Lorentz Invariance and QCD Equation of Motion Relations for Partonic Orbital Angular Momentum

> Abha Rajan University of Virginia

Light Cone 2018 Jefferson Lab

May 18, 2018

People Involved

- Simonetta Liuti, University of Virginia
- Michael Engelhardt, New Mexico State University
- Aurore Courtoy, UNAM Mexico

AR, Engelhardt and Liuti arxiv:1709.05770

AR, Courtoy, Engelhardt and Liuti PRD 94 (2016)

Outline

- Spin Crisis !
- Orbital Angular Momentum
 - GTMD definition
 - GPD definition Ji
- What's the connection? Lorentz Invariance Relations
- Equation of Motion
- Quark Gluon Structure of Twist Three GPDs
- Conclusions

Proton Spin Crisis

ho – ho = $g_1^P(x)$ Quark Spin Contribution

$$\frac{1}{2M} \int_{-\infty}^{\infty} \frac{d\lambda}{2\pi} e^{-i\lambda x} \left\langle P, S \left| \bar{\psi} \left(\frac{\lambda n}{2} \right) \gamma_{\mu} \gamma_{5} \psi \left(-\frac{\lambda n}{2} \right) \right| P, S \right\rangle = \Lambda g_{1}(x) p_{\mu} + g_{T}(x) S_{\perp_{\mu}}$$

Measured by EMC experiment in 1980s to be only 33% of total !!

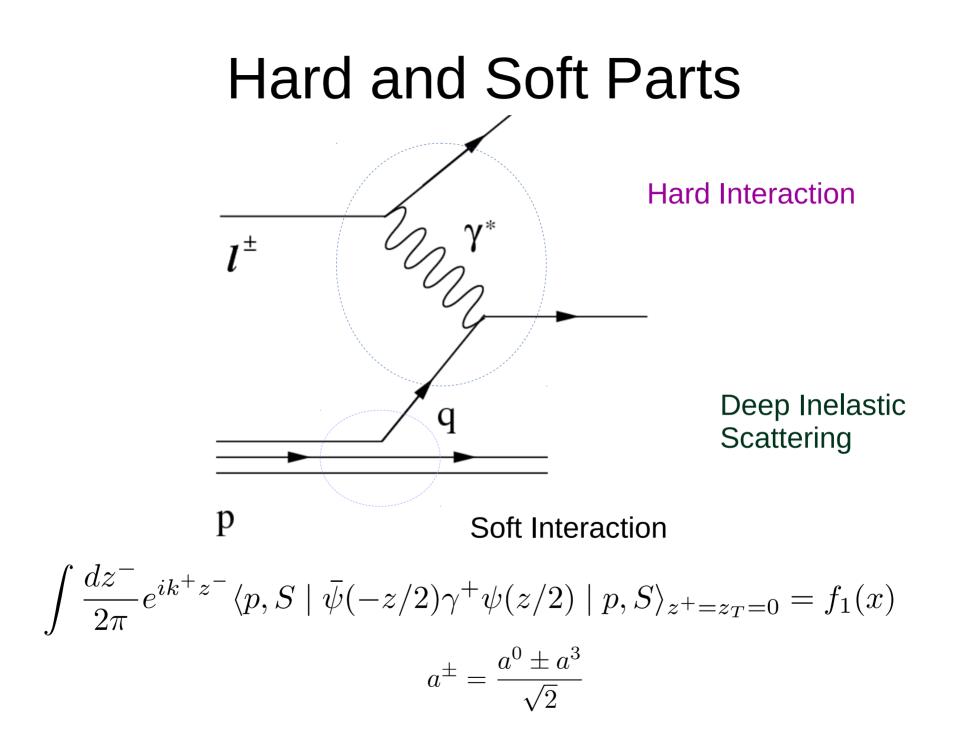
Proton Spin Crisis

 \rightarrow - $g_1^P(x)$ Quark Spin Contribution

$$\frac{1}{2M} \int_{-\infty}^{\infty} \frac{d\lambda}{2\pi} e^{-i\lambda x} \left\langle P, S \left| \bar{\psi} \left(\frac{\lambda n}{2} \right) \gamma_{\mu} \gamma_{5} \psi \left(-\frac{\lambda n}{2} \right) \right| P, S \right\rangle = \Lambda g_{1}(x) p_{\mu} + g_{T}(x) S_{\perp_{\mu}}$$

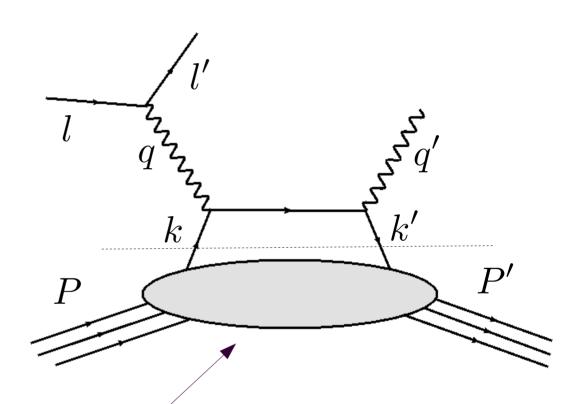
Measured by EMC experiment in 1980s to be only 33% of total !!

What are other sources ? Partonic Orbital Angular Momentum



Where are the partons located?

- Need a high energy photon to probe the partons
- The proton needs to remain intact to access spatial distribution

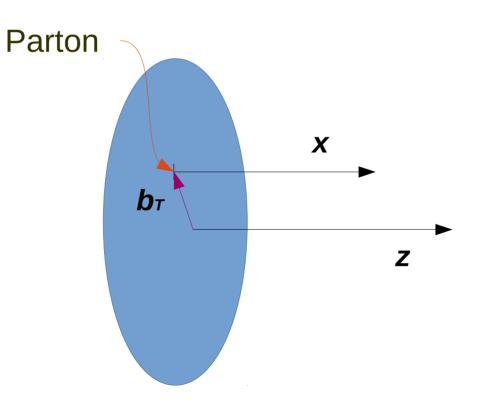


Deeply Virtual
 Compton Scattering

Generalized Parton Distributions

Generalized Parton Distributions

• GPDs are the Fourier transform of the spatial distribution of partons in protons and neutrons.



