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Motivation

Positronium is a test bed for
• Relativistic bound state structure beyond leading 

Fock-sector

• Basis Light-front Quantization on first-principles, 
esp., nonperturbative renormalization procedure

• Connection with effective theory
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Basis Light-front Quantization
• Nonperturbative eigenvalue problem

- !" : light-front Hamiltonian
- | ⟩% : mass eigenstate
- !&" : eigenvalue for | ⟩%

• Evaluate observables for eigenstate 
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P− β = Pβ
− β

O ≡ β Ô β

[Vary et al, 2008]

See Chandan Monal’s talk
Shaoyang Jia’s talk
Meijian Li’s talk



Light-front QED Hamiltonian

• QED Lagrangian
• QED Light-front Hamiltonian 
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dition to intense laser physics, we will also apply tBLFQ
to relativistic heavy-ion physics, specifically the study of
particle production in the strong (color)-electromagnetic
fields of two colliding nuclei. Ultimately, the goal is to
use tBLFQ to address strong scattering problems with
hadrons in the initial and/or final states. As super-
computing technology continues to evolve, we envision
that tBLFQ will become a powerful tool for exploring
QCD dynamics.
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Appendix A: The light-front QED Hamiltonian

In this section we follow the derivation of the Hamil-
tonian in [18], but with an additional background field.
The Lagrangian is

L = �1

4
Fµ⌫Fµ⌫ +  ̄(i�µDµ � me) , (A1)

in which Dµ ⌘ @µ + ieCµ and Cµ = Aµ + Aµ is the sum
of the background and quantum gauge fields respectively.
Note that Fµ⌫ is calculated from Aµ alone, i.e. there is
no kinetic term for the background, which is fixed. The
equations of motion for the fields are

@µFµ⌫ = e ̄�⌫ =: ej⌫ , (A2)

which defines the current j⌫ , and
⇥
i�µDµ � me

⇤
 = 0 . (A3)

The background field appears in the equations of motion
for the fermion, but not for the gauge field. We now
analyze these equations in light-front coordinates (x± =
x0 ± x3, and x± = 2x⌥). We work in light-front gauge,
so that A+ = A+ = 0. The ⌫ = + component of (A2)
does not contain time derivatives, and can be written

1

2
A� =

@?A?

@+
� e

j+

(@+)2
. (A4)

This is a constraint equation which relates the (non-
dynamical) field A� to the transverse components A?

and the fermion current. Similarly, if we multiply (A3)
by �+ on the left, we find a constraint equation for the
fermion field. Defining first the orthogonal field compo-
nents

 � ⌘ 1
4�+�� ,  + ⌘ 1

4���+ , (A5)

the constraint equation may be written

 � =
1

2i@+

⇥
me � i�?D?

⇤
�+ + , (A6)

Hence, the field  � is non-dynamical and can be ex-
pressed in terms of the dynamical field  +. We now turn
to the construction of the Hamiltonian. The conjugate
momenta are

@L
@@+ 

= i ̄�+ ,
@L

@@+Aµ
= Fµ+ (A7)

and the Hamiltonian P� = 2P+ is then

P� =

Z
d2x?dx� Fµ+@+Aµ + i ̄�+@+ � L

=

Z
d2x?dx� Fµ+@+Aµ +

1

4
Fµ⌫Fµ⌫ + i ̄�+@+ ,

(A8)

in which the first line is the standard Legendre transfor-
mation, and in the second line we have used the equations
of motion. It is convenient to add a total derivative to
the Hamiltonian [18], the term �@µ(Fµ+A+), and again
use the equations of motion to write

P� =

Z
d2x?dx� 1

4
Fµ⌫Fµ⌫ � Fµ+Fµ+

+ i ̄�+D+ + e ̄�+A+ .
(A9)

In order to complete the transition to the Hamiltonian
picture we need to eliminate the light-front time deriva-
tives of the fields in favour of the fields themselves, and
their momenta. The gauge field terms are simplest. Let
i, j be transverse indices and define

{Ã+, Ã�, Ãj} := {0, 2
@jAj

@+
, Aj} . (A10)

The first line of (A9) then becomes

1

4
F ijFij � 1

2
F+�F+�

=
1

2
Ãj(i@?)2Ãj +

e2

2
j+ 1

(i@+)2
j+ + ej+Ã+ ,

(A11)

using the constraint (A4). The field Ãµ is that which
survives the limit e ! 0, and is therefore referred to as a
‘free field’. Turning now to the spinor terms in (A9), we
have

i ̄�+D+ = 2i †
+D+ + , (A12)

and the spinor equations of motion (A3) then give

2iD+ + =
1

2
[me � i�?D?]�� �

=
1

2
[me � i�?D?]

