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Motivation

Deeply-virtual Compton scattering (DVCS) has been proposed to
determine the generalized-parton distributions (GPDs) of hadrons.
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Handbag diagram for VCS, including the leptonic part

A hard photon, q2 = −Q2, with Q much larger than the characteristic
hadronic scales, probes the quark content of the hadronic target. The
detection of the outgoing, real photon provides information not contained
in deep-inelastic scattering (DIS).
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It is commonly assumed that to allow for the extraction of the GPDs, the
experiments should be set-up in (approximately) collinear kinematics.
Such kinematics may not always be possible to realize in concrete
experiments.

We propose to first analyze the experimental data in terms of
Lorentz-invariant amplitudes, Compton form factors (CFFs).

By definition, the CFFs can be determined in any suitable kinematics.
Once they are measured, theorists may use them to extract the GPDs.

Here, we present our work on VCS off the 4He nucleus, motivated by the
work of M. Hattawy 2

We shall in particular discuss the importance of including the three CFFs.

2M. Hattawy, Thesis, Université Paris-Sud XII (2015);M. Hattawy et al.,
Phys. Rev. Lett. 119, 202004 (2017)
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Formalism

In Compton scattering the physical amplitudes is written as the
contraction of a tensor operator with the photon polarization vectors.

In order not to introduce unwarranted restrictions, it is important to
use the most general form of that tensor operator consistent with EM
gauge invariance.

The quark-gluon structure of hadrons is supposed to manifest itself most
transparently in processes where the hadrons are subjected to strongly
virtual probes.

The amplitudes must scale with the virtuality Q to allow for a
partonic interpretation.
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To obtain the complete amplitudes, one must add the ones associated
with the Bethe-Heitler process. These amplitudes can be written as the
convolution of the leptonic (QED) amplitude and a hadronic amplitude,
which involves the electro-magnetic form factor of the 4He nucleus,
which is well known.We shall use the parametrisation by Frosch et al.3.

Otherwise, the Bethe-Heitler amplitudes are a straight forward exercise in
QED. We neglect the electron mass.

Similarly, the VCS amplitude can be written as the convolution of
another leptonic amplitude and the hadronic VCS amplitude, which is
parameterised in terms of the CFFs.

3R.F. Frosch, J.S. McCarthy, R.E. Rand, and M.R. Yearian, Phys. Rev. 180,
874 (1967)
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Tarrach’s tensor

We write the physical amplitudes as contractions of a tensor with the
polarization vectors of the photons:

A(h′, h) = ε∗(q′; h′)µTµνε(q; h)ν .

This tensor must be transverse, i.e.,

q′µTµν = 0, Tµνqν = 0.

It is written in terms of scalars (CFFs) and basis tensors. The number of
independent tensor structures is known to be 5.4

The relevant momenta in the hadronic part are p(p′) and q(q′), the

momenta of the incoming(outgoing) hadron and photon.

4M. Perrottet, Lett. Nuovo Cim. 7, 915 (1973) and R. Tarrach, Nuovo Cim.
28 A, 409 (1975) and numerous more recent papers.
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Using momentum conservation, one finds that there are 3 independent
momenta. We keep q and q′, to simplify a check of the transversity of
the tensor. For the remaining one we choose the sum of the hadronic
momenta, P̄ = p′ + p. Our basis is then k1 = P̄, k2 = q′, k3 = q.

Following Tarrach, we find it useful to construct the tensor Tµν by
applying a two-sided projector g̃µν(q, q′) to the most general second-rank
tensor expressed in terms of our basis:

Tµν = g̃µm tmn g̃nν , tmn = t0 gmn +
∑
i,j

tij ki mkj n.

The two-sided projector g̃(q, q′) is defined as follows:

g̃µν(q, q′) = gµν − qµq′ν

q · q′
.

This projector has the properties

g̃µm gmn g̃nν = g̃µν , q′µ g̃µν = 0, g̃µνqν = 0.
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We define the reduced momenta, (k = P̄, q′, q):

k̃µL = g̃µmkm k̃νR = kn g̃nν

and find for unrestricted kinematics the following result for Tµν

Tµν = H0 g̃µν +H1 P̃µ
L P̃ν

R +H2 P̃µ
L q̃νR +H3 q̃′µL P̃ν

R +H4 q̃′µL q̃νR.