GPD based definition of Angular Momentum

$$J_q = \frac{1}{2} \int_{-1}^{1} dx x (H_q(x,0,0) + E_q(x,0,0))$$
 Xiangdong Ji, PRL 78.610,1997

To access OAM, we take the difference between total angular momentum and spin

$$\mathcal{L}_q = J_q - \frac{1}{2}\Delta\Sigma$$

Direct description of OAM

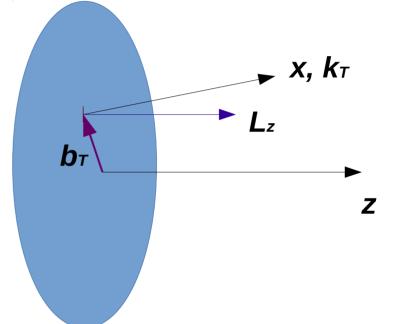
$$\int dx x G_2 = \int dx x (H+E) - \int dx \tilde{H}$$
$$G_2 \equiv \tilde{E}_{2T} + H + E$$

Kiptily and Polyakov, Eur Phys J C 37 (2004) Hatta and Yoshida, JHEP (1210), 2012

• The moment in x of the GPD G₂ shown to be OAM

Partonic Orbital Angular Momentum II

 Consider measuring both the intrinsic transverse momentum and the spatial distribution of partons



• $L_{q,z} = \mathbf{b}_T \mathbf{X} \mathbf{k}_T$

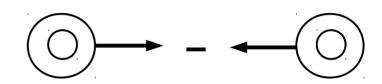
$$W_{\Lambda,\Lambda'}^{[\gamma^+]} = \frac{1}{2M} \bar{U}(p',\Lambda') [F_{11} + \frac{i\sigma^{i+}k_T^i}{\bar{p}_+} F_{12} + \frac{i\sigma^{i+}\Delta_T^i}{\bar{p}_+} F_{13} + \frac{i\sigma^{ij}k_T^i\Delta_T^j}{M^2} F_{14}] U(p,\Lambda)$$

Generalized Transverse Momentum Distributions (related by Fourier transform to Wigner Distributions)

Meissner Metz and Schlegel, JHEP 0908 (2009)

GTMDs that describe OAM

How does F14 connect to OAM ?



Unpolarized quark in a longitudinally polarized proton

$$\mathcal{W}(x, \mathbf{k}_T, \mathbf{b}) = \int \frac{d^2 \Delta_T}{(2\pi)^2} e^{ib \cdot \Delta_T} \left[W_{++}^{\gamma^+} - W_{--}^{\gamma^+} \right]$$

$$L = \int dx \int d^2 k_T \int d^2 \mathbf{b} (\mathbf{b} \times \mathbf{k}_T) \mathcal{W}(x, \mathbf{k}_T, \mathbf{b}) = -\int dx \int d^2 k_T \frac{k_T^2}{M^2} F_{14}$$

Lorce et al PRD84, (2011)

• Another GTMD relevant to OAM

 $G_{\mbox{\scriptsize 11}}$ describes a longitudinally polarized quark in an unpolarized proton. Measures spin orbit correlation.

The Two Definitions

• Weighted average of $b_T X k_T$

$$L_{z} = -\int dx \int d^{2}k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}$$

• Difference of total angular momentum and spin

$$\mathcal{L}_q = J_q - \frac{1}{2}\Delta\Sigma$$

$$\frac{1}{2}\int_{-1}^1 dx x (H_q + E_q) \qquad \frac{1}{2}\int_{-1}^1 dx \tilde{H}_q$$

The Two Definitions

• Weighted average of $b_T X k_T$

$$F_{14}^{(1)}$$

• Difference of total angular momentum and spin

 $L_{z} = -\int dx \, \int d^{2}k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}$

Is there a connection ?

We find that

$$F_{14}^{(1)}(x) = \int_{x}^{1} dy \left(\tilde{E}_{2T}(y) + H(y) + E(y) \right)$$

- This is a form of Lorentz Invariant Relation (LIR)
- This is a distribution of OAM in \boldsymbol{x}
- Derived for a straight gauge link

Quark Quark Correlator Function

To derive these we look at the parameterization of the quark quark correlator function at different levels

Generalized Parton JHEP 0908 (2009) $\int \frac{dz_- d^2 z_T}{2\pi} e^{ixP^+ z^- - k_T \cdot z_T} \langle p', \Lambda' \mid \bar{\psi}(-z/2) \Gamma \psi(z/2) \mid p, \Lambda \rangle_{z^+ = 0}$ GTMDs Integrate over k_T $\int \frac{dz_{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p', \Lambda' \mid \bar{\psi}(-z/2) \Gamma \psi(z/2) \mid p, \Lambda \rangle_{z^{+}=z_{T}=0}$ GPDs

- Parametrization of the quark quark correlator at different levels
- LIRs occur because the number of GPCFs is less than the number of GTMDs.

$$\begin{split} \mathcal{W}_{\Lambda\Lambda'}^{[\gamma^{\mu}]} &= \frac{\bar{U}U}{M} (P^{\mu}A_{1}^{F} + k^{\mu}A_{2}^{F} + \Delta^{\mu}A_{3}^{F}) + i\frac{\bar{U}\sigma^{\mu k}U}{M}A_{5}^{F} + i\frac{\bar{U}\sigma^{\mu \Delta}U}{M}A_{6}^{F} \\ &+ i\frac{\bar{U}\sigma^{k\Delta}U}{M^{3}} (P^{\mu}A_{8}^{F} + k^{\mu}A_{9}^{F} + \Delta^{\mu}A_{17}^{F}) \\ \mathcal{W}_{\Lambda,\Lambda'}^{[\gamma^{+}]} &= \frac{1}{2M}\bar{U}(p',\Lambda')[F_{11} + \frac{i\sigma^{i+}k_{T}^{i}}{\bar{p}_{+}}F_{12} + \frac{i\sigma^{i+}\Delta_{T}^{i}}{\bar{p}_{+}}F_{13} + \frac{i\sigma^{ij}k_{T}^{i}\Delta_{T}^{j}}{M^{2}}F_{14}]U(p,\Lambda) \\ F_{\Lambda,\Lambda'}^{[\gamma^{i}]} &= \frac{1}{2(P^{+})^{2}}\bar{U}\left[i\sigma^{+i}H_{2T} + \frac{\gamma^{+}\Delta_{T}^{i}}{2M}E_{2T} + \frac{P^{+}\Delta_{T}^{i}}{M^{2}}\tilde{H}_{2T} - \frac{P^{+}\gamma^{i}}{M}\tilde{E}_{2T}\right]U \end{split}$$