��

2i@+
[me � i�?D?]�+ +

= [me � i�?D?]
1

i@+
[me + i�?D?] + .

(A13)

The first line follows from �� + ⌘ 0, in the second line
we used (A6) and in the third line we commuted �� to
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the right. In analogy to Ã, we now introduce  ̃, defined
by

 ̃+ =  + ,  ̃� =
1

2i@+

⇥
me � i�?@?

⇤
�+ ̃+ . (A14)

Again, this is the field which survives the e ! 0 limit.
Our final task is to insert (A14) into (A13) and rewrite
this in terms of only the ‘tilde’ variables. First, the C-free
terms of of (A12) are:

 †
+[me�i�?@?]

1

i@+
[me+i�?@?] + =

1

2
¯̃ �+ m2

e + (i@?)2

i@+
 ̃ .

(A15)

Next, we have terms in (A12) which are linear in C.
These are

 †
+[e�?C?]

1

i@+
[me + i�?@?] +

+ †
+[me � i�?@?]

1

i@+
[�e�?C?] +

=
1

2
 ̃†

+[e�?C?]�� ̃� +
1

2
 ̃†

��+[�e�?C?] ̃+

= ej̃?C? ,
(A16)

using (A14) in the second line. Note the tilde on j in
the third line. Finally, we have the terms quadratic in C,
which are

� e2 ̃+[e�?C?]
1

i@+
[e�?C?] ̃+ . (A17)

Now, we sum (A13) (A15), (A16) and (A17) to obtain
the full Hamiltonian: we drop the ‘tilde’ on all variables
from now on, so that one must remember that

A� ⌘ 2
@?A?

@+
,  � ⌘ 1

2i@+

⇥
me � i�?@?

⇤
�+ + .

(A18)
Since we are interested in the new interactions introduced
by the background field, so we will separate these out
explicitly, expanding C ! A + A. (Recall, A has a tilde
now.) Finally, the full Hamiltonian is

P� =

Z
d2x?dx� 1

2
 ̄�+ m2

e + (i@?)2

i@+
 +

1

2
Aj(i@?)2Aj + ejµAµ +

e2

2
j+ 1

(i@+)2
j+ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ 

+ ejµAµ +
e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ .

(A19)

The first line is the QED light-front Hamiltonian, P�
QED.

The second line contains the new terms generated by the
background field. We label the terms in P�

QED as Tf , T� ,
W1. . . W3 respectively. Tf and T� are the kinetic energy
terms for the fermion and gauge field respectively. W1 is
called the vertex interaction, which is responsible for pho-
ton emission and electron-positron pair-production pro-
cesses. W2 is the instantaneous-photon interaction and
W3 is the instantaneous-fermion interaction. The instan-
taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
background vertex interaction, the instantaneous 2-
background, 2-fermion vertex, and two, instantaneous,
1-background, 1-photon, 2-fermion vertices. For the field
(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being

j+A+ =  ̄�+ A+ = 2 †
+ +A+ =  †

+ +A� . (A20)

As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W2 and W3, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P�
QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�

QED. These symme-

tries and their operators, which commute with P�
QED, are

listed below.
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(A8)

in which the first line is the standard Legendre transfor-
mation, and in the second line we have used the equations
of motion. It is convenient to add a total derivative to
the Hamiltonian [18], the term �@µ(Fµ+A+), and again
use the equations of motion to write

P� =

Z
d2x?dx� 1

4
Fµ⌫Fµ⌫ � Fµ+Fµ+

+ i ̄�+D+ + e ̄�+A+ .
(A9)

In order to complete the transition to the Hamiltonian
picture we need to eliminate the light-front time deriva-
tives of the fields in favour of the fields themselves, and
their momenta. The gauge field terms are simplest. Let
i, j be transverse indices and define

{Ã+, Ã�, Ãj} := {0, 2
@jAj

@+
, Aj} . (A10)

The first line of (A9) then becomes

1

4
F ijFij � 1

2
F+�F+�

=
1

2
Ãj(i@?)2Ãj +

e2

2
j+ 1

(i@+)2
j+ + ej+Ã+ ,

(A11)

using the constraint (A4). The field Ãµ is that which
survives the limit e ! 0, and is therefore referred to as a
‘free field’. Turning now to the spinor terms in (A9), we
have

i ̄�+D+ = 2i †
+D+ + , (A12)

and the spinor equations of motion (A3) then give

2iD+ + =
1

2
[me � i�?D?]�� �

=
1

2
[me � i�?D?]

