Positronium on the Light-front

Xingbo Zhao
With
Kaiyu Fu, Hengfei Zhao, Yang Li,
James P. Vary
Institute of Modern Physics
Chinese Academy of Sciences
Lanzhou, China

Lightcone 2018, JLab, Newport News, USA, May 17, 2018

Outline

- Motivation - Why Positronium?
- Methodology - Basis Light-front Quantization
- Numerical Results
- Energy spectrum
- Wave functions
- Summary and Outlook

Motivation

Positronium is a test bed for

- Relativistic bound state structure beyond leading Fock-sector
- Basis Light-front Quantization on first-principles, esp., nonperturbative renormalization procedure
- Connection with effective theory

Basis Light-front Quantization

- Nonperturbative eigenvalue problem

$$
P^{-}|\beta\rangle=P_{\beta}^{-}|\beta\rangle
$$

- P^{-}: light-front Hamiltonian
- $|\beta\rangle$: mass eigenstate
- P_{β}^{-}: eigenvalue for $|\beta\rangle$
- Evaluate observables for eigenstate

$$
O \equiv\langle\beta| \hat{O}|\beta\rangle
$$

See Chandan Monal's talk
Shaoyang Jia's talk
Meijian Li's talk

Light-front QED Hamiltonian

- QED Lagrangian $\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\Psi}\left(i \gamma^{\mu} D_{\mu}-m_{e}\right) \Psi$
- QED Light-front Hamiltonian

$$
\begin{aligned}
& P^{-}=\int \mathrm{d}^{2} x^{\perp} \mathrm{d} x^{-} F^{\mu+} \partial_{+} A_{\mu}+i \bar{\Psi} \gamma^{+} \partial_{+} \Psi-\mathcal{L} \\
& \left(A^{+}=0\right) \\
& =\int \mathrm{d}^{2} x^{\perp} \mathrm{d} x^{-} \frac{1}{2} \bar{\Psi} \gamma^{+} \frac{m_{e}^{2}+\left(i \partial^{\perp}\right)^{2}}{i \partial^{+}} \Psi+\frac{1}{2} A^{j}\left(i \partial^{\perp}\right)^{2} A^{j} \\
& +e j^{\mu} A_{\mu}+\frac{e^{2}}{2} j^{+} \frac{1}{\left(i \partial^{+}\right)^{2}} j^{+}+\frac{e^{2}}{2} \bar{\Psi} \gamma^{\mu} A_{\mu} \frac{\gamma^{+}}{i \partial^{+}} \gamma^{\nu} A_{\nu} \Psi \\
& \overline{\text { vertex instantaneous instantaneous }} \\
& \text { interaction } \\
& \text { photon } \\
& \text { interaction }
\end{aligned}
$$

Light-front QED Hamiltonian

- QED Lagrangian $\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\Psi}\left(i \gamma^{\mu} D_{\mu}-m_{e}\right) \Psi$
- QED Light-front Hamiltonian

$$
\begin{aligned}
P^{-}=\int \mathrm{d}^{2} x^{\perp} \mathrm{d} x^{-} & F^{\mu+} \partial_{+} A_{\mu}+i \bar{\Psi} \gamma^{+} \partial_{+} \Psi-\mathcal{L} \\
=\int \mathrm{d}^{2} x^{\perp} \mathrm{d} x^{-} & \frac{1}{2} \bar{\Psi} \gamma^{+} \frac{m_{e}^{2}+\left(i \partial^{\perp}\right)^{2}}{i \partial^{+}} \Psi+\frac{1}{2} A^{j}\left(i \partial^{\perp}\right)^{2} A^{j} \\
& +e j^{\mu} A_{\mu}+\frac{e^{2}}{2} j^{+} \frac{1}{\left(i \partial^{+}\right)^{2}} j^{+} \\
& \begin{array}{c}
\text { vertex } \\
\text { interaction } \quad \begin{array}{c}
\text { instantaneous } \\
\text { photon } \\
\text { interaction }
\end{array}
\end{array}
\end{aligned}
$$

Basis Construction

1. Fock-space expansion:

$$
\text { e.g. } \begin{aligned}
\left|\boldsymbol{e}_{\boldsymbol{p}}\right\rangle & =a|e\rangle+b|e \gamma\rangle+c|e e \bar{e}\rangle+d|e e \bar{e} \gamma\rangle+\ldots \\
|\mathbf{P s}\rangle & =a|e \bar{e}\rangle+b|e \bar{e} \gamma\rangle+c|\gamma\rangle+d|e \bar{e} e \bar{e}\rangle+\ldots .
\end{aligned}
$$