• The As are a function of the following scalar variables :

$$\sigma \equiv \frac{2k.P}{M^2}, \qquad \tau \equiv \frac{k^2}{M^2}, \qquad \sigma' \equiv \frac{k.\Delta}{\Delta^2} = \frac{k_T.\Delta_T}{\Delta_T^2} \qquad \text{For } \Delta^+ = 0$$

$$\int dk^{-}A(k^{2}, k.P, k.\Delta...) \quad \rightarrow \quad \frac{M^{2}}{2P^{+}} \int d\sigma A \qquad \rightarrow \quad \frac{M^{2}}{2P^{+}} \int d\sigma' d\sigma d\tau \delta \left(\frac{k_{T}^{2}}{M^{2}} - x\sigma + \tau + \frac{x^{2}P^{2}}{M^{2}}\right) \delta \left(\sigma' - \frac{k_{T}.\Delta_{T}}{\Delta_{T}^{2}}\right) A(\sigma, \tau, \sigma')$$

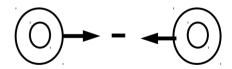
$$\begin{split} F_{14}^{(1)} &= \int d\sigma d\sigma' d\tau \frac{M^3}{2} J \left[A_8^F + x A_9^F \right] & J = \sqrt{x\sigma - \tau - \frac{x^2 P^2}{M^2} - \frac{\Delta_T^2 \sigma'^2}{M^2}} \\ \tilde{E}_{2T} &= \int d\sigma d\sigma' d\tau \frac{M^3}{J} \left[\left(x\sigma - \tau - \frac{x^2 P^2}{M^2} - \frac{\Delta_T^2 \sigma'^2}{M^2} \right) A_9^F - \sigma' A_5^F - A_6^F \right] \\ H &+ E &= \int d\sigma d\sigma' d\tau \frac{M^3}{J} \sigma' A_5^F + A_6^F + \left(\frac{\sigma}{2} - \frac{x P^2}{M^2} \right) \left(A_8^F + x A_9^F \right) \\ &- \frac{dF_{14}^{(1)}}{dx} &= \tilde{E}_{2T} + H + E \\ F_{14}^{(1)}(x) &= \int_x^1 dy \left(\tilde{E}_{2T}(y) + H(y) + E(y) \right) \\ & \text{Distribution of OAM in x !} \\ \mathbf{k}_T^2 \text{ moment of a twist two function} \\ \end{split}$$

Axial Vector

$$\frac{dG_{11}^{e(1)}}{dx} = -\left(2\tilde{H}_{2T}' + E_{2T}'\right) - \tilde{H}$$
$$\frac{dG_{12}^{e(1)}}{dx} = H_{2T}' - \frac{\Delta_T^2}{4M^2}E_{2T}' - \left(1 + \frac{\Delta_T^2}{2M^2}\right)\tilde{H}$$

Vector

$$\frac{dF_{14}^{e(1)}}{dx} = \tilde{E}_{2T} + H + E$$

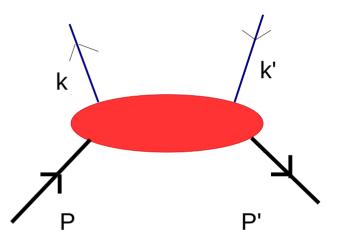


The GTMDs are complex in general.

$$X = X^e + iX^o$$

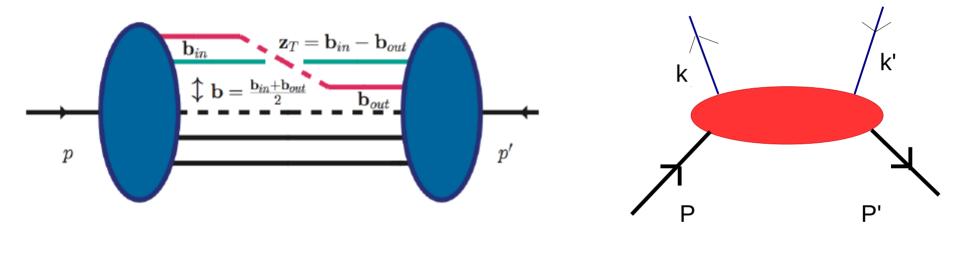
The imaginary part integrates to zero, on integration over $k_{T.}$

Intrinsic Momentum vs Momentum Transfer Δ



Courtoy et al PhysLett B731, 2013 Burkardt,Phys Rev D62, 2000

Intrinsic Momentum vs Momentum Transfer Δ



$$\begin{array}{cccc} k & \longleftrightarrow & z \\ \Delta & \longleftrightarrow & b \end{array}$$

Courtoy et al PhysLett B731, 2013 Burkardt,Phys Rev D62, 2000

$$(i\not\!\!D - m)\psi(z_{out}) = (i\not\!\!\partial + g\not\!\!A - m)\psi(z_{out}) = 0,$$

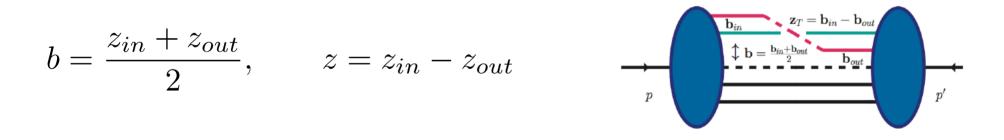
$$\bar{\psi}(z_{in})(i\not\!\!\overline{D} + m) = \bar{\psi}(z_{in})(i\not\!\!\overline{\partial} - g\not\!\!A + m) = 0$$

$$\mathcal{U}i\sigma^{i+}\gamma_{5}(i\not\!\!D-m)\psi(z_{out}) = \mathcal{U}i\sigma^{i+}\gamma_{5}(i\not\!\!\partial+g\not\!\!A-m)\psi(z_{out}) = 0,$$