��

2i@+
[me � i�?D?]�+ +

= [me � i�?D?]
1

i@+
[me + i�?D?] + .

(A13)

The first line follows from �� + ⌘ 0, in the second line
we used (A6) and in the third line we commuted �� to

15

the right. In analogy to Ã, we now introduce  ̃, defined
by

 ̃+ =  + ,  ̃� =
1

2i@+

⇥
me � i�?@?

⇤
�+ ̃+ . (A14)

Again, this is the field which survives the e ! 0 limit.
Our final task is to insert (A14) into (A13) and rewrite
this in terms of only the ‘tilde’ variables. First, the C-free
terms of of (A12) are:

 †
+[me�i�?@?]

1

i@+
[me+i�?@?] + =

1

2
¯̃ �+ m2

e + (i@?)2

i@+
 ̃ .

(A15)

Next, we have terms in (A12) which are linear in C.
These are

 †
+[e�?C?]

1

i@+
[me + i�?@?] +

+ †
+[me � i�?@?]

1

i@+
[�e�?C?] +

=
1

2
 ̃†

+[e�?C?]�� ̃� +
1

2
 ̃†

��+[�e�?C?] ̃+

= ej̃?C? ,
(A16)

using (A14) in the second line. Note the tilde on j in
the third line. Finally, we have the terms quadratic in C,
which are

� e2 ̃+[e�?C?]
1

i@+
[e�?C?] ̃+ . (A17)

Now, we sum (A13) (A15), (A16) and (A17) to obtain
the full Hamiltonian: we drop the ‘tilde’ on all variables
from now on, so that one must remember that

A� ⌘ 2
@?A?

@+
,  � ⌘ 1

2i@+

⇥
me � i�?@?

⇤
�+ + .

(A18)
Since we are interested in the new interactions introduced
by the background field, so we will separate these out
explicitly, expanding C ! A + A. (Recall, A has a tilde
now.) Finally, the full Hamiltonian is

P� =

Z
d2x?dx� 1

2
 ̄�+ m2

e + (i@?)2

i@+
 +

1

2
Aj(i@?)2Aj + ejµAµ +

e2

2
j+ 1

(i@+)2
j+ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ 

+ ejµAµ +
e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ .

(A19)

The first line is the QED light-front Hamiltonian, P�
QED.

The second line contains the new terms generated by the
background field. We label the terms in P�

QED as Tf , T� ,
W1. . . W3 respectively. Tf and T� are the kinetic energy
terms for the fermion and gauge field respectively. W1 is
called the vertex interaction, which is responsible for pho-
ton emission and electron-positron pair-production pro-
cesses. W2 is the instantaneous-photon interaction and
W3 is the instantaneous-fermion interaction. The instan-
taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
background vertex interaction, the instantaneous 2-
background, 2-fermion vertex, and two, instantaneous,
1-background, 1-photon, 2-fermion vertices. For the field
(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being

j+A+ =  ̄�+ A+ = 2 †
+ +A+ =  †

+ +A� . (A20)

As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W2 and W3, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P�
QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�

QED. These symme-

tries and their operators, which commute with P�
QED, are

listed below.
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background field. We label the terms in P�
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called the vertex interaction, which is responsible for pho-
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field, in the second line of (A19), are the three-point
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(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being
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As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W2 and W3, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P�
QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�
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Basis Construction
1. Fock-space expansion:

e.g.

2. For each Fock particle: 
• Transverse: 2D harmonic oscillator basis: Φ",$% ((⃗))

labeled by radial (angular)  quantum number n (m); scale parameter b

e.g., n=4

• Longitudinal: plane-wave basis, labeled by k
• Helicity: labeled by +
e.g.                         with                                    and 8eγ = e ⊗ γ e = {ne,me,ke,λ e} γ = {nγ ,mγ ,kγ ,λγ }

⟩|./ = 1 ⟩|22̅ + 5 ⟩|22̅6 + 7 ⟩|6 + 8 ⟩|22̅22̅ +. . . .

9|:; = 1 ⟩|2 + 5 ⟩|26 + c ⟩|222̅ + 8 ⟩|222̅6 +. . . .

m=1 m=2m=0



Basis Truncation Scheme

• Symmetries of Hamiltonian:

• Further truncation:

- Fock sector truncation

- Net fermion number:

- Total angular momentum projection: 

- Longitudinal momentum:

- Discretization in longitudinal direction

2ni+ |mi | +1[ ]≤ Nmax
i
∑- “Nmax” truncation in transverse directions 

n f
i

i
∑ = N f

(mi
i
∑ + si ) = Jz

ki
i
∑ = K

UV cutoff Λ~* +,-.; IR cutoff 1~*/ +,-.

