Radiative transitions between  $0^{-+}$  and  $1^{--}$  heavy quarkonia on the light front

Meijian Li Department of Physics and Astronomy, Iowa State University



LightCone 2018 Thomas Jefferson National Accelerator Facility, Newport News, VA, May 17th, 2018



### Introduction

Basis Light-Front Quantization (BLFQ): A non-perturbative approach to solve QFT. [J.P.Vary, et al., PRC81, 2010]

- Light-front (LF) Hamiltonian formalism is a natural framework for tackling relativistic bound-state problems in QCD.
  - The quantum field is quantized on light-front time  $x^+ = x^0 + x^3$ .
  - LF energy  $P^-$ , LF 3-momentum  $(P^+, P^x, P^y)$ , where  $P^{\pm} = P^0 \pm P^3$ .
  - Dispersion relation  $P^- = (m^2 + \vec{P}_{\perp}^2)/P^+$
- By solving the eigenvalue equation, it directly produces the invariant masses and the boost invariant wavefunctions:

$$\left(P^{+}\hat{P}^{-}-\vec{P}_{\perp}^{2}\right)\left|\psi_{h}(P,j,m_{j})\right\rangle=M_{h}^{2}\left|\psi_{h}(P,j,m_{j})\right\rangle$$

- Basis representation
  - Basis can encode the analytical approximation to the solution.
  - Optimal basis is the key to numerical efficiency.



### Heavy Quarkonia [Y.Li, et al., PLB758, 2016; PRD96, 2017]

ullet The effective Hamiltonian at the  $|q\bar{q}\rangle$  Fock sector:



where 
$$x=p_q^+/P^+$$
 ,  $\vec{k}_\perp=\vec{p}_{q\perp}-x\vec{P}_\perp$  ,  $\vec{r}_\perp=\vec{r}_{q\perp}-\vec{r}_{\bar{q}\perp}$  .

Confinement

transverse holographic confinement [S.J.Brodsky, et al.,PR584,2015] longitudinal confinement [Y.Li, et al.,PLB758,2016]

One-gluon exchange with running coupling

 $V_g = -\frac{4}{3} \frac{4\pi\alpha_s(Q^2)}{Q^2} \bar{u}_{\sigma'} \gamma^\mu u_\sigma \bar{v}_s \gamma_\mu v_{s'}$ 

- Basis representation
  - valence Fock sector:  $|qar{q}
    angle$
  - basis functions: eigenfunctions of  $H_0$  $\phi_{nm}(\vec{k}_{\perp}/\sqrt{x(1-x)}), \chi_l(x),$

with basis truncation:  $2n + |m| + 1 \le N_{\text{max}}$ ,  $0 \le l \le L_{\text{max}}$ .



# Heavy Quarkonia [Y.Li,et al., PLB758, 2016; PRD96, 2017]



#### Radiative transitions

The electromagnetic transition between quarkonium states via emission of a photon, offers an insight into the internal structure of quark-antiquark bound states.

$$\psi_i \to \psi_f + \gamma$$

Each process is governed by its hadron matrix,

 $\langle \psi_f | J^{\mu}(0) | \psi_i \rangle$ ,

 $J^{\mu}(x)$  is the current operator.



Radiative transitions characterized by multipoles. (Figure by Y.Li.)

# The M1 transition



vector(1<sup>--</sup>)  $\leftrightarrow$  pseudoscalar (0<sup>-+</sup>) spin  $J : 1 \leftrightarrow 0$ parity  $P : -1 \leftrightarrow -1$ charge conjugation  $C : -1 \leftrightarrow +1$  $\mathcal{V} \rightarrow \mathcal{P} + \gamma$  or  $\mathcal{P} \rightarrow \mathcal{V} + \gamma$ 

Transition form factor:

$$I^{\mu}_{m_j}(P,P') \equiv \left\langle \mathcal{P}(P') \right| J^{\mu} \left| \mathcal{V}(P,m_j) \right\rangle = \frac{2V(Q^2)}{m_{\mathcal{P}} + m_{\mathcal{V}}} \epsilon^{\mu\alpha\beta\sigma} P'_{\alpha} P_{\beta} e_{\sigma}(P,m_j)$$