$$\bar{\psi}(z_{in})(i\not\!\!\!D+m)i\sigma^{i+}\gamma_{5}\mathcal{U} = \bar{\psi}(z_{in})(i\not\!\!\partial-g\not\!\!A+m)i\sigma^{i+}\gamma_{5}\mathcal{U} = 0$$

$$\mathcal{U}i\sigma^{i+}\gamma_{5}(i\not\!\!D-m)\psi(z_{out}) = \mathcal{U}i\sigma^{i+}\gamma_{5}(i\not\!\!\partial+g\not\!\!A-m)\psi(z_{out}) = 0,$$

$$\bar{\psi}(z_{in})(i\not\!\!\overline{D}+m)i\sigma^{i+}\gamma_{5}\mathcal{U} = \bar{\psi}(z_{in})(i\not\!\!\overline{\partial}-g\not\!\!A+m)i\sigma^{i+}\gamma_{5}\mathcal{U} = 0$$



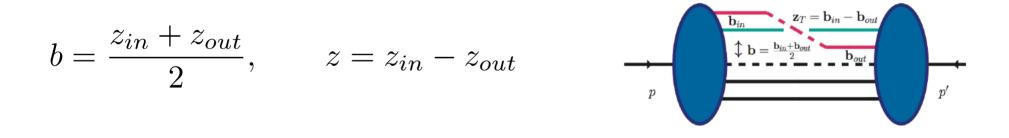
$$\int db^{-} d^{2} b_{T} e^{-ib \cdot \Delta} \int dz^{-} d^{2} z_{T} e^{-ik \cdot z} \langle p', \Lambda' | \bar{\psi} \left[(i\overleftarrow{D} + m)i\sigma^{i+}\gamma^{5} \pm i\sigma^{i+}\gamma^{5} (i\overrightarrow{D} - m) \right] \psi | p, \Lambda \rangle = 0$$

Equations of Motion P

Crucial for understanding qgq contribution to GPDs!!

$$\mathcal{U}i\sigma^{i+}\gamma_{5}(i\not\!\!D-m)\psi(z_{out}) = \mathcal{U}i\sigma^{i+}\gamma_{5}(i\not\!\!\partial+g\not\!\!A-m)\psi(z_{out}) = 0,$$

$$\bar{\psi}(z_{in})(i\not\!\!\overline{D}+m)i\sigma^{i+}\gamma_{5}\mathcal{U} = \bar{\psi}(z_{in})(i\not\!\!\overline{\partial}-g\not\!\!A+m)i\sigma^{i+}\gamma_{5}\mathcal{U} = 0$$



$$\int db^{-} d^{2} b_{T} e^{-ib\cdot\Delta} \int dz^{-} d^{2} z_{T} e^{-ik\cdot z} \langle p', \Lambda' | \bar{\psi} \left[(i\overleftarrow{D} + m)i\sigma^{i+}\gamma^{5} \pm i\sigma^{i+}\gamma^{5}(i\overrightarrow{D} - m) \right] \psi | p, \Lambda \rangle = 0$$

EoM relations for Orbital Angular Momentum

$$x\tilde{E}_{2T} = -\tilde{H} + 2\int d^2k_T \frac{k_T^2 \sin^2\phi}{M^2} F_{14} + \frac{\Delta^i}{\Delta_T^2} \int d^2k_T (\mathcal{M}_{++}^{i,S} - \mathcal{M}_{--}^{i,S})$$

$$x\left(E_{2T}'+2\tilde{H}_{2T}'\right) = -H + \frac{m}{M}(E_T + 2\tilde{H}_T) - 2\int d^2k_T \frac{k_T^2 \sin^2\phi}{M^2} G_{11} - \mathcal{M}_{G_{11}}$$

$$\mathcal{M}_{G_{11}} = \frac{2i\epsilon^{im}\Delta^m}{\Delta_T^2} (\mathcal{M}_{++}^{i,A} + \mathcal{M}_{--}^{i,A})$$

EoM relations for Transversely Polarized Proton

$$0 = \frac{\Delta_T^2}{4M^2}E + \frac{1}{2}G_{12}^{(1)} - \frac{\Delta_T^2}{4M^2}G_{11}^{(1)} - x\left(H_{2T}' + \frac{\Delta_T^2}{2M^2}\widetilde{H}_{2T}'\right) + \frac{m}{M}\left(H_T + \frac{\Delta_T^2}{2M^2}\widetilde{H}_T\right) - \frac{i\epsilon^{ij}\Delta^j}{2M\Delta_T^2}\int d^2k_T\left((\Delta^1 + i\Delta^2)\mathcal{M}_{+-}^{i,A} + (-\Delta^1 + i\Delta^2)\mathcal{M}_{-+}^{i,A}\right)$$

Axial vector

$$- x\left(F_{23} + \frac{k_T^2 \Delta_T^2 - (k_T \cdot \Delta_T)^2}{M^2 \Delta_T^2} F_{24}\right) + \frac{1}{2M^2} \left(\Delta_T^2 G_{13} + k_T \cdot \Delta_T G_{12}\right) + \frac{k_T^2 \Delta_T^2 - (k_T \cdot \Delta_T)^2}{M^2 \Delta_T^2} F_{12} + \frac{\Delta^i}{2M \Delta_T^2} \left((\Delta^1 - i\Delta^2)\mathcal{M}_{-+}^{i,S} + (\Delta^1 + i\Delta^2)\mathcal{M}_{+-}^{i,S}\right) = 0.$$