34 =
1, 2, 3….          bosons

0.5, 1.5, 2.5 … fermions



Naïve Diagonalization
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• Ground state (physical electron) mass drops as Λ → ∞ and $ → 0
• Mass counterterm is introduced &' → &' + Δ&' to match the 

ground state mass to that of the physical electron
[Shuo Tang et al, in preparation]



Mass Counterterm
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• Sector dependent renormalization              Δ"# is only applied to | ⟩' sector
• Δ"# are applied iteratively so that the physical electron mass at 0.511 MeV
• Δ"# increase as the truncation parameters (regulators) increase
• Δ"# are divergent

[Shuo Tang et al, in preparation]

[Karmanov et al, 2008, 2012]



Electron GPDs and Form Factors
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• With mass renormalization, agreement with perturbation theory is reached

[Shuo Tang et al, in preparation]

 

q1 − iq2
2Me

E(x,0, !q) = e↓ phys (
!q) dy−∫ eixP

+y− /2ψ (0)γ +ψ (y) e↑ phys (0)
y+=0,y⊥=0
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Application to Positronium
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e+

e-

γ



0

Structure of Hamiltonian
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Hint

me=1.0MeV ! = 0.3

⟩|((̅

⟨((̅|

⟨((̅+|

⟩|((̅+

⟩|,- = . ⟩|((̅ + 0 ⟩|((̅+ + c ⟩|+ + d ⟩|((̅((̅ +. . . .



Challenge I

• Self-energy interaction

– Photon generates both self-energy correction and 
binding

– Mass renormalization needed
– Each basis state has distinct phase space for self-

energy interaction due to truncation
– Need to solve a series of single electron problems 

to obtain Δ"#(%&'(, *) for each basis state
15



Mass Counterterms and Z factors

All of them are needed in the positronium problem with Nmax=20, K=69
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Challenge II
• Mismatch between explicit and instantaneous photon interactions:

• Introduce cutoff parameter !"#$% for instantaneous photon interaction:

• !&'() is chosen by minimizing |+, -. = 0 − +, -. = 1 | for 3S1 state.

17

for instantaneous photon: 
3456 = 37 − 38 not limited

for explicit photon:
3456 = 37 − 38 subject to Nmax truncation

37

38
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389

37

38

379

389
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the right. In analogy to Ã, we now introduce  ̃, defined
by

 ̃+ =  + ,  ̃� =
1

2i@+

⇥
me � i�?@?

⇤
�+ ̃+ . (A14)

Again, this is the field which survives the e ! 0 limit.
Our final task is to insert (A14) into (A13) and rewrite
this in terms of only the ‘tilde’ variables. First, the C-free
terms of of (A12) are:

 †
+[me�i�?@?]

1

i@+
[me+i�?@?] + =

1

2
¯̃ �+ m2

e + (i@?)2

i@+
 ̃ .

(A15)

Next, we have terms in (A12) which are linear in C.
These are

 †
+[e�?C?]

1

i@+
[me + i�?@?] +

+ †
+[me � i�?@?]

1

i@+
[�e�?C?] +

=
1

2
 ̃†

+[e�?C?]�� ̃� +
1

2
 ̃†

��+[�e�?C?] ̃+

= ej̃?C? ,
(A16)

using (A14) in the second line. Note the tilde on j in
the third line. Finally, we have the terms quadratic in C,
which are

� e2 ̃+[e�?C?]
1

i@+
[e�?C?] ̃+ . (A17)

Now, we sum (A13) (A15), (A16) and (A17) to obtain
the full Hamiltonian: we drop the ‘tilde’ on all variables
from now on, so that one must remember that

A� ⌘ 2
@?A?

@+
,  � ⌘ 1

2i@+

⇥
me � i�?@?

⇤
�+ + .

(A18)
Since we are interested in the new interactions introduced
by the background field, so we will separate these out
explicitly, expanding C ! A + A. (Recall, A has a tilde
now.) Finally, the full Hamiltonian is

P� =

Z
d2x?dx� 1

2
 ̄�+ m2

e + (i@?)2

i@+
 +

1

2
Aj(i@?)2Aj + ejµAµ +

e2

2
j+ 1

(i@+)2
j+ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ 

+ ejµAµ +
e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ .

(A19)

The first line is the QED light-front Hamiltonian, P�
QED.

