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Outline

Anna’s talk:

Recursion relations for off-shell MHV currents contain an object J which has a
structure exactly like on-shell MHV amplitude but with spinor products continued
off-shell.

e Jcan be constructed from a straight-infinite Wilson line along a polarization
vector

¢ On the other hand J corresponds to the so-called MHV vertices in the
Cachazo-Svrcek-Witten (CSW) construction.

What is the connection between the two?
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off-shell.

e Jcan be constructed from a straight-infinite Wilson line along a polarization
vector

¢ On the other hand J corresponds to the so-called MHV vertices in the
Cachazo-Svrcek-Witten (CSW) construction.

What is the connection between the two?

This talk:
e | agrangian for the CSW method (the light-front Yang-Mills Lagrangian after
certain canonical field transformation) [P. Mansfield (2006)]

e Exact solution to the field transformation B
— constructed from non-light-like Wilson lines, similar to those in J

e Consequences



MHV amplitudes

Spinor algebra
Spinor products:

Gy =T (k) uy (k) = epdi ], [il] = Ty (k) u- (k) = €474
where u. (ki) = 1 (1 £ ys) u (ki) and A = uy (ki), ¢ = u_ (k).

Momenta k; are light-like.

Parke-Taylor amplitudes’

(12)*

- - a+ =
M(1 & 508 00000l )— (12)(23)...(n1)

1 S.J. Parke, T.R. Taylor, Phys.Rev.Lett. 56, 2459 (1986)



Cachazo-Svrcek-Witten (CSW) Method (1)

General idea
Glue any amplitude from the MHV amplitudes continued off-shell.
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where q is auxiliary light-like momentum.
If k is off-shell we define the off-shell continuation of spinor in the same way:
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General idea
Glue any amplitude from the MHV amplitudes continued off-shell.

Off-shell continuation of spinors
If k is light-like, we have

Koo = dkadks == Aka = Koadl/ [q]

where q is auxiliary light-like momentum.
If k is off-shell we define the off-shell continuation of spinor in the same way:

() _ Y&
Ay = km'f’lq

MHYV vertices

(it _
12y(23)...(n1) ~

Ja 18

The spinor products are made from off-shell spinors (ij) = q,ﬂ/lf* ;



Cachazo-Svrcek-Witten (CSW) Method (2)

Example: NMHV amplitude M(17,27,37,4",5T)

2” 27
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Cachazo-Svrcek-Witten (CSW) Method (2)

Example: NMHV amplitude M(17,27,37,4",5T)

9- 2” 27
1~ 1- 3=
3 +
= +7 3~ 1- —
5t A+
5 4 5+ At 5+ A

2” . 1- 27
1~ ’ 3-
+ = + -
5+ 4+ 5" 4

The result:

o [45]*
{ M(17,27,87,4,5%) = [12] [23] [34] [45] [51] J




Yang-Mills action on the light-front (1)

Yang-Mills action

where:

1 Y % Ap — All a
SY,Mz——fd“xTrF'”FV Fr =g DD = Aqt
[ : L S A e
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Yang-Mills action

where:
1 Frv — i H DV] Ap — AHta
Sym =+ | d*xTrF™F,, - [0 a
Y-M 4 f M = (;l B ig'A“ [ta’ tb] — i\/Efabctc

Light-cone coordinates
Basis vectors:
1 1
n=—(1,0,0-1), fi=—
V2 V2

Contravariant coordinates:

1
1,0,0,1), &t = — (0,1, +i,0)
( ). el 7

+ *x _ -
T, vVi=veg]

vi=v.p, v =v-ij, v"=v-¢
Scalar product: u-v=utw +uw -uw -uw

Three-vectors: x=(x,x.x*), p= (p+,p',p*)



Yang-Mills action on the light-front (2)

Yang-Mills action in transverse fields only

e Light cone gauge: Anp=At=0

e Integration of A~ fields out of the action
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Yang-Mills action on the light-front (2)

Yang-Mills action in transverse fields only

e Light cone gauge: Anp=At=0
e Integration of A~ fields out of the action

Q0anat = [ (£89 4 £ 4 194 100 )

A, A% = —fdsxTrﬁ\'Dﬁ\*
L19 (A, A%] = —2ig’ dexTryxA'[a_A*,A']
LMV (A, A% = —2ig fdsxTﬁxA*[a_Z\‘,A*]

£ (A% A% =g fd3xTr [0-A®, A*]a2 oA, A%]

N

where v, =07'9,, ¥, =07'0,.




