the plus component of the axial-vector and vec-
tor currents to extract the weak decay constant and form factor 
with the Drell–Yan condition (q+ = 0). The plus component of both 
axial-vector and electromagnetic current are free of zero mode 
contributions (see e.g. [30]), which simplified our calculations. The 
resulting form factor and decay constant computed in Minkowski 
space are consistent with the experimental data.

The proposed ansatz generalizes previous models of the pion 
Bethe–Salpeter amplitude [30,31,35,36,57] by taking into account 
the quark self-energy in the fermion–antifermion–pion vertex and 
in the quark propagators, important for further applications to 
compute generalized parton distributions [36] and also the trans-
verse pion structure [24,58]. In addition the present model pro-
vides further insights on the valence wave function of the pion, 
which is extracted from the integral representation by projecting 
the BS amplitude on to the light-front (see e.g. [76,47]), allowing 
to access the rich body of parton distribution functions, envisaged 
in future applications.
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• The pion structure in Minkowski space is described in terms of an analytic model of 
the Bethe–Salpeter amplitude combined with Euclidean Lattice QCD results;

• the model includes the running quark mass fitted to Lattice QCD data;

• the pion pseudoscalar vertex & quark mass function (dynamical chiral symmetry 
breaking requirements in the limit of vanishing current quark mass);

• the quark propagator violates the positivity constraints of the KL spectral repres.; 

• the integral representation of the pion Bethe–Salpeter amplitude is sketched;

• a quark electromagnetic current built consistent with the WTI (current conservation); 

• form factor and weak decay constant are consistent with the experimental data;
• Beyond the pion: the kaon
• Form-Factors, PDFs, TMDs, Fragmentation Functions...
• Incorporate in a dynamical model the running quark/gluon masses, quark-gluon 

vertex from Lattice calculations…

Conclusions and Perspectives
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