Contracting the tensor with ε∗µ(q′) and εν(q) we find that all five pieces

of the tensor contribute to the Compton amplitude, if q′2 6= 0 and q2 6= 0.
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Alternative tensors

The method proposed by Tarrach is by no means the only possible
one. Other conventions were proposed by Andreas Metz 5 and Chueng Ji
6

Defining the DNA tensor

dµναβ = gµνgαβ − gµβgνα,

novel projectors are defined by

Gµν(ki , kj) = ki αdµναβkj β ,

where the k ’s are just the basis vectors defined before.

5A. Metz, Virtuelle Comptonstreuung und die Polarisierbarkeiten des
Nukleons (in German), PhD thesis, Universität Mainz

6B.L.G. Bakker and C.-R. Ji,Few-Body Syst., 58, 1 (2017)
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The complete tensor can now be written as

T̃µν
DNA :=

5∑
i=1

Si T̃ (i)µν
DNA =

S1Gµν(q′, q) + S2Gµλ(q′, q′)G ν
λ (q, q) + S3Gµλ(q′, P̄)G ν

λ (P̄, q)

+S4
(
Gµλ(q′, P̄)G ν

λ (q, q) + Gµλ(q′, q′))G ν
λ (P̄, q)

)
+S5Gµλ(q′, q′)P̄λP̄λ′Gλ′ν(q, q).

Where the Si are the CFFs in the DNA construction.

The CFFs Hi of the Tarrach basis can be written as linear combinations

of the Si .
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Illustration: Tree-level DVCS
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As a default model one may consider the tree-level case, which of
course describes completely structureless particles. Any deviation of the
cross sections from the predictions of this model implies that the hadron
has structure.

The tree-level DVCS amplitude corresponds to the CFFs

Htree
0 = −2, Htree

1 =

(
1

shad −M2
+

1

uhad −M2

)
,

shad = (p + q)2, uhad = (p − q′)2.

Thus, only 2 out of 5 CFFs contribute. We note that at large Q, H1 is of
relative order 1/Q2 compared to H0.
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Kinematics

We shall in general work in the hadronic CMF. The amplitudes can be
expressed in terms of three invariants and two azimuthal angles. We start
with the invariants.

For the VCS amplitude the relevant invariants are the mass M of the
hadron and

Q2 = −q2, xBj =
Q2

(2p · q)
,

shad = (p + q)2, thad = (p − p′)2, uhad = (p − q′)2. (1)

For a given values of the Bjorken variable xBj, the squared invariant mass
is given by

shad = M2 +
1− xBj

xBj
Q2.
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Thus shad is of order Q2, Because in the CMF all non-vanishing
momentum components can be expressed in terms of M, Q, shad, and
thad, they are of order Q. The invariants thad and uhad may become small
in special points in the kinematic domain.

We calculate the Mandelstam variables thad and uhad for large Q:

thad → −
1− cosϑ

2xBj
Q2 +O(M2), uhad → −

1 + cosϑ

2xBj
Q2 +O(M2).

The quantity ϑ = θ′C − θC is the scattering angle in the CMF.

If ϑ→ 0, thad goes to zero up to corrections of O(M2), thus thad does
not strictly vanish in the forward limit. If the target mass M is not small
compared to Q, which is the case in e.g. the VCS-on-4He experiment
done at Jlab, one must go to almost completely forward kinematics to
make thad small compared to Q2,

If the experimental set-up limits the scattering angle to values greater
than ϑlim, t remains of order Q2.

For large Q and small ϑlim one finds |t| > ϑ2
lim

4xBj
Q2.
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The Compton tensor
Looking at the Compton tensor of VCS

Tµν = H0 g̃µν +H1 P̃µ
L P̃ν

R +H2 P̃µ
L q̃νR,

it is clear from the fact that all three pieces must have the same
mass dimension, that we must expect that the scaling of the CFFs
must obey the rule

H0 : H1 : H2 = 1/Q2 : 1/Q2.

Tµν in the forward kinematics and in the limit of large Q becomes

Tµν = Q2


H′

1

4x2
Bj

0 0
(1−2xBj)H′

1

4x2
Bj

0 −H0

Q2 0 0

0 0 −H0

Q2 0
H′

1

4x2
Bj

0 0
(1−2xBj)H′

1

4x2
Bj


where the compound CFF H′1 is defined by

H′1 = 2x2
Bj

H0

Q2
+ (2− xBj)

2H1 − xBj(2− xBj)H2.
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Hadronic amplitudes

Starting from the Compton tensor with three CFFs, we can calculate the
amplitudes for VCS on 4He for any values of Q2, xBj, and scattering
angle θ. We shall use the scattering angle in the hadronic CMF in our
plots of the amplitudes. This angle is simply related to thad. At tree
level we find the following results.