The second line contains the new terms generated by the
background field. We label the terms in P�

QED as Tf , T� ,
W1. . . W3 respectively. Tf and T� are the kinetic energy
terms for the fermion and gauge field respectively. W1 is
called the vertex interaction, which is responsible for pho-
ton emission and electron-positron pair-production pro-
cesses. W2 is the instantaneous-photon interaction and
W3 is the instantaneous-fermion interaction. The instan-
taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
background vertex interaction, the instantaneous 2-
background, 2-fermion vertex, and two, instantaneous,
1-background, 1-photon, 2-fermion vertices. For the field
(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being

j+A+ =  ̄�+ A+ = 2 †
+ +A+ =  †

+ +A� . (A20)

As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W2 and W3, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P�
QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�

QED. These symme-

tries and their operators, which commute with P�
QED, are

listed below.
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The first line is the QED light-front Hamiltonian, P�
QED.

The second line contains the new terms generated by the
background field. We label the terms in P�

QED as Tf , T� ,
W1. . . W3 respectively. Tf and T� are the kinetic energy
terms for the fermion and gauge field respectively. W1 is
called the vertex interaction, which is responsible for pho-
ton emission and electron-positron pair-production pro-
cesses. W2 is the instantaneous-photon interaction and
W3 is the instantaneous-fermion interaction. The instan-
taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
background vertex interaction, the instantaneous 2-
background, 2-fermion vertex, and two, instantaneous,
1-background, 1-photon, 2-fermion vertices. For the field
(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being

j+A+ =  ̄�+ A+ = 2 †
+ +A+ =  †

+ +A� . (A20)

As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W2 and W3, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P�
QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�

QED. These symme-

tries and their operators, which commute with P�
QED, are

listed below.

:"#$% ≡ :"#$%×exp − 3@8
!&'()8
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Convergence is better at smaller K
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Ground State Binding Energy 
(Without Mass Renormalization)
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embedding wavefunction at Nmax=16, K=19,
optimal binst and b=0.312MeV

effective wavefunction at 
Nmax=16, K=19, b=0.3MeV

Wave Function Comparison 
[Wiecki, et al, 2015]



Probability of | ⟩##̅

Probability of | ⟩##̅ seems converging with respect to Nmax and K in comparison
with the single electron case

0 20 40 60
0.5

0.6

0.7

0.8

0.9

1.0

K
pr
ob
ab
ili
ty

Nmax=9
Nmax=8
Nmax=10
Nmax=12
Nmax=14

20 25 30 35 40 45
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

K

pr
ob
ab
ili
ty

norm1 of 11S0 at optimal binst



27

Compare with Photon distribution in Single Electron
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Small-x photons are largely suppressed
In consistency with the “smaller size” of positrtonium

Positronium 1S0 Single electron

[Shuo, et al, in preparation]
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Wave Function Comparison 

Nodal structure in radial direction



Probability of | ⟩##̅

Excited states have larger | ⟩##̅% component
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Photon Distribution in Positronium

In excited states photons have larger probability at small-x region

Nmax=8,K=19,binst=1.2,b=0.52
Nmax=8,K=29,binst=0.9,b=0.52
Nmax=8,K=39,binst=0.8,b=0.52
Nmax=8,K=49,binst=0.6,b=0.44
Nmax=10,K=19,binst=1.1,b=0.44
Nmax=10,K=29,binst=0.6,b=0.32
Nmax=10,K=39,binst=0.6,b=0.36
Nmax=10,K=49,binst=0.6,b=0.4

Nmax=12,K=19,binst=1.1,b=0.392
Nmax=14,K=19,binst=1.2,b=0.392
Nmax=14,K=39,binst=0.5,b=0.264

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

x

ψ
* ψ

gammapdf of 11S0



Wave Function Comparison 

Nodal structure in angular direction



Nodal structure in angular direction

Wave Function Comparison 
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Photon Distribution in Positronium
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Probability of | ⟩##̅ for P-wave states
seem to be between 1S and 2S states 

https://astarmathsandphysics.com/university-physics-notes/quantum-mechanics/1644-table-of-the-radial-parts-of-the-wavefunctions-for-the-hydrogen-atom.html



Photon Distribution in Positronium

Small-x photon probability for P-wave states
seem to be between 1S and 2S states 
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Conclusions
• Solve positronium system based on first-principles
• Hamiltonian framework provides wave functions beyond 

leading Fock-sector
• Mass renormalization is needed
• Wave function and energy spectrum for low lying states 

reasonably agree with those from potential approach
• Small-x photons seem less divergent compared to those in 

single electron
• Indicateing less divergent infrared behavior for positronium 

compared to single electron
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Outlook

• Convergence study
• Observables 
• Connection with effective potential approach
• Heavy quarkonium systems
• Baryon system beyond leading Fock-sector
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Hyperfine Splitting (3S1-1S0)
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