Vector

EoM relations for Transversely Polarized Proton

$$0 = \frac{\Delta_T^2}{4M^2}E + \frac{1}{2}G_{12}^{(1)} - \frac{\Delta_T^2}{4M^2}G_{11}^{(1)} - x\left(H_{2T}' + \frac{\Delta_T^2}{2M^2}\widetilde{H}_{2T}'\right) + \frac{m}{M}\left(H_T + \frac{\Delta_T^2}{2M^2}\widetilde{H}_T\right) \\ - \frac{i\epsilon^{ij}\Delta^j}{2M\Delta_T^2}\int d^2k_T\left((\Delta^1 + i\Delta^2)\mathcal{M}_{+-}^{i,A} + (-\Delta^1 + i\Delta^2)\mathcal{M}_{-+}^{i,A}\right) \\ d_2 \text{ (in the forward limit)}$$
Axial vector

$$H_{2T} \qquad \text{Twist 3}$$

$$- x \left(F_{23} + \frac{k_T^2 \Delta_T^2 - (k_T \cdot \Delta_T)^2}{M^2 \Delta_T^2} F_{24} \right) + \frac{1}{2M^2} \left(\Delta_T^2 G_{13} + k_T \cdot \Delta_T G_{12} \right)$$

$$+ \frac{k_T^2 \Delta_T^2 - (k_T \cdot \Delta_T)^2}{M^2 \Delta_T^2} F_{12} + \frac{\Delta^i}{2M \Delta_T^2} \left((\Delta^1 - i\Delta^2) \mathcal{M}_{-+}^{i,S} + (\Delta^1 + i\Delta^2) \mathcal{M}_{+-}^{i,S} \right) = 0.$$

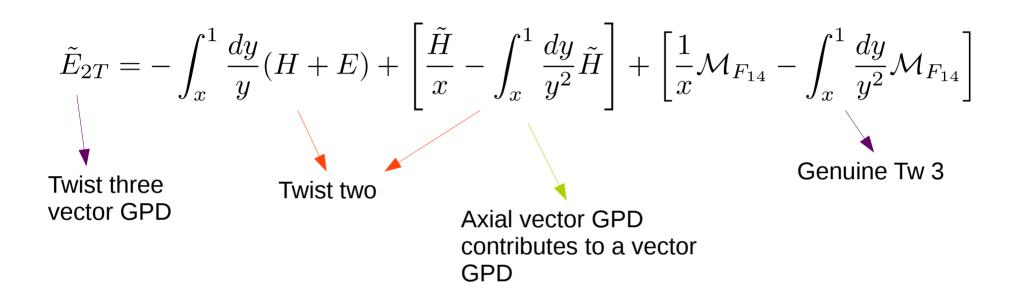
Vector

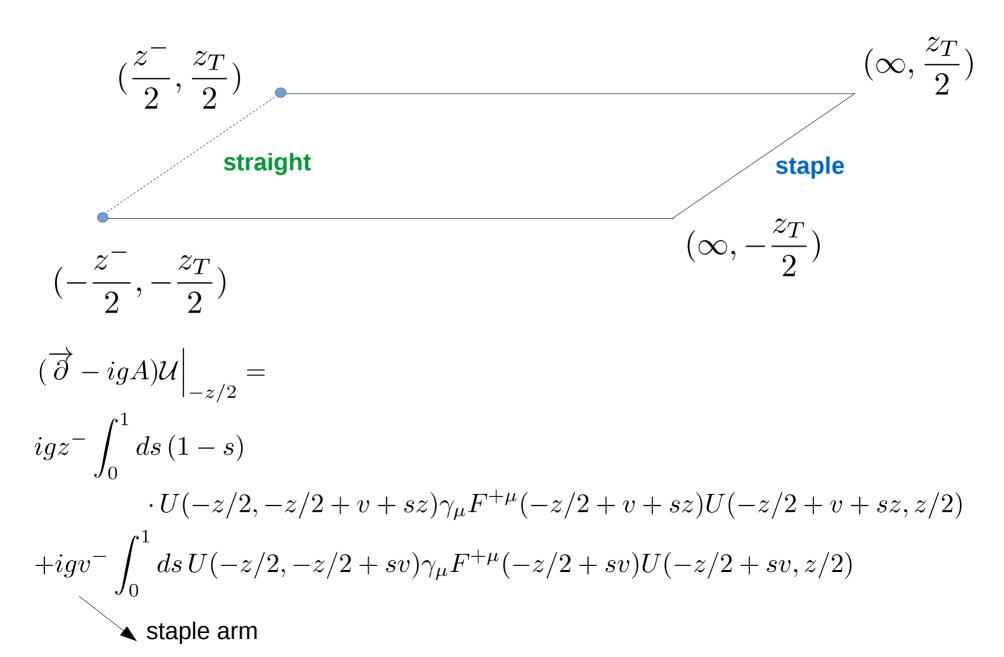
EoM relations for Transversely Polarized Proton

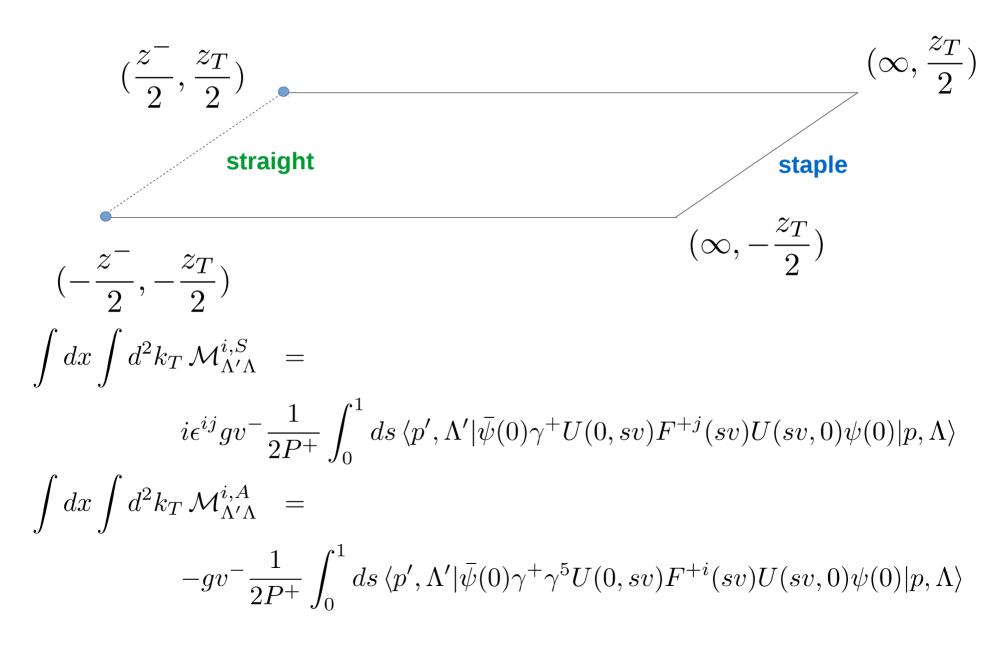
$$0 = \frac{\Delta_T^2}{4M^2}E + \frac{1}{2}G_{12}^{(1)} - \frac{\Delta_T^2}{4M^2}G_{11}^{(1)} - x\left(H_{2T}' + \frac{\Delta_T^2}{2M^2}\widetilde{H}_{2T}'\right) + \frac{m}{M}\left(H_T + \frac{\Delta_T^2}{2M^2}\widetilde{H}_T\right) \\ - \frac{i\epsilon^{ij}\Delta^j}{2M\Delta_T^2}\int d^2k_T\left((\Delta^1 + i\Delta^2)\mathcal{M}_{+-}^{i,A} + (-\Delta^1 + i\Delta^2)\mathcal{M}_{-+}^{i,A}\right) \\ d_2 \text{ (in the forward limit)}$$
Axial vector