The value Q2 = 1.9 GeV2 is typical for the JLab experiment. At very

small θ, the spin non-flip amplitude dominates, but in the backward

hemisphere A(1,−1) and A(1, 0) become essential.
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Cross sections

Because the Bethe-Heitler and VCS processes are coherent, the
amplitudes must be added when the cross section for the process
e + 4He→ e′ + 4He + γ is calculated. Then the complete cross section
can be split into a Bethe-Heitler cross section, a VCS cross section and a
part that is obtained by the interference of the two amplitudes:

|Atot|2 = |ABH + AVCS|2

= |ABH|2 + |AVCS|2 + A∗BHAVCS + A∗BHAVCS + ABHA∗VCS.

The φ dependence of this interference part gives acces to the CFFs. In
the following slides we show this φ dependence of the Bethe-Heitler cross
section, the VCS cross section and the complete cross section.

The values of the quantities Q2, xBj, and thad are taken from the proposal

W.R. Armstrong et al., arXiv:1708.00888v2 [nucl-ex] 5 Aug 2017.
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VCS cross section and CFFs

Including the leptonic part of the VCS amplitudes, we calculate the
physical VCS cross section. The black curve represents for small
scattering angle the φ dependence of the VCS cross-section at Q2 = 1.5
GeV2 and xBj = 0.22/4. The blue curve corresponds to the case where
H0 = Htree

0 and H1 = 0, and the red curve is for the case that H0 = 0
and H1 = Htree

1
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Clearly, leaving out the “sub-dominant” H1 gives a completely wrong

result. Note that H0 and H1 have opposite signs at tree level.
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Cross section including Bethe Heitler
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Bethe-Heitler plus VCS cross sections. The beam energy is 11 GeV,
Q2 = 1.5 GeV. The hadronic t = −0.1 GeV2.

Color coding: xBj = 0.18/4, xBj = 0.20/4, xBj = 0.22/4.
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When the CFFs are real, the beam-spin asymmetry is supposed to
vanish. Therefore, we modified the CFF H0 by multiplication with 1 + i .
Then the cross section becomes dependent on φ
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Bethe-Heitler plus VCS cross sections. The beam energy is 11 GeV,
Q2 = 1.5 GeV. The hadronic t = −0.1 GeV2, xBj = 0.22/4.

Color coding: xBj = 0.18/4, xBj = 0.20/4, xBj = 0.22/4.
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Beam-spin asymmetry

Whenever there is an interference term, it can used to determine the
CFFs. This term will show up in the single-spin asymmetry ALU, which is
defined as

ALU =
dσ+ − dσ−

dσ+ + dσ−
.

It is well known that in case the CFFs are real, this observable vanishes.
Thus in the case we use the tree-level CFFs, ALU = 0. This is borne out
in our calculation. However, If we again introduce in the CFF H0 an
imaginary part:

H0 → H0(1 + i),

then the asymmetry shows up, as expected. (H1 is kept real).
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Bethe-Heitler-plus-VCS ALU. The beam energy is 11 GeV, Q2 = 1.5
GeV. The hadronic t = −0.1 GeV2.

Color coding: xBj = 0.18/4, xBj = 0.20/4, xBj = 0.22/4.
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Because all CFFs contribute to the VCS amplitudes, VCS also may show
a single-spin asymmetry.

xBj = 0.22/4
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Summary and conclusions

I We have discussed the number of Compton Form factors for a
scalar target. This number is three.

I We have presented a model-independent form of the
Compton tensor, containing all three CFFs.

I We have shown that in the forward direction and for large Q the
number of CFFs reduces effectively to two.

I To estimate the relative importance of the three CFFS, one should
include the leptonic part and the Bethe-Heitler amplitude.
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I For illustration, we have used the tree-level Compton tensor and
modifications. Adding the Bethe-Heitler amplitudes to the VCS
ones, we calculated the cross section as wel as the single-spin
asymmetry ALU.

I We verified that ALU must vanish for real CFFs, but becomes finite
for complex CFFs.

I A surprising result is that even without interference of the
Bethe-Heitler process, there occurs a single-spin symmetry in
VCS. This result is obtained because the VCS amplitude is the
coherent sum of two parts, one related to the CFF H0, the other to
H1.


	Motivation
	Formalism
	Tensor formulation á la Tarrach
	Alternative Tensors

	Kinematics
	Amplitudes
	Amplitudes
	Cross sections
	Beam-spin asymmetry

	Summary and conclusions