The MHV action (1)

Transformation of fields’

(A.,A*)—)(B.,B*)

' P. Mansfield, JHEP 03 (2006) 037
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The MHV action (1)

Transformation of fields’
(A", A*) > (B*,B¥)

@ Transformation is canonical such that B* = B* [A*]

9_A2 (X) = f &y 6Z EV;a B: ()

® The vertex (+ + —) is removed

LEO1A A% + L8 (A, A% = 19 ([B*, B*]

fdsy Tr{ [D*,’}/VA. (y)] tc}gij: E;; = wyB; (x)

where wy = 9.0,0-".

' P. Mansfield, JHEP 03 (2006) 037



The MHV action (2)

Solution to the transformations in momentum space
Ar=Bi+ ) Ui eB; B
n=2
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The MHV action (2)

Solution to the transformations in momentum space

Ar=Bi+ ) Ui eB; B
n=2
Ar =B +ZQE"" bl Br By ... By,

The MHV action

Sy (BB = f axt (L8O + 89+ + L8 +..)

where the MHV vertex is:

(LC) b1 ...bn * By* e
1:__+_“+Jv‘ " @B BB ...B

Py ) A
p2 1*n n(n-1) " (n-1)(n-2) 21

(v,,+,.,+(p1,...,pn)— (g) ( R LV
with ¥y = =p; +p;" (P 1p;") ~ [ill %y = =P} + P} (] /}") ~ (i



The diagrammatic content of transformations (1)

Solution B*[A*]

|
| |
| |
B — 4®A%4<[z i o +-L
2 > | 2%
|
|
|

e Vertical dashed lines — energy denominators:

D1___,-:2[Emma|— > E,-], =20

+
jeintermediate p

e Triple gluon vertices — helicity (— + +).



The diagrammatic content of transformations

Solution B*[A*]

| |
| | | |
| | |
B= —Q® +% I o [ o | T +
: - | - | |
| |
| |
| | |

e Vertical dashed lines — energy denominators:

D1___,-:2[Emma|— > E,-], =20

jeintermediate

e Triple gluon vertices — helicity (— + +).

(1)

1

. 1 »
I—n (Piph--wpn) = (_g’)" G Vel v*
n! Vidm Y2yt - Va.n-1)1..n)

63 (p1...n - P)

where ps_j = py + -+ pi.

I, has an interpretation of the gluon wave function’.

L. Motyka, A. Stasto, Phys.Rev.D 79 (2009) 08016



The diagrammatic content of transformations (2)

Inverse solution A*[B°]

] Il Il [ o
I Lo © [
I ] 1 i I
e —o i (i (1 e .
o o . I I J ; I I 2%
Il ] Il
I I ° [ o

e Vertical double-dashed lines — redefined energy denominators:

D1___,-:2[Z E- ) E,-], E=PP
jeintermediate p

iefinal

e Triple gluon vertices — helicity (— + +), same as before.

10



The diagrammatic content of transformations (2)

Inverse solution A*[B°]

e Vertical double-dashed lines — redefined energy denominators:

D1...i:2[z E - Z E|. E, = p*p*

p+
iefinal jeintermediate

e Triple gluon vertices — helicity (— + +), same as before.

Uy (Piprs- . Pr) = - (<) ooy ! &% (P1.n—P)
n P15 Pn) = —— \— - - ~ ~x 1.n —
n! Vi) Yn(n-1y -+ Va2 Var

¥, hasan interpretation of the gluon fragmentation amplitude’.

! L. Motyka, A. Stasto, Phys.Rev.D 79 (2009) 08016
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The Wilson line solution

The solution B*[A*]

Introduce a family of 4-vectors lying on a 2-plane:
et =& —ap, = (-a,-1,0)=e,

@

If « = p*/p™" it is a polarization vector for a momentum p.

11



The Wilson line solution

The solution B*[A*]

Introduce a family of 4-vectors lying on a 2-plane:
et =& —ap, = (-a,-1,0)=e,

@

If « = p*/p™" it is a polarization vector for a momentum p.

The solution can be expressed through the Wilson line along & integrated over
all ’slopes’ a (in A* = 0 gauge):

B; (x) :I daTr{Z;:ig’ t?9_Pexp [ig'[ dSA.(X+Sea):|}

Diagrammatically (in momentum space):
B = —® + —®—® + —®—®—® +..

where ]
P ] . Ae
——s= e =®©= —ig' A3(p)

e,
SatP

11



Summary and outlook

Summary
e The Yang-Mills Lagrangian can be canonically transformed to the
Lagrangian which contains MHV vertices.

e Such Lagrangian is 'saturated’ with fields constructed from Wilson lines
extending on a special 2-plane.