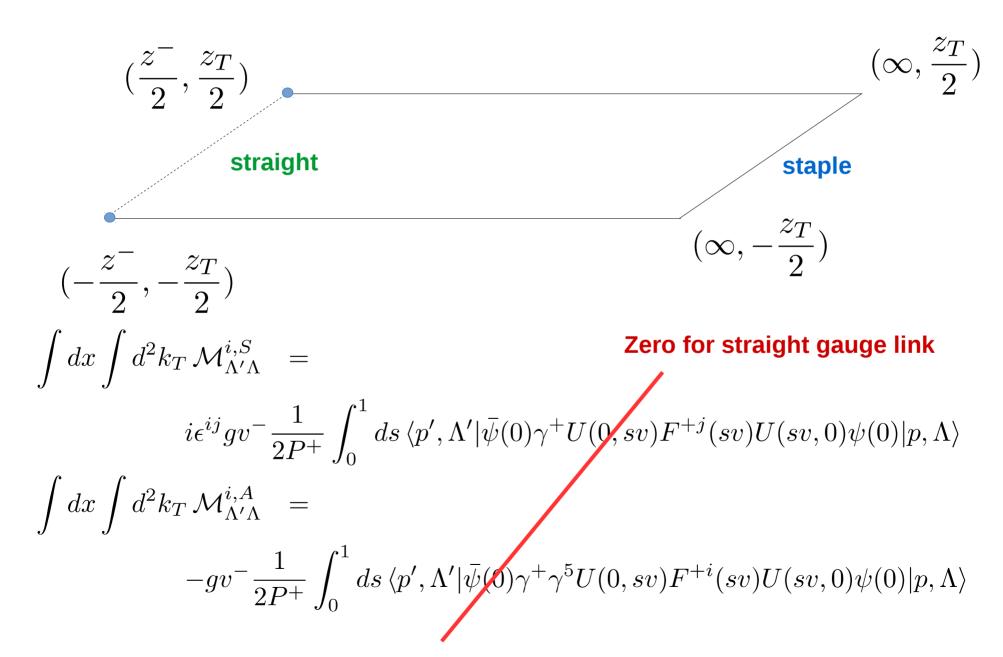
$$\begin{aligned} H_{2T} & \text{Twist 3} \\ \hline & - x \left(F_{23} + \frac{k_T^2 \Delta_T^2 - (k_T \cdot \Delta_T)^2}{M^2 \Delta_T^2} F_{24} \right) + \frac{1}{2M^2} \left(\Delta_T^2 G_{13} + k_T \cdot \Delta_T G_{12} \right) \\ & + \frac{k_T^2 \Delta_T^2 - (k_T \cdot \Delta_T)^2}{M^2 \Delta_T^2} F_{12} + \frac{\Delta^i}{2M \Delta_T^2} \left((\Delta^1 - i\Delta^2) \mathcal{M}_{-+}^{i,S} + (\Delta^1 + i\Delta^2) \mathcal{M}_{+-}^{i,S} \right) = 0. \end{aligned}$$

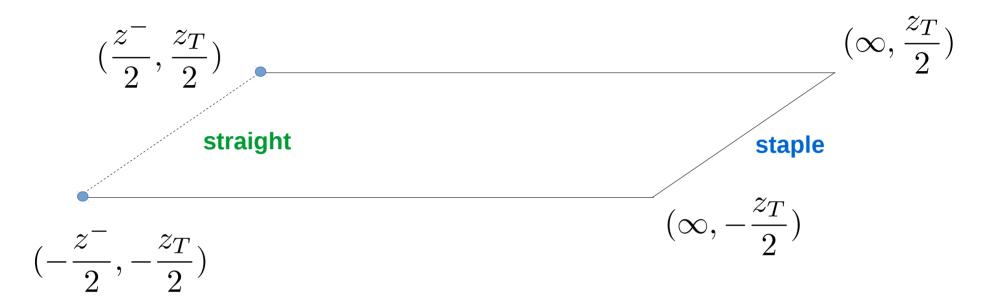
Wandzura Wilczek Relations











$$\int dx \, x \int d^2 k_T \, \mathcal{M}^{i,S}_{\Lambda'\Lambda} = \frac{ig}{4(P^+)^2} \langle p', \Lambda' | \bar{\psi}(0) \gamma^+ \gamma^5 F^{+i}(0) \psi(0) | p, \Lambda \rangle$$
$$\int dx \, x \int d^2 k_T \, \mathcal{M}^{i,A}_{\Lambda'\Lambda} = \frac{g}{4(P^+)^2} \epsilon^{ij} \langle p', \Lambda' | \bar{\psi}(0) \gamma^+ F^{+j}(0) \psi(0) | p, \Lambda \rangle$$

Quark gluon structure of the moments of twist three GPDs

$$\int dx \widetilde{E}_{2T} = -\int dx (H+E) \implies \int dx \left(\widetilde{E}_{2T} + H + E\right) = 0$$

$$\int dx x \widetilde{E}_{2T} = -\frac{1}{2} \int dx x (H+E) - \frac{1}{2} \int dx \widetilde{H}$$

$$\int dx x^2 \widetilde{E}_{2T} = -\frac{1}{3} \int dx x^2 (H+E) - \frac{2}{3} \int dx x \widetilde{H} - \frac{2}{3} \int dx x \mathcal{M}_{F_{14}} \Big|_{v=0}$$

$$\int dx \, x \int d^2 k_T \, \mathcal{M}^{i,S}_{\Lambda'\Lambda} = \frac{ig}{4(P^+)^2} \langle p', \Lambda' | \bar{\psi}(0) \gamma^+ \gamma^5 F^{+i}(0) \psi(0) | p, \Lambda \rangle$$