2. For each Fock particle:

- Transverse: 2D harmonic oscillator basis: $\Phi_{n, m}^{b}\left(\vec{p}_{\perp}\right)$ labeled by radial (angular) quantum number $n(m)$; scale parameter b

$$
\text { e.g., } n=4
$$

- Longitudinal: plane-wave basis, labeled by k
- Helicity: labeled by λ
e.g. $|e \gamma\rangle=|e\rangle \otimes|\gamma\rangle$ with $e=\left\{n^{e}, m^{e}, k^{e}, \lambda^{e}\right\}$ and $\gamma=\left\{n^{\gamma}, m^{\gamma}, k^{\gamma}, \lambda^{\gamma}\right\}$

Basis Truncation Scheme

- Symmetries of Hamiltonian:
- Net fermion number:
- Total angular momentum projection:
- Longitudinal momentum:

$$
\begin{aligned}
& \sum_{i} n_{i}^{f}=N^{f} \\
& \sum_{i}\left(m_{i}+s_{i}\right)=J_{z} \\
& \sum_{i} k_{i}=K
\end{aligned}
$$

- Further truncation:
- Fock sector truncation
- Discretization in longitudinal direction $\quad k_{i}= \begin{cases}1,2,3 \ldots & \text { bosons } \\ 0.5,1.5,2.5 \ldots & \text { fermions }\end{cases}$
- " $\mathrm{N}_{\max }$ " truncation in transverse directions $\sum_{i}\left[2 n_{i}+\left|m_{i}\right|+1\right] \leq N_{\max }$

UV cutoff $\Lambda \sim b \sqrt{N_{\text {max }}} ;$ IR cutoff $\lambda \sim b / \sqrt{N_{\text {max }}}$

Naïve Diagonalization

- Ground state (physical electron) mass drops as $\Lambda \rightarrow \infty$ and $\lambda \rightarrow 0$
- Mass counterterm is introduced $m_{e} \rightarrow m_{e}+\Delta m_{e}$ to match the ground state mass to that of the physical electron
[Shuo Tang et al, in preparation]

Mass Counterterm

[Karmanov et al, 2008, 2012]

- Sector dependent renormalization
Δm_{e} is only applied to $|e\rangle$ sector
- Δm_{e} are applied iteratively so that the physical electron mass at 0.511 MeV
- Δm_{e} increase as the truncation parameters (regulators) increase
- Δm_{e} are divergent
[Shuo Tang et al, in preparation]

Electron GPDs and Form Factors

- $\frac{q_{1}-i q_{2}}{2 M_{e}} E(x, 0, \vec{q})=\left.\left\langle e_{p h y s}^{\downarrow}(\vec{q})\right| \int d y^{-} e^{i x P^{+} y^{-} / 2} \bar{\psi}(0) \gamma^{+} \psi(y)\left|e_{p h y s}^{\uparrow}(0)\right\rangle\right|_{y^{+}=0, y_{\perp}=0}$
- With mass renormalization, agreement with perturbation theory is reached
[Shuo Tang et al, in preparation]

Application to Positronium

Structure of Hamiltonian

$$
|\mathbf{P s}\rangle=a|e \bar{e}\rangle+b|e \bar{e} \gamma\rangle_{\mathbf{I}}^{\mathbf{I}}+\mathrm{c}|\gamma\rangle+\mathrm{d}|e \bar{e} e \bar{e}\rangle+\ldots . \quad \quad \mathrm{m}_{\mathrm{e}}=1.0 \mathrm{MeV} \quad \alpha=0.3
$$

$\mathrm{H}_{\mathrm{int}}$	$\|e \bar{e}\rangle$	$\|e \bar{e} \gamma\rangle$
$\langle e \bar{e}\|$	$\cdots \frac{6^{6}}{6} \cdot 6^{6^{6}}$	
$\langle e \bar{e} \gamma\|$	$\cdots 6^{6^{6}}$	

Challenge I

- Self-energy interaction

- Photon generates both self-energy correction and binding
- Mass renormalization needed
- Each basis state has distinct phase space for selfenergy interaction due to truncation
- Need to solve a series of single electron problems to obtain $\Delta m_{e}\left(N_{\text {max }}, K\right)$ for each basis state

Mass Counterterms and Z factors

Challeneell

- Mismatch between explicit and instantaneous photon interactions:
for instantaneous photon:
$p_{\text {rel }}=p_{1}-p_{2}$ not limited

for explicit photon:
$p_{\text {rel }}=p_{1}-p_{2}$ subject to $\mathrm{N}_{\text {max }}$ truncation

- Introduce cutoff parameter $b_{\text {inst }}$ for instantaneous photon interaction:

$$
V_{\text {inst }} \equiv \int \mathrm{d}^{2} x^{\perp} \mathrm{d} x^{-} \cdot j^{+} \frac{1}{\left(i \partial^{+}\right)^{2}} j^{+} \longrightarrow V_{\text {inst }} \times \exp \left(-\frac{p_{\perp}^{2}}{b_{\text {inst }}^{2}}\right)
$$

- $b_{\text {inst }}$ is chosen by minimizing $\left|E_{b}\left(m_{j}=0\right)-E_{b}\left(m_{j}=1\right)\right|$ for ${ }^{3} \mathrm{~S}_{1}$ state.