Decay width:

$$\Gamma(\mathcal{V} \to \mathcal{P} + \gamma) = \frac{(m_{\mathcal{V}}^2 - m_{\mathcal{P}}^2)^3}{(2m_{\mathcal{V}})^3 (m_{\mathcal{P}} + m_{\mathcal{V}})^2} \frac{|V(0)|^2}{(2J_{\mathcal{V}} + 1)\pi}$$

where q = P' - P,  $Q^2 \equiv -q^2$  and  $e_{\sigma}(P, m_j)$  is the polarization vector of the vector meson.  $J_{\mathcal{V}} = 1$  is the spin of the initial vector meson.



### Calculation on the light front

Current components:  $J^{\mu}$  ( $\mu = +, -, x, y$ )

 $J^+$ : "good current" (suppress contributions from pair production/annihilation in vacuum)  $J^-$ : "bad current" (associate with the zero-mode contributions)  $J^{\perp}(J^R \equiv J^x + iJ^y)$ : good/bad?

[J.Carbonell, et al., PR300, 1998; S.J.Brodsky, et al., NPB543, 1999; D.Melikhov, et al., PRD65, 2002]



#### Calculation on the light front

Current components:  $J^{\mu}$  ( $\mu = +, -, x, y$ )

 $J^+$ : "good current" (suppress contributions from pair production/annihilation in vacuum)  $J^-$ : "bad current" (associate with the zero-mode contributions)  $J^{\perp}(J^R \equiv J^x + iJ^y)$ : good/bad?

[J.Carbonell, et al., PR300, 1998; S.J.Brodsky, et al., NPB543, 1999; D.Melikhov, et al., PRD65, 2002]

$$I_{m_{j}}^{+} = \frac{2V(Q^{2})}{m_{\mathcal{P}} + m_{\mathcal{V}}} \begin{cases} 0, & m_{j} = 0\\ \frac{i}{\sqrt{2}}P^{+}\Delta^{R}, & m_{j} = 1\\ -\frac{i}{\sqrt{2}}P^{+}\Delta^{L}, & m_{j} = -1 \end{cases} \qquad \begin{array}{c} \text{Boost invariants}\\ z \equiv P'^{+}/P^{+}\\ \vec{\Delta}_{\perp} \equiv \vec{P}_{\perp}' - z\vec{P}_{\perp} \end{cases} \\ I_{m_{j}}^{R} = \frac{2V(Q^{2})}{m_{\mathcal{P}} + m_{\mathcal{V}}} \begin{cases} -im_{\mathcal{V}}\Delta^{R}, & m_{j} = -1\\ \frac{i}{\sqrt{2}}P^{R}\Delta^{R}, & m_{j} = 1\\ \frac{i}{\sqrt{2}}(z^{2}m_{\mathcal{V}}^{2} - m_{\mathcal{P}}^{2} - P'^{R}\Delta^{L}), & m_{j} = -1 \end{cases} \qquad \begin{array}{c} \text{Boost invariants}\\ z \equiv P'^{+}/P^{+}\\ \vec{\Delta}_{\perp} \equiv \vec{P}_{\perp}' - z\vec{P}_{\perp} \end{cases} \\ \begin{array}{c} complex \text{ forms :}\\ k^{R/L} \equiv k^{x} \pm ik^{3}\\ \frac{i}{\sqrt{2}}(z^{2}m_{\mathcal{V}}^{2} - m_{\mathcal{P}}^{2} - P'^{R}\Delta^{L}), & m_{j} = -1 \end{array}$$

# Light-front wavefunction representation in $|q\bar{q}\rangle$



Impulse approximation:  $V(Q^2) = 2e\mathcal{Q}_f \hat{V}(Q^2)$ ,  $\mathcal{Q}_f$  is the quark charge.

The hadron matrix element in the Drell-Yan frame  $(q^+ = 0)$  is,

$$\begin{split} &\langle \mathcal{P}(P') | J^{\mu}_{q}(0) | \mathcal{V}(P, m_{j}) \rangle \\ = & \sum_{s, \bar{s}, s'} \int_{0}^{1} \frac{\mathrm{d}x}{2x^{2}(1-x)} \int \frac{\mathrm{d}^{2}\vec{k}_{\perp}}{(2\pi)^{3}} \psi^{(m_{j})}_{s\bar{s}/\mathcal{V}}(\vec{k}_{\perp}, x) \psi^{*}_{s'\bar{s}/\mathcal{P}}(\vec{k}_{\perp} + (1-x)\vec{q}_{\perp}, x) \\ & \bar{u}_{s'}(xP^{+}, \vec{k}_{\perp} + x\vec{P}_{\perp} + \vec{q}_{\perp}) \gamma^{\mu} u_{s}(xP^{+}, \vec{k}_{\perp} + x\vec{P}_{\perp}) \;. \end{split}$$

Convolutions of LFWFs:  $\psi_{s\bar{s}/\mathcal{V}}^{(m_j)}, \psi_{s'\bar{s}/\mathcal{P}}.$ 

# Transition form factor at $|q\bar{q}\rangle$

 $\hat{V}(Q^2) \text{ as convolutions of LFWFs: } \psi^{(m_j)}_{s\bar{s}/\mathcal{V}}(\vec{k}_{\perp},x)\psi^*_{s'\bar{s}/\mathcal{P}}(\vec{k}_{\perp}+(1-x)\vec{q}_{\perp},x).$ 

•  $J^+$  and  $m_j = 1$  $m_j = 0$  is not available,  $m_j = -1$  is equivalent to  $m_j = 1$ .

$$\hat{V}_{m_j=1}(Q^2) = \frac{\sqrt{2}(m_{\mathcal{P}} + m_{\mathcal{V}})}{iq^R} \int_0^1 \frac{\mathrm{d}x}{2x(1-x)} \int \frac{\mathrm{d}^2 \vec{k}_\perp}{(2\pi)^3} \\ [\psi^{(m_j=1)}_{\uparrow\uparrow/\mathcal{V}} \psi^*_{\uparrow\uparrow-\downarrow\uparrow/\mathcal{V}} \psi^*_{\uparrow\downarrow-\downarrow\uparrow/\mathcal{P}} + \psi^{(m_j=1)}_{\uparrow\downarrow+\downarrow\uparrow/\mathcal{V}} \psi^*_{\uparrow\downarrow+\downarrow\uparrow/\mathcal{P}} + \psi^{(m_j=1)}_{\downarrow\downarrow/\mathcal{V}} \psi^*_{\downarrow\downarrow/\mathcal{P}}]$$

• 
$$J^R$$
 and  $m_j = 0$   
 $m_j = \pm 1$  can be related to that in  $J^+$  through a transverse Lorentz boost.  
 $\hat{V}_{m_j=0}(Q^2) = \frac{i(m_P + m_V)}{m_V} \int_0^1 \frac{\mathrm{d}x}{2x^2(1-x)} \int \frac{\mathrm{d}^2 \vec{k}_\perp}{(2\pi)^3}$ 

$$\left[-\frac{1}{2}\psi^{(m_j=0)}_{\uparrow\downarrow+\downarrow\uparrow/\mathcal{V}}\psi^*_{\uparrow\downarrow-\downarrow\uparrow/\mathcal{P}}+\psi^{(m_j=0)}_{\downarrow\downarrow/\mathcal{V}}\psi^*_{\downarrow\downarrow/\mathcal{P}}\right]$$

Dominant spin components: exist in the nonrelativistic limit Subdominant spin components: relativistic origin



# Transition form factor at $|q\bar{q} angle$

For the less relativistic heavy systems:

 $\hat{V}_{m_j=0}(Q^2)$ : depends on dominant components $\rightarrow$  more robust! (=  $\hat{V}(Q^2)$ )  $\hat{V}_{m_j=1}(Q^2)$ : relies on subdominant components

dominant components and subdominant components of charmonium and bottomonium:



#### Transition form factor I

The *allowed* transition: initial and final states have the same radial or angular quantum numbers.

$$nS \to nS + \gamma$$

Nonrelativistic limit:  $\hat{V}(0) \rightarrow 2$ .



Shaded area: numerical uncertainty from basis truncation.

#### Transition form factor II

The *hindered* transition: initial and final states have different radial or angular quantum numbers.

$$nS \to n'S + \gamma (n \neq n'), \qquad nD \to n'S + \gamma$$

Nonrelativistic limit:  $\hat{V}(0) \rightarrow 0$ .



Shaded area: numerical uncertainty from basis truncation.

#### Transition form factor III

The *hindered* transition: initial and final states have different radial or angular quantum numbers.

$$nS \to n'S + \gamma (n \neq n'), \qquad nD \to n'S + \gamma$$

Nonrelativistic limit:  $\hat{V}(0) \rightarrow 0$ .



Shaded area: numerical uncertainty from basis truncation.



Transitions between vector and pseudoscalar mesons for charmonia and bottomonia below their open flavor threshold. (#21)



PDG: [C.Patrignani, et al.,CPC40,2016]

Lattice: [J.J.Dudek, et al., PRD73,2006; PRD79,2009; D.Bečirević, et al., JHEP01,2013; JHEP05,2015;

C. Hughes, et al., PRD92, 2015; R.Lewis, et al., PRD86, 2012]

relativistic quark model (rQM): [D.Ebert, et al., PRD67, 2003]

Godfrey-Isgur model (GI model): [T.Barnes, et al., PRD72, 2005; S.Godfrey, et al., PRD92, 2015]

#### Decay constant of the vector meson $f_{\mathcal{V}}$

$$\langle 0 | J^{\mu}(0) | \mathcal{V}(P, m_j) \rangle = e^{\mu}(P, m_j) M_{\mathcal{V}} f_{\mathcal{V}}$$

Integrals of LFWFs:

$$f_{\mathcal{V}}|_{J^+/J^R,m_j=0}:\psi^{(m_j=0)}_{\uparrow\downarrow+\downarrow\uparrow/\mathcal{V}},\qquad f_{\mathcal{V}}|_{J^R,m_j=1}:\psi^{(m_j=1)}_{\uparrow\uparrow/\mathcal{V}},\psi^{(m_j=1)}_{\uparrow\downarrow+\downarrow\uparrow/\mathcal{V}},\psi^{(m_j=1)}_{\uparrow\downarrow-\downarrow\uparrow/\mathcal{V}}.$$

Dominant spin components for the S-wave states.



Decay constant of the vector meson  $f_{\mathcal{V}}$ 

$$\langle 0 | J^{\mu}(0) | \mathcal{V}(P, m_j) \rangle = e^{\mu}(P, m_j) M_{\mathcal{V}} f_{\mathcal{V}}$$

Integrals of LFWFs:

$$f_{\mathcal{V}}|_{J^{+}/J^{R},m_{j}=0}:\psi_{\uparrow\downarrow+\downarrow\uparrow/\mathcal{V}}^{(m_{j}=0)},\quad f_{\mathcal{V}}|_{J^{R},m_{j}=1}:\psi_{\uparrow\uparrow/\mathcal{V}}^{(m_{j}=1)},\psi_{\uparrow\downarrow+\downarrow\uparrow/\mathcal{V}}^{(m_{j}=1)},\psi_{\uparrow\downarrow-\downarrow\uparrow/\mathcal{V}}^{(m_{j}=1)}.$$

Dominant spin components for the S-wave states.



Lorentz symmetry is reasonably preserved.

•  $\hat{V}(Q^2)_{m_j=0}$  using the dominant components is reliable.

# Summary and outlook

- The radiative transitions between  $0^{-+}$  ( $\mathcal{P}$ ) and  $1^{--}$  ( $\mathcal{V}$ ) heavy quarkonia is calculated from the LFWFs, providing predictions.
- Comparison of different components of current operator (J<sup>+</sup> and J<sup>⊥</sup>) provides insights on light-front dynamics.
  - ${}_{\rm O}~J^{\perp}$  is preferred to  $J^+$  for the M1 transition in heavy systems
  - $J^+$  and  $J^\perp$  agree on the decay constants of the vector mesons.
- Other radiative transitions:  $\mathcal{V} \to \mathcal{S} + \gamma$ ,  $\mathcal{V} \to \mathcal{A} + \gamma$
- EM Dalitz decay:  $\mathcal{V} \to \mathcal{P} + \gamma * \to \mathcal{P} + e^+ + e^-$ .

[M.Li, Y.Li, P.Maris and J.P.Vary, submitted to Phys.Rev.D, arXiv:1803.11519]



# Summary and outlook

- The radiative transitions between  $0^{-+}$  ( $\mathcal{P}$ ) and  $1^{--}$  ( $\mathcal{V}$ ) heavy quarkonia is calculated from the LFWFs, providing predictions.
- Comparison of different components of current operator (J<sup>+</sup> and J<sup>⊥</sup>) provides insights on light-front dynamics.
  - ${}_{\bullet}\ J^{\perp}$  is preferred to  $J^{+}$  for the M1 transition in heavy systems
  - ${}_{\circ}~J^{+}$  and  $J^{\perp}$  agree on the decay constants of the vector mesons.
- Other radiative transitions:  $\mathcal{V} \to \mathcal{S} + \gamma$ ,  $\mathcal{V} \to \mathcal{A} + \gamma$
- EM Dalitz decay:  $\mathcal{V} \to \mathcal{P} + \gamma * \to \mathcal{P} + e^+ + e^-.$

[ M.Li, Y.Li, P.Maris and J.P.Vary, submitted to Phys.Rev.D, arXiv:1803.11519]

# Thank you very much!



### Acknowledgements

Co-authors

Yang Li, Pieter Maris, James P. Vary (my supervisor).

- People from our group
   Shaoyang Jia, Wenyang Qian, Shuo Tang, Anji Yu, Lekha Adhikari.
- Others

Guangyao Chen, Xingbo Zhao, V.A. Karmanov, Sofia Leitão, Wayne N. Polyzou.

This work was supported in part by the US Department of Energy (DOE) under Grant Nos. DE-FG02-87ER40371, DE-SC0018223 (SciDAC-4/NUCLEI), DE-SC0015376 (DOE Topical Collaboration in Nuclear Theory for Double-Beta Decay and Fundamental Symmetries) and DE-FG02-04ER41302.



#### Backup: Impulse approximation



 $I^{\mu}_{m_j} = \! e \mathcal{Q}_f \left< \mathcal{P}(P') \right| J^{\mu}_q(0) \left| \mathcal{V}(P,m_j) \right> \! - \! e \mathcal{Q}_f \left< \mathcal{P}(P') \right| J^{\mu}_{\bar{q}}(0) \left| \mathcal{V}(P,m_j) \right> \, .$ 

quark term charge conjugation antiquark term

The transition form factor  $\hat{V}(Q^2)$  extracted from the quark current is related to  $V(Q^2)$  as,

$$V(Q^2) = 2e\mathcal{Q}_f \hat{V}(Q^2)$$

Quark charge:  $Q_f = Q_c = +2/3$ ,  $Q_f = Q_b = -1/3$ .



#### Backup: More on the spin components

#### dominant components and subdominant components of D-wave states:



(a) 
$$\mathcal{V}^{(m_j=0)}(n^3D_1)$$



Dominant components: exist in the nonrelativistic limit Subdominant components: relativistic origin

#### Backup: Decay constant of the vector meson

The decay constant  $f_{\mathcal{V}}$  is defined from the vacuum-to-hadron matrix elements:  $\langle 0| J^{\mu}(0) | \mathcal{V}(P, m_i) \rangle = e^{\mu}(P, m_i) M_{\mathcal{V}} f_{\mathcal{V}}$ 

- Same current operator as for the transition form factor.
- Help check Lorentz symmetry.

$$f_{\mathcal{V}}(m_j = 0) : f_{\mathcal{V}}^+(m_j = 0) = f_{\mathcal{V}}^\perp(m_j = 0)$$
  
$$f_{\mathcal{V}}(m_j = \pm 1) : f_{\mathcal{V}}^+(m_j = \pm 1) \text{(not available)}, f_{\mathcal{V}}^\perp(m_j = \pm 1)$$

The light-front wavefunctions representation,

$$\begin{split} f_{\mathcal{V}}(m_{j}=0) = &\sqrt{2N_{c}} \int_{0}^{1} \frac{\mathrm{d}x}{\sqrt{x(1-x)}} \int \frac{\mathrm{d}^{2}\vec{k}_{\perp}}{(2\pi)^{3}} \psi_{\uparrow\downarrow+\downarrow\uparrow/\mathcal{V}}^{(m_{j}=0)}(\vec{k}_{\perp},x) \; . \\ f_{\mathcal{V}}(m_{j}=1) = &\frac{\sqrt{N_{c}}}{2m_{\mathcal{V}}} \int_{0}^{1} \frac{\mathrm{d}x}{[x(1-x)]^{3/2}} \int \frac{\mathrm{d}^{2}\vec{k}_{\perp}}{(2\pi)^{3}} [k^{L}(1-2x)\psi_{\uparrow\downarrow+\downarrow\uparrow/\mathcal{V}}^{(m_{j}=1)}(\vec{k}_{\perp},x) \\ &- k^{L}\psi_{\downarrow\uparrow-\downarrow\uparrow/\mathcal{V}}^{(m_{j}=1)}(\vec{k}_{\perp},x) + \sqrt{2}m_{q}\psi_{\uparrow\uparrow/\mathcal{V}}^{(m_{j}=1)}(\vec{k}_{\perp},x)] \; . \end{split}$$

Dominant spin configurations for S-wave states.

The two sets of hadron matrix elements  $\langle \mathcal{P}(P') | J^+ | \mathcal{V}(P, m_j) \rangle$  and  $\langle \mathcal{P}(P') | \vec{J}_\perp | \mathcal{V}(P, m_j) \rangle$  can be related through the transverse Lorentz boost specified by the velocity vector  $\vec{\beta}_\perp$ ,

$$v^+ \to v^+, \quad \vec{v}_\perp \to \vec{v}_\perp + v^+ \vec{\beta}_\perp \; .$$

That is,

$$\left\langle \mathcal{P}(P'^{+}, \vec{P}_{\perp}' + P'^{+} \vec{\beta}_{\perp}) \left| \vec{J}_{\perp} \right| \mathcal{V}(P^{+}, \vec{P}_{\perp} + P^{+} \vec{\beta}_{\perp}, m_{j}) \right\rangle$$
$$= \left\langle \mathcal{P}(P'^{+}, \vec{P}_{\perp}) \left| \vec{J}_{\perp} \right| \mathcal{V}(P^{+}, \vec{P}_{\perp}, m_{j}) \right\rangle + \vec{\beta}_{\perp} \left\langle \mathcal{P}(P'^{+}, \vec{P}_{\perp}) \left| J^{+} \right| \mathcal{V}(P^{+}, \vec{P}_{\perp}, m_{j}) \right\rangle$$

In consequence,  $V(Q^2)$  obtained using  $J^+$  and  $\vec{J}_{\perp}$  with the same  $m_j$  should be the same.

Backup:  $\hat{V}(0)$ 

Ratio of  $\hat{V}_{m_j=1}(0)$  (using  $J^+$ ) to  $\hat{V}_{m_j=0}(0)$  (using  $J^R$ ).



▲ Allowed transition: the transition with the same radial or angular quantum numbers (e.g.  $nS \rightarrow nS + \gamma$ )  $\diamond$  Hindered transition: the transition between states with different radial or angular excitations. (e.g.  $nS \rightarrow n'S + \gamma$  and  $nD \rightarrow n'S + \gamma$ )