Quark gluon structure of the moments of twist three GPDs

$$\int dx \left(E_{2T}' + 2\tilde{H}_{2T}' \right) = -\int dx \tilde{H} \Rightarrow \int dx \left(E_{2T}' + 2\tilde{H}_{2T}' + \tilde{H} \right) = 0$$

$$\int dxx \left(E_{2T}' + 2\tilde{H}_{2T}' \right) = -\frac{1}{2} \int dxx \tilde{H} - \frac{1}{2} \int dxH + \frac{m}{2M} \int dx(E_T + 2\tilde{H}_T)$$

$$\int dx x^2 \left(E_{2T}' + 2\tilde{H}_{2T}' \right) = -\frac{1}{3} \int dxx^2 \tilde{H} - \frac{2}{3} \int dxxH + \frac{2m}{3M} \int dxx(E_T + 2\tilde{H}_T)$$

$$-\frac{2}{3} \int dxx \mathcal{M}_{G_{11}} \Big|_{v=0}$$

$$\int dx x \int d^2k_T \mathcal{M}_{\Lambda'\Lambda}^{i,\Lambda} = \frac{g}{4(P^+)^2} \epsilon^{ij} \langle p', \Lambda' | \bar{\psi}(0) \gamma^+ F^{+j}(0) \psi(0) | p, \Lambda \rangle$$

Quark gluon structure of the moments of twist three GPDs

$$\int dx \left(H_{2T}' - \frac{\Delta_T^2}{4M^2} E_{2T}' \right) = \left(1 + \frac{\Delta_T^2}{4M^2} \right) \int dx \widetilde{H} \xrightarrow{\Delta_T \to 0} \int dx \left(H_{2T}' - \widetilde{H} \right)$$

$$\equiv \int dx g_2 = 0$$

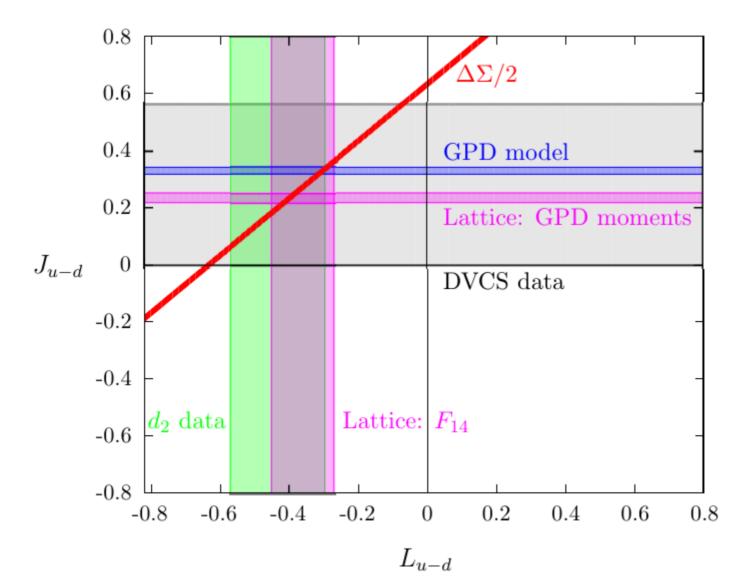
$$\int dx x \left(H_{2T}' - \frac{\Delta_T^2}{4M^2} E_{2T}' \right) = \frac{1}{2} \left(1 + \frac{\Delta_T^2}{4M^2} \right) \int dx x \widetilde{H} + \frac{\Delta_T^2}{8M^2} \int dx (H + E)$$

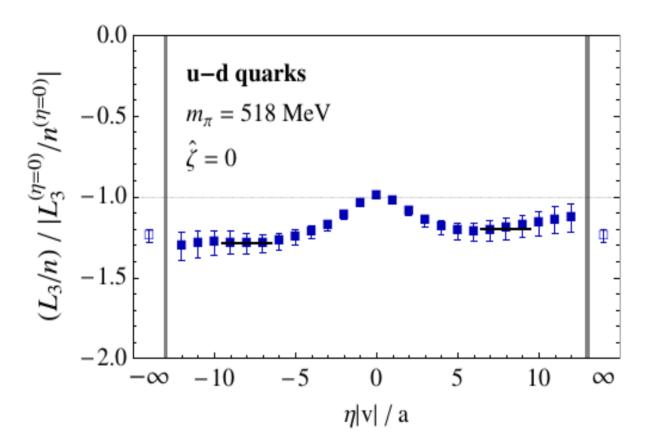
$$+ \frac{m}{2M} \int dx \left(H_T - \frac{\Delta_T^2}{4M^2} E_T \right)$$

$$\int dx x^2 \left(H_{2T}' - \frac{\Delta_T^2}{4M^2} E_{2T}' \right) = \frac{1}{3} \left(1 + \frac{\Delta_T^2}{4M^2} \right) \int dx x^2 \widetilde{H} + \frac{\Delta_T^2}{6M^2} \int dx x (H + E)$$

$$+ \frac{2m}{3M} \int dx \left(H_T - \frac{\Delta_T^2}{4M^2} E_T \right) + \frac{2}{3} \int dx x \mathcal{M}_{G_{12}} \Big|_{v=0}$$

Where do we stand experimentally?





Michael Engelhardt

Phys. Rev. D95 (2017)

Conclusions

- Our work probes the role played by the gauge link structure in the description of higher twist objects
- We find relations between GPDs and GTMDs and the respective genuine twist three contribution under different limits: kT unintegrated, x unintegrated and both integrated
- These relations are valid for both the forward and off forward case.
- This also provides a way to measure effects that were solely associated with GTMDs by measuring the associated GPD.
- Quark gluon quark interactions are at the heart of twist three effects.
- Alternate way of deriving the genuine twist twist three contributions and 'wandzura wilczek' terms. Allows us to write out precisely quark gluon contribution.