Ground State Binding Energy

Convergence is better at smaller K

Ground State Binding Energy (Without Mass Renormalization)

- Nmax=8 at optimal $b_{\text {inst }}$ - Nmax=10 at optimal $b_{\text {inst }}$
- Nmax=10 at optimal $b_{\text {inst }}$ without mass counterterm

Positronium Mass Spectrum (Shifted)

Nmax=12, $\mathrm{K}=19, \alpha=0.3, \mathrm{M}_{\mathrm{e}}=1 \mathrm{MeV}$

$\mathrm{Mj}=0$ states(from down to up): $1^{1} S_{0}, 1^{3} S_{1}, 2^{3} S_{1}, 2^{1} S_{0}, 2^{3} P_{2}, 2^{1} P_{1}, 2^{3} P_{1}, 2^{3} P_{0}$

Positronium Mass Spectrum (Shifted)

$\mathrm{Mj}=0$ states(from down to up): $1^{1} S_{0}, 1^{3} S_{1}, 2^{3} S_{1}, 2^{1} S_{0}, 2^{3} P_{2}, 2^{1} P_{1}, 2^{3} P_{1}, 2^{3} P_{0}$

Positronium Mass Spectrum (Shifted)

$\mathrm{Mj}=0$ states(from down to up): $1^{1} S_{0}, 1^{3} S_{1}, 2^{3} S_{1}, 2^{1} S_{0}, 2^{3} P_{0}, 2^{3} P_{1}, 2^{3} P_{2}, 2^{1} P_{1}$ $\mathrm{Mj}=1$ states(from down to up): $1^{3} S_{1}, 2^{3} S_{1}, 2^{1} P_{1}, 2^{3} P_{1}, 2^{3} P_{2}$ $\mathrm{Mj}=2$ states(from down to up): $2^{3} P_{2}$

Wave Function Comparison

embedding wavefunction at $\mathrm{Nmax}=16, \mathrm{~K}=19$, optimal $b_{\text {inst }}$ and $b=0.312 \mathrm{MeV}$
effective wavefunction at Nmax=16, K=19, b=0.3MeV

$$
\text { embedding } 1^{1} S_{0}
$$

Probability of $|e \bar{e}\rangle$

Probability of $|e \bar{e}\rangle$ seems converging with respect to Nmax and K in comparison with the single electron case

Compare with Photon distribution in Single Electron

Small-x photons are largely suppressed In consistency with the "smaller size" of positrtonium

Wave Function Comparison

embedding $2^{1} S_{0}$
effective $2^{1} S_{0}$

effective $2^{3} S_{1}$
embedding $2^{3} S_{1}$

Nodal structure in radial direction

Probability of $|e \bar{e}\rangle$

Excited states have larger $|e \bar{e} \gamma\rangle$ component

Photon Distribution in Positronium

In excited states photons have larger probability at small-x region

Wave Function Comparison

embedding $2^{3} P_{0}$
effective $2^{3} P_{0}$

embedding $2^{3} P_{1}$

Wave Function Comparison
 effective $2^{1} P_{1}$

embedding $2^{1} P_{1}$

Nodal structure in angular direction

Photon Distribution in Positronium

Probability of $|e \bar{e}\rangle$ for P -wave states seem to be between $1 S$ and $2 S$ states

Photon Distribution in Positronium

Small-x photon probability for P-wave states seem to be between $1 S$ and $2 S$ states

Conclusions

- Solve positronium system based on first-principles
- Hamiltonian framework provides wave functions beyond leading Fock-sector
- Mass renormalization is needed
- Wave function and energy spectrum for low lying states reasonably agree with those from potential approach
- Small-x photons seem less divergent compared to those in single electron
- Indicateing less divergent infrared behavior for positronium compared to single electron

Outlook

- Convergence study
- Observables
- Connection with effective potential approach
- Heavy quarkonium systems
- Baryon system beyond leading Fock-sector

Thenk you!

Hyperfine Splitting $\left({ }^{3} \mathrm{~S}_{1}-{ }^{-1} \mathrm{~S}_{0}\right)$