12



Summary and outlook

Summary
e The Yang-Mills Lagrangian can be canonically transformed to the
Lagrangian which contains MHV vertices.

e Such Lagrangian is 'saturated’ with fields constructed from Wilson lines
extending on a special 2-plane.

Consequences and open questions
¢ Some on-shell currents are gauge invariant, in particular the one for
g™ — g g"...g" (the J current discussed in Anna’s talk)

e An inverse functional to the above family of Wilson lines gives the
generating functional to the asymptotic solutions of the self-dual Yang-Mills
equation (subject related to the integrability of 2D models)

e The MHV Lagrangian vs Lipatov’s effective action for high energy QCD

12
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Gauge invariant off-shell currents (1)

Partially reduced Green’s function
t;< + on—shell
off —shell

|
Matrix element of the Wilson line
At tree-level the on-shell fields B can be replaced by A.

Tn (P1.n) = fd“x e P1-n (0] B [A*] (x) 1P+, +; P2 =i - s Prs =)
where |p;, =) is on-shell gluon state.

igJ :ﬁ

P n

J satisfies the Ward identities.

14



Gauge invariant off-shell currents (2)

Light-front recurrence relation for off-shell MHV current23

& :

n-1 ar
—_— ) p ks e
St (P1..n) = Tn(p1.n) — ig Z*jl (p1..j) ++ Jrf—i+ Y (Pj+1..n)
=2 j+1mnv(1,“j)(j+1)

! C. Cruz-Santiago and A. Stasto, Nucl.Phys.B 875 (2013) 368-387
2 C. Cruz-Santiago, P. Kotko, A. Stasto, Nucl.Phys. B895 (2015) 132-160
3 P. Kotko, M. Serino, A. Stasto, JHEP 1608 (2016) 026 15



Inverse transformation in position space

Inverse to the path-ordered exponential

‘H[(?)] = Z fd31 day &(X+S1ea1)l_| fdsidaifdﬂq@-&(X+Ti—1ea,»,1 +sieq,)
= i—2 —o

where e, = (-, —1,0) [recall x = (x~, x*, x*)].

The n-th term in the expansion:

~1(n) 0
71[(15] :fds1...dsnfda1...danf dry...dthq

 (X+5184,) 0-¢ (X+T1€0, +52€4,) I (X+T2€0, + S50, ) - -

16



Geometric interpretation (1)

Define a new object

Py (r.@’) =0 ds ¢ (X + 1, + se,)

—0o

oo ’

e The Wilson line B* [A°®] can be expressed in terms of p,.
Set ¢ = A*. The n-th term in expansion:

+-00 Tq Tn-1
fda day ...dcxnf dT1f dars f dtn Do, (11, @) Day (72, @) .. . Pay, (Thy @)

()(")

¢ The inverse functional A* [B°]
Set ¢ = B*. The n-th term in expansion:

+00 0 0
fdafdm,..da/nf d‘r1f dTg.,.f Aty Pay (71, @) Do, (T2, 1) Doy (13, 02) ...

a(n)

~a

17



Geometric interpretation (2)
Vector field in the 2D space

Consider 2D space made of points
(a*,a7), a*,a  €R.
In that space

e, — (1,a)

The object p, (7, @) can be thought of
as a vector attached in a point (7, 7a’)
and having a direction given by a.

(1, )

(1,a1)

+7 pa(ma’)

18



Geometric interpretation (3)

Objects ¢ and ¢! in 2D space

(La)
e

&

f//
PR
% 7 Pay(r )

2 Poy(ms )

=

-7 Pay(mi.a)

N
2 Pag(75,0)

o7 Pagl(Tia)

“Pa,(Tu: )
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Geometric interpretation (3)

Objects ¢ and ¢! in 2D space

a Q(")
a
Pay(2, 1)
Pay(73, 02) Z\ ™~
N \
S < \
S Qap
a
2T~ |
R
2
. .
w o7 a
27y
e /
AVl
/
Pay(risa) 7
/
/
a8
/
/
,
/
Poy (71, a3)
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Geometric interpretation (3)

Objects ¢ and ¢! in 2D space

Nd
%
e

......................

—
- \/‘3( S
PR —_
2 =
-
S %/’Tﬁé <<=
NN o \;_{/\
O =
< ///‘—_ -
~_. 7
- —
—
~
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