Thank you!

Starting with the equation of motion and its conjugate we arrive at the following

$$-\frac{\Delta^{+}}{2}W^{[\gamma^{i}\gamma^{5}]}_{\Lambda\Lambda'} + ik^{+}\epsilon^{ij}W^{[\gamma^{j}]}_{\Lambda\Lambda'} = -\frac{\Delta^{i}}{2}W^{[\gamma^{+}\gamma^{5}]}_{\Lambda\Lambda'} + i\epsilon^{ij}k^{j}_{T}W^{[\gamma^{+}]}_{\Lambda\Lambda'} - \mathcal{M}^{i,S}_{\Lambda\Lambda'}$$

$$-k^{+}W_{\Lambda\Lambda'}^{[\gamma^{i}\gamma^{5}]} + \frac{i\Delta^{+}}{2}\epsilon^{ij}W_{\Lambda\Lambda'}^{[\gamma^{j}]} + k^{i}W_{\Lambda\Lambda'}^{[\gamma^{+}\gamma^{5}]} = i\epsilon^{ij}\frac{\Delta^{j}}{2}W_{\Lambda\Lambda'}^{[\gamma^{+}]} - mW_{\Lambda\Lambda'}^{[i\sigma^{i+}\gamma^{5}]} - i\mathcal{M}_{\Lambda\Lambda'}^{i,A}$$

$$W_{\Lambda\Lambda'}^{\Gamma} = \int \frac{dz^{-} d^{2} \mathbf{z}_{T}}{(2\pi)^{3}} e^{ixP^{+}z^{-} - i\bar{\mathbf{k}}_{T} \cdot \mathbf{z}_{T}} \left\langle p', \Lambda' \mid \bar{\psi}\left(-\frac{z}{2}\right) \mathcal{U}\Gamma\psi\left(\frac{z}{2}\right) \mid p, \Lambda \right\rangle \Big|_{z^{+}=0}$$

LIR violating term

$$\mathcal{A}_{F_{14}}(x) \equiv v^{-} \frac{(2P^{+})^{2}}{M^{2}} \int d^{2}k_{T} \int dk^{-} \left[\frac{k_{T} \cdot \Delta_{T}}{\Delta_{T}^{2}} (A_{11} + xA_{12}) + A_{14} \right] \\ + \frac{k_{T}^{2} \Delta_{T}^{2} - (k_{T} \cdot \Delta_{T})^{2}}{\Delta_{T}^{2}} \left(\frac{\partial A_{8}}{\partial (k \cdot v)} + x \frac{\partial A_{9}}{\partial (k \cdot v)} \right) \right] \\ = \frac{dF_{14}^{(1)}}{dx} - \frac{dF_{14}^{(1)}}{dx} \Big|_{v=0}$$
(1)

$$F_{14}^{(1)} - F_{14}^{(1)}\Big|_{v=0} = \mathcal{M}_{F_{14}} - \mathcal{M}_{F_{14}}\Big|_{v=0} (1)$$

$$\mathcal{A}_{F_{14}}(x) = \frac{d}{dx} \left(\mathcal{M}_{F_{14}} - \mathcal{M}_{F_{14}}\Big|_{v=0}\right) (1)$$

$$-\int dx \left(F_{14}^{(1)} - F_{14}^{(1)}\Big|_{v=0}\right)\Big|_{\Delta_{T}=0} = (1)$$

$$-\frac{\partial}{\partial\Delta^{i}} i\epsilon^{ij}gv^{-}\frac{1}{2P^{+}} \int_{0}^{1} ds \langle p', +|\bar{\psi}(0)\gamma^{+}U(0,sv)F^{+j}(sv)U(sv,0)\psi(0)|p, +\rangle\Big|_{\Delta_{T}=0},$$

_

Wandzura Wilczek Relations

$$2\tilde{H}'_{2T} + E'_{2T} = -\int_{x}^{1} \frac{dy}{y} \tilde{H} + \left[\frac{H}{x} - \int_{x}^{1} \frac{dy}{y^{2}} H\right] + \frac{m}{M} \left[\frac{1}{x}(2\tilde{H}_{T} + E_{T}) - \int_{x}^{1} \frac{dy}{y^{2}}(2\tilde{H}_{T} + E_{T})\right] + \frac{\mathcal{M}_{G_{11}}}{x} - \int_{x}^{1} \frac{dy}{y^{2}}\mathcal{M}_{G_{11}}$$

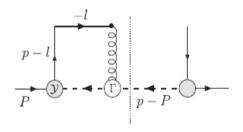
Wandzura Wilczek Relations

$$H_{2T}' - \frac{\Delta_T^2}{4M^2} E_{2T}' = \left(1 + \frac{\Delta_T^2}{4M^2}\right) \int_x^1 \frac{dy}{y} \widetilde{H} + \frac{m}{M} \left[\frac{1}{x} \left(H_T - \frac{\Delta_T^2}{4M^2} E_T\right) - \int_x^1 \frac{dy}{y^2} \left(H_T - \frac{\Delta_T^2}{4M^2} E_T\right)\right] + \frac{\Delta_T^2}{4M^2} \left[\frac{1}{x} (H + E) - \int_x^1 \frac{dy}{y^2} (H + E)\right] + \left[\frac{\mathcal{M}_{G_{12}}}{x} - \int_x^1 \frac{dy}{y^2} \mathcal{M}_{G_{12}}\right] - \int_x^1 \frac{dy}{y} \mathcal{A}_{G_{12}}.$$
(1)

Including Final State Interactions

• Ji \rightarrow Straight Gauge link

• Jaffe Manohar → Staple Link



Brandon Kriesten

The difference is the torque

$$\mathcal{L}_{q}^{JM} - \mathcal{L}_{q}^{Ji} = \int \frac{d^{2} z_{T} dz^{-}}{\left(2\pi\right)^{3}} \left\langle P', \Lambda' \middle| \overline{\psi}(z) \gamma^{+}(-g) \int_{z^{-}}^{\infty} dy \, U \Big[z_{1} G^{+1}(y^{-}) - z_{2} G^{+2}(y^{-}) \Big] U \psi(z) \middle| P, \Lambda \right\rangle \Big|_{z^{+}=0}$$

Burkardt